
WideStudio Application
Builder
User’s Guide

Contents

1 Introduction 1
1.1 What is the WideStudio? . 1

1.1.1 What is the C++ language? 2
1.1.2 Comments on the development of the WideStudio . . . 2

1.2 Multi-Platform Environment . 3
1.3 Multi Encoding . 3
1.4 Open Source License . 6
1.5 Downloading of WideStudio . 6
1.6 Building and installing WideStudio 6

1.6.1 Building and installing on a UNIX system 6
1.6.2 Installing with the binary RPM package on the Linux

operating system . 7
1.6.3 Installing on Windows operating system 7

1.7 Settings After Installation . 8
1.7.1 Settings on Windows . 8
1.7.2 Setting the environment variables on a UNIX system . . 8
1.7.3 The other files on a UNIX system 9

1.8 Uninstalling WideStudio . 9
1.8.1 Uninstalling on Windows 9
1.8.2 Unintalling on a UNIX system 9
1.8.3 Uninstalling the RPM package on a Linux system 9

2 Getting started 10
2.1 What is the application builder? 10
2.2 Development of an application on WideStudio 11
2.3 How to start the application builder 12

2.3.1 How to start on Windows 12
2.3.2 How to start on the UNIX system 12

2.4 How to exit the application builder 13
2.5 The name and function of the parts of the builder 14

2.5.1 Inspector, Source code viewer 14
2.5.2 Property editor . 14
2.5.3 Event procedure editor 15
2.5.4 Window attribute editor 15

2.6 Development of a simple application ’Hello’ 16
2.7 Creating a project ’Hello’ . 16
2.8 Creating an application window 17
2.9 Creating an event procedure. 18

2.10 Building of the application ’Hello’ and executing it 20

3 Application Window 21
3.1 What Is an Application Window? 21
3.2 How to Create/Save a New Application Window 22
3.3 How To See The List of the Application Windows 25

3.3.1 How To See The List of the Application Windows 25
3.3.2 How to display the application window to edit 26

3.4 How to delete the application window 26
3.5 How to rename the application window 27
3.6 How to save the application window as specified file name . . . 30
3.7 How to open the file of an application window 31

4 Object 33
4.1 What are the GUI objects? . 33
4.2 Windows . 36
4.3 Forms . 37
4.4 Commands . 37
4.5 Drawings . 38
4.6 Place instances on an application window 38
4.7 Set Properties . 40
4.8 Delete an instance and a window 45

4.8.1 How to delete the instance 45
4.8.2 How to delete the application window 46

4.9 Copy instance(s) . 46
4.10 Make an instance be an external variable 49
4.11 View the list of instances . 50

4.11.1 How to see a composition of the instances of the applica-
tion window . 50

4.11.2 How to see the details of the children 50
4.12 Rename the name of an instance 51
4.13 Define Instances as an Array . 53
4.14 Use new classes imported fron a class libraries 53
4.15 See the class name of an instance 55

5 Event Procedure 56
5.1 What is the Event procedure? 56

5.1.1 The function for the event procedures 57
5.2 Triggers . 57
5.3 How to create / setup / delete event procedures 58

5.3.1 How to see the event procedures of the instance 58
5.3.2 How to create an event procedure 59
5.3.3 How to set up an event procedure 61
5.3.4 How to delete an event procedure 61

5.4 How to create/edit a function 62
5.4.1 How to create a template file for a function 62
5.4.2 How to edit a function 62
5.4.3 How to specify your favorite editor 63
5.4.4 How to use a function which is in a library. 64

ii

6 Project 65
6.1 What is the Project? . 65
6.2 Create a new project, Delete / Save a project 66

6.2.1 See the project name . 66
6.2.2 Create a new project . 66
6.2.3 Save a project . 67
6.2.4 Rename and save a project 67
6.2.5 Open an already created project 67

6.3 Set the project environment . 68
6.4 Add an application window to the project 69
6.5 Add a color . 71

6.5.1 How to add a color . 71
6.6 How to edit a color . 72
6.7 How to delete a color . 72
6.8 Set up fonts . 72
6.9 Find application windows and instances 74
6.10 Files in a project . 75

7 Compiling / Building 76
7.1 Build a Project . 76

7.1.1 How to build a project 76
7.1.2 How to set header and library path 77

7.2 Execute a compiled load module 78
7.3 Set compiler options . 78

7.3.1 How to set compiler options 78
7.4 Set link options . 79

7.4.1 How to set libraries to link 79
7.5 Add Source files . 80

7.5.1 Source file addition setting 80
7.6 Turn on Debugging Mode . 81
7.7 How to Debug an Application 81
7.8 Trace Debugger . 82

7.8.1 How to use the trace debugger 82

8 Class Application Window 85
8.1 What is the Class Application Window? 85
8.2 Create a new class application window 86

8.2.1 How to create a new class application window 86
8.2.2 How to select an icon and set the title string of the class 87

8.3 Select the base class for a new class 88
8.3.1 Default base class . 88
8.3.2 How to select a base class for a new class 89

8.4 Add / Edit / Delete a New Property 90
8.4.1 How to display the property setup dialog 90
8.4.2 How to add a new property 90
8.4.3 How to edit a property 92
8.4.4 How to delete a property 92
8.4.5 How to create a new invisible property 93

8.5 Delete / Invisible an Inherited Property 93
8.5.1 How to delete an inherited property 93

iii

8.5.2 How to make an existing property invisible 94
8.6 Child instances as members of the class 95
8.7 Add / Edit / Delete Triggers 95

8.7.1 How to display the trigger setup dialog 95
8.7.2 How to add triggers . 95
8.7.3 How to delete added triggers 96

8.8 Add / Edit / Delete a User Trigger 96
8.8.1 How to display the user trigger setup dialog 96
8.8.2 How to add user triggers 97
8.8.3 How to delete added user triggers 97

8.9 Create a Class Library . 98

9 Stored Application Window 99
9.1 What is the Stored Application Window ? 99
9.2 Making an Stored Window . 100

9.2.1 How to save an application window as a stored window . 100
9.2.2 How to add the stored application window to project . . 101

9.3 Make a Partially Stored Window 101

10 Remote Instance 103
10.1 What is the Remote Instance ? 103
10.2 Start up the WSAgent . 104
10.3 Construct a Remote Instance Server 105

10.3.1 How to make an application a remote instance server . . 105
10.3.2 How to publicize an instance as a remote instance . . . 105
10.3.3 How to start up an agent 106

10.4 Summary . 106
10.4.1 Before accessing remote instances 106
10.4.2 Before accessing remote instances 106
10.4.3 How to access remote instances 107

iv

Chapter 1

Introduction

1.1 What is the WideStudio?

WideStudio is a GUI based application development environment which has
been developed purely in Japan, on many platforms such as Windows, Linux,
FreeBSD, and Solaris. This application is fully available and is ”open source”.
This is one of its most outstanding features. Everyone can use this to develop
open and multi-platform applications with ease.

WideStudio has the following characteristics:

• Open source License (X11/MIT).

• C++ based development.

• Possible to build platform-independent GUI applications.

• Uses fully original class libraries.

• Equipped with the application builder which can easily edit a GUI appli-
cation.

• Needs only a minimum of coding, in an event-driven style.

• Ensures scalability by a function of building / importing additional class
libraries.

Mature developers may have developed applications on multi-platforms such
as Windows and X11.

I have also developed various applications by saving money, getting a palm-
top computer, inserting the machine language on it by drawing dots to make
a so called game, but that is an old story. Since then, I used MS-DOS fol-
lowed by Windows 3.0, then 3.1, UNIX/X11 Window system, Xt/Motif, Win-
dows95/NT(Win32), MFC/ActiveX.

At last, I don’t want to bother anymore with incompatibility between plat-
forms and have decided to make my applications platform-independent.

I thought it be great if developers could build applications by only using a
mouse with the WideStudio IDE. The next figure describes the composition of
WideStudio and its files.

1.1. What is the WideStudio? 2

[WideStudio Composition]

1.1.1 What is the C++ language?

WideStudio is written in C++. C++ is basically the C programming language,
with enhanced support for object oriented programming.

C is the one of the most standard programming languages, and is used in
many larger software products because of its hardware accessing ability. C++
inherits many features from the C language, and is equipped with functions to
allow developers to build applications more efficiently.

While it copies C format, it soon becomes apparent that it is a world apart
from C, and tends to get both novice and experienced programmers into diffi-
culty. Using WideStudio, developers can write programs as they did in C, and
they are still able to make good use of great C++ functionalities, and of course,
programs using classes are also easy to make.

1.1.2 Comments on the development of the WideStudio

There are thousands of application builders like WideStudio, so why use WideStu-
dio?

I have often heard ”I want to make some applications, but it’s hard...”, or
”I don’t want to buy a shit application builder and pay money for it!” and they
cannot take up programming. WideStudio solves these problems. It’s free, and
so easy to use!

I also often hear ”What the hell is open source?” and ”Why is the WideStudio
free?” One of the objectives of developing WideStudio is to contribute it to the
open source world. WideStudio was made in a restricted time frame to see how
efficiently it could be built / designed. I would appreciate if any part of this
source would be helpful for developers in developing or designing software from
now.

From nuts and bolts to real applications, it will be a huge delight if everyone
shares enthusiasm in developing through engineering.

3 WideStudio Application Builder User’s Guide 3.20

1.2 Multi-Platform Environment

WideStudio enables you to easily develop multi platform applications without
being aware of platforms themselves, in a highly consistent environment. This
means that an application developed on Linux can be also run on Windows.

[WideStudio on Unix / Linux (top), WideStudio on Windows (bottom)]

1.3 Multi Encoding

WideStudio supports many coding systems such as Unicode(UTF8), EUCJP,
and SJIS. WideStudio can deal with the encoding independently to the encoding
on each platform so; for example, EUCJP applications built on Linux can also
run on Windows with EUCJP codes without any modifications. By specifying
the LANG environment variable, WideStudio understands the coding system
that the system uses for the keyboard input, and converts automatically. It also
enable us to transform coding systems for external data file I/O.

1.3. Multi Encoding 4

[WideStudio Encoding]

[Example of displaying EUCJP code on Windows]

Also, users can develop an internationalized application using Unicode.

5 WideStudio Application Builder User’s Guide 3.20

[Displaying an Unicode text in some languages]

WideStudio supports the following encoding systems.

The encoding
ISO8859 1 European
ISO8859 2 Eastern European
ISO8859 3 Turkish,Esperanto
ISO8859 4 Baltic
ISO8859 5 iso8859-5
ISO8859 6 Arabic
ISO8859 7 Greek
ISO8859 8 Hebrew
ISO8859 9 Turkish
ISO8859 10 Baltic2
ISO8859 13 ISO8859(13)
ISO8859 14 ISO8859(14)
ISO8859 15 European 2
UTF8 UNICODE UTF8
KOI8R KOI8 Russian
EUCJP EUC Japanese
SJIS SJIS Japanese
EUCKR EUC Korean
EUCCN EUC Chinese
BIG5 BIG5 Chinese

1.4. Open Source License 6

1.4 Open Source License

WideStudio is an open source application. Everyone can access the source codes
of WideStudio, and re-distribute it freely.

WideStudio can be used for business also with no charge because of the
X11/MIT license.

• Free re-distribution of the source code

• X11/MIT License

• Free commercial use

• No guarantee

1.5 Downloading of WideStudio

WideStudio is available for download from the following locations:
http://www.widestudio.org/ (original site)
http://www.sourceforge.jp/projects/widestudio/
http://www.sourceforge.net/projects/widestudio/
http://www.vector.co.jp/

1.6 Building and installing WideStudio

1.6.1 Building and installing on a UNIX system

Start by downloading the source code and online manual from the WideStudio
web site; unpack it as follows.

Notice: vX.X stands for the version of the WideStudio.
On Linux:

cd /tmp
tar -zsxvf ws-vX.X.tar.gz
cd /usr/local/ws
tar -zsxvf ws-vX.X-doc.tar.gz

On Solaris:

cd /tmp
gzip -cd ws-vX.X.tar.gz | tar -moxvf -
cd /opt/ws
gzip -cd ws-vX.X-doc.tar.gz | tar -moxvf -

There are several targets to build in WideStudio, such as the runtime li-
braries, the debugging libraries and so on. The runtime libraries are for normal
use, and the debugging libraries are for debugging applications or developing
the WideStudio.

Notice: ”ws” in the examples below indicates the directory where the WideStu-
dio has been installed.

Notice: Sometimes compile errors will occur due to differences in the machine
environment. In such case, edit the file: ws/sys/config/mkfiles to configure the

7 WideStudio Application Builder User’s Guide 3.20

compiler flags, the include path, the library path and so on, to avoid compile
errors.

In the case of FreeBSD, use the command ”gmake” instead of ”make”.
To build all:

cd ws/src
./configure
make

To build the runtime libraries and the application builder:

cd ws/src
./configure
make runtime

To build only the runtime libraries for debugging:

cd ws/src
./configure
make debug

After the building, make sure that the application builder is in ws/bin/.
Then execute the following command as super user to install it.

cd ws/src
make install

1.6.2 Installing with the binary RPM package on the
Linux operating system

Install with the binary rpm package is easy. It does not require building the
source code. Execute the following command as super user to install it.

Notice: vX.X stands for the version of the WideStudio.

rpm -i ws-runtime-vXXXX.i386.rpm

WideStudio will be installed in the directory /usr/local/ws. The rpm pack-
age of the WideStudio requires some C++ runtime library rpm package. If you
get some error like [libstdc++-libc6.1-1.so.2 not found], you have to install it
too.

1.6.3 Installing on Windows operating system

Start by unpacking the downloaded zip file; you get a directory ”wsinst”. In
order to install, execute ”setup.exe” in that directory. The following wizard
dialog will show up, then specify the install directory.

[The setup wizard dialog of the WideStudio]

1.7. Settings After Installation 8

Next, specify your favorite Web browser.

[Settings of the Web browser]

Next, specify your favorite source code editor.

[Settings of the source code editor]

Next, it indicates the license agreement of the WideStudio and GNU, and
installing is done. Reboot your computer (this is necessary).

1.7 Settings After Installation

1.7.1 Settings on Windows

The installer of the WideStudio sets up environment variables; no user inter-
action is required, except for rebooting after installation of the WideStudio in
order to refresh the environment.

1.7.2 Setting the environment variables on a UNIX sys-
tem

The following environment variables have to be set up to get the WideStudio
ready after installing it.

WSDIR Installation directory of the WideStudio
PATH Binary directory of the WideStudio
LD LIBRARY PATH Shared library directory of the WideStudio

If the environment variable ”WSDIR” is not set, the application builder
treats it as having the following value.

OS Default value
Windows C:/Program Files/WideStudio/ws/
Linux /usr/local/ws/
SunOS /opt/ws/
other UNIXs /usr/local/ws/

9 WideStudio Application Builder User’s Guide 3.20

For example, in case the installation directory is ”/export/home/ws”, set
the environment variables as follows.

Note: xxxxx in the list shows the value before modification.

in csh setenv WSDIR /export/home/ws
setenv PATH xxxxxx:/export/home/ws/bin
setenv LD LIBRARY PATH xxxxxx:/export/home/ws/lib

in sh WSDIR=”/export/home/ws”; export WSDIR
PATH=”xxxxxx:/export/home/ws/bin”; export PATH
LD LIBRARY PATH=”xxxxxx:/export/home/ws/lib”
export LD LIBRARY PATH

Add these settings above to the file ”.cshrc” (for use with csh) or ”.profile”
(for use with sh), and reflect it by logging out or executing rehash command
(in csh) to update the values. See the shell manuals for the details of setting of
shell environment variables.

1.7.3 The other files on a UNIX system

The files which are used by the application builder are as follows. These files
are automatically created by the application builder in the home directory.

File name Description
.wsrc Settings of Look and Feel, default colors.
.wsbuilderrc Editor, browser
.wsbuilder defaults Information of the application builder

The ”wsreset” command can be used to reset these files in order to initialize
the settings when some files have wrong values.

1.8 Uninstalling WideStudio

1.8.1 Uninstalling on Windows

WideStudio can be uninstalled by selecting it in the Add / Remove Application
dialog of the control panel. One can also uninstall it by executing ”unsetup.exe”.

ws/bin/unsetup.exe

1.8.2 Unintalling on a UNIX system

To uninstall the WideStudio, use ”make uninstall” if the WideStudio was built
by ”make” and installed by ”make install”. Change directory to the building
directory of the WideStudio, and execute ”make uninstall” as super user.

make uninstall

1.8.3 Uninstalling the RPM package on a Linux system

If the WideStudio was installed from the binary rpm package, execute the fol-
lowing command as super user to uninstall the WideStudio.

rpm -e ws

Chapter 2

Getting started

2.1 What is the application builder?

The application builder is very strong and usable program, that draws out the
maximum ability of WideStudio, which is an integrated development environ-
ment (IDE) for GUI applications. Application developers are released from com-
plicated implementations of GUI applications by using the application builder
of the WideStudio.

Specification of the application is as follows.

• Making and managing the application window

Making the application window with interactive operations, and their
management is done automatically.

• Implementation with the event procedure

Minimum coding of applications by an event driven system. Developers
prepare the event procedure and set them to the GUI objects.

• Properties of the objects

Developers can modify the properties of the objects with interactive op-
erations.

• Informations of the application

Developers can refer the objects (the instances) and the event procedures,
their properties, and other information by the application builder.

• Management as project

Management of application window files and event procedure files, is part
of the environment for development and building by project unit.

• Automatic building of the application

It generates the makefile and c++ source codes of the application window,
compiles and links them, and creates the executable.

• Executing and debugging of the application

It executes and debugs the built application.

11 WideStudio Application Builder User’s Guide 3.20

• Supporting of the class application window The class application win-
dow is used to build the application window as a new c++ class of the
WideStudio. The application builder generates the class library by inte-
grating the classes of the WideStudio, and makes it possible to use it from
other applications.

• Support of the stored application window

The application builder is used to store whole or part of the application
window to a file. It is also possible that applications can load it dynam-
ically and share it while they are running. Treating objects as stored
application windows is effective for applications which display some maps,
drawings, and wiring diagrams.

The following shows the functions of application builder, and structure of
the files.

[Outline of the application builder]

2.2 Development of an application on WideStu-
dio

The method of development by WideStudio Application Builder is as follows.

• Creating a project

First the developer creates a project for an application. A project is an
unit of application development. For detail, see Chapter 6.

• Creating the application window

The developer can develop application windows visually with the WideStu-
dio Application Builder. For detail, see Chapter 3.

2.3. How to start the application builder 12

• Creating the event procedures

The event procedure is executed when an event occurs. The developer
implements easily the procedures which do some advanced processes, such
as complicated painting and data processing, by C/C++ language, and
can chose the event to execute it. For detail, see Chapter 5.

[The method of development of an application]

2.3 How to start the application builder

2.3.1 How to start on Windows

The user can start the application builder by clicking the wsbuilder icon, or
selecting wsbuilder in the start menu.

[The application builder on Windows]

2.3.2 How to start on the UNIX system

The user can start the application builder with wsbuilder command on the X-
Window system.

It requires the C++ compiler, debugger, and source code editor to build
applications.

13 WideStudio Application Builder User’s Guide 3.20

[The initial view of the application builder]

2.4 How to exit the application builder

Select ((menu:File → Exit)) to exit the application builder, or push the [X] button
at the top right of the window.

[Exit the application builder]

The following dialog pops up, and then click its [OK] button. If there are
unsaved application windows or projects, the question dialog pops up to confirm
saving them.

[The exiting dialog]

2.5. The name and function of the parts of the builder 14

2.5 The name and function of the parts of the
builder

With the application builder, the developer can configure the window of an
application visually. The builder has the following panes, parts and windows.

• Inspector

• Source code viewer

• Property editor

• Event procedure editor

• Window attribute editor

2.5.1 Inspector, Source code viewer

The developer can confirm the structure of the instances on the application
window in the Inspector. In addition by Source code viewer, the developer can
see which instance has source codes for the event procedure.

[The structure of the instances (left) and source codes (right)]

Clicking an instance in the Inspector, it is selected.
In the case [+]/[-] mark appears in the Inspector, the instance has child

instances: by double clicking, it opens the instances and the children is shown
on the instance tree.

2.5.2 Property editor

The instance of the WideStudio has internal variables as the properties which
define the geometry, colors, shapes, types, and so on. Also these properties can
be changed visually by Property editor of the application builder.

15 WideStudio Application Builder User’s Guide 3.20

[Changing values of the property by Property editor]

2.5.3 Event procedure editor

On the WideStudio, programming for event driven system is required. The
developer puts some event procedures into instances with triggers. For exam-
ple, an event procedure is associated with a button instance with ACTIVATE
trigger. Then, clicking the instance activates the trigger is activated and the
procedure is executed.

[Add/edit/delete the event procedures by Event procedure editor (right)]

2.5.4 Window attribute editor

An instance has some attributes like instance definition type, and so on. The
developer can edit them by Window attribute editor.

2.6. Development of a simple application ’Hello’ 16

[Editing the attributes by Window attribute editor (right)]

2.6 Development of a simple application ’Hello’

Let’s develop a simple application ”Hello” with the WideStudio Application
Builder. The application has a push button, and pushing it displays ”Hello!”
in the button. The development of the simple application ”Hello” supports to
understand the development flow of WideStudio.

[A simple application ”Hello”]

For the application ”Hello”, follow the flow as followings.

• Creating a project for ”Hello”.

• Creating an application window for ”Hello”.

• Creating an event procedure to indicate ”Hello!”.

• Building the application ”Hello”.

2.7 Creating a project ’Hello’

Now create the project for the application ”Hello”. To bring up the wizard
dialog by ((menu:Project → New project)) or by clicking the icon shown in the
next figure.

In the wizard dialog, input the project name (the application name) ”hello”,
directory name where files are saved, and chose [Normal application] type.

17 WideStudio Application Builder User’s Guide 3.20

[Creating a project for the application ”Hello”]

2.8 Creating an application window

On WideStudio, the window developed by user is referred as the ”application
window”.

Now create an application window for the application ”Hello”. Select ((menu:File
→ New window)) and chose [Normal window] for the window type in the wizard
dialog. Then, input the application name (default is ”newwin000”) in it and
create window with ”None” template.

[The wizard dialog for creating application window]

The ObjectBox dialog is used to put GUI instances onto the application
window. In order to indicate it, select ((menu:View → ObjectBox)), then a
dialog will appear as in the following picture.

[The ObjectBox window]

2.9. Creating an event procedure. 18

In order to drag and drop a push button instance to the window, click the
[Commands] index tab in the ObjectBox window, and drag the icon [BTN]
(WSCvbtn/push button class) and drop it into the application window as in
the following picture.

It is possible to edit the properties of the instance with the application
builder. So let’s change the size of the push button instance. Select the instance,
click the [Properties] tab on the application builder, and set properties as follows.

• Name: newvbtn 000

• X: 10

• Y: 10

• Width: 200

• Height: 30

• Label string: push!

It becomes as in the following picture.

[The application window ”Hello” under construction]

2.9 Creating an event procedure.

Instances triggers various kinds of events under execution. On WideStudio, it
is possible to put some event procedures on the instance so that they will be
executed with the event triggered. For example, let’s create an event procedure
which has the following function.

• Indicating ”Hello!” on the button by clicking it on the window.

Set an event procedure to the instance so that it executes the procedure by
clicking the instance: newvbtn 000. At first, select the instance: newvbtn 000 in
the Inspector, then select the [Procedures] index tab of the application builder,
and click the leftmost icon to create an event procedure.

19 WideStudio Application Builder User’s Guide 3.20

[Creating an event procedure]

Input the procedure name, the function name, and the others in the dialog
as follows.

• Procedure name: new ep

• Function name: btn ep

• Trigger: ACTIVATE

The procedure name is used to identify the event procedure, therefore it can
be any string including spaces. The function name is a name of C/C++ function
for which the developer writes codes. The last one is the trigger (ACTIVATE
will be executed normally by clicking the button). A template file of the source
code for the event procedure is created.

[A event procedure]

By clicking the event procedure created as above, the source code editor
appears with the following template of the code for the event procedure.

The developer can specify the default editor. Select ((menu:Project → Project
settings)) and input the path of the editor in the ”project settings”. The default
editor is vi on the UNIX system and notepad.exe on the Window system.

#include <WScom.h>
#include <WSCfunctionList.h>

2.10. Building of the application ’Hello’ and executing it 20

#include <WSCbase.h>
//---
//Function for the event procedure
//---
void btn_ep(WSCbase* object){

object->setProperty(WSNlabelString, "Hello!"); //A
}
static WSCfunctionRegister op("btn_ep",(void*)btn_ep);

The WSCbase* pointer ”object” denotes the instance in this code. At //A,
the string ”Hello!” is set to the property ”WSNlabelString” of the instance.
Then, the instance shows the string ”Hello!” when the function executed.

2.10 Building of the application ’Hello’ and ex-
ecuting it

It is better to save the created data of this project, at first. To save the project,
select ((menu:Project → Save project)).

Then, the next operation to do is to build the application. Select ((menu:Build
→ Build all)), and the building dialog will appeared in order to confirm whether
there are any compiling errors. If no error occurs, it has completed and the
executable ”hello” is available in the directory. By selecting ((menu:Build →
Execute)), the application is executed.

[Building the application ”Hello”]

Chapter 3

Application Window

3.1 What Is an Application Window?

An ”application window” is a window which is created by the application
builder. The application builder manages and saves each individual applica-
tion window unit.

The followings show the different types of application windows created and
managed by the application builder:

• Normal application window

This is the most commonly used application window. For this reason, we
simply call it the ”application window”.

• Class application window

This window creates a new C++ class by integrating classes and event
procedures. The advantage of using this type of window is that it promotes
efficiency of development.

• Stored application window

This window is stored to an object file, where it can be called dynamically
or even shared between multiple applications and processes. The advan-
tage of this type of window is that it saves resources and allows reuse of a
single design when writing several different modules or applications.

3.2. How to Create/Save a New Application Window 22

[An application window under construction...]

3.2 How to Create/Save a New Application
Window

You can create a new application window by selecting ((menu:File → New Win-
dow)).

When the wizard dialog appears, type in the name of your new application
window (default is newwin000), and then click ”Finish” to create it. Your new
application window is ready!

[Creating a new application window]

23 WideStudio Application Builder User’s Guide 3.20

[The application window wizard (choice of type)]

[The application window wizard (fill the name of the window)]

[The application window wizard (select one from the templates)]

To save the application window, select it using the inspector. Then select
((menu:File → Save Window)). An alternate method of saving your window is
by right-clicking on the inspector and selecting the ”Save” option.

To save all application windows open currently, select ((menu:File → Save
All))

The name of the saved file will have the form ”[file name].win”.

3.2. How to Create/Save a New Application Window 24

[Saving the application window]

[A warning dialog]

To save the application window under a different name, select ((menu:File
→ Rename)).

25 WideStudio Application Builder User’s Guide 3.20

[Renaming the application window]

The following is an example of how to rename a file:

[Input of a new file name]

3.3 How To See The List of the Application
Windows

3.3.1 How To See The List of the Application Windows

The inspector shows a list of the application windows and can controls each one.
It shows the information in a tree-style view so that you can easily recognize

which instances are where and easily place them on the application window.
The top instance of the tree is an application window. For example, an

instance: newwin000 in the following figure is an application window.

3.4. How to delete the application window 26

[The tree of instances of an application window]

3.3.2 How to display the application window to edit

To edit the application window, select it using the inspector, and choose ((menu:Edit
→ Display)). Alternatively, you can right-click on the item in the inspector and
select [Display].

If you want to make the item invisible, select [Dismiss] from the pop-up
menu for that item in the inspector.

[Displays /Dismisses the application]

3.4 How to delete the application window

To delete the application window, select it using the inspector and then choose
((menu:Edit → Delete)) or [Delete] on the pop-up menu.

An example is shown below:

27 WideStudio Application Builder User’s Guide 3.20

[Choosing the application window]

[Deleting the application window]

A dialog box will appear asking if you are sure you want to delete the in-
stance. Select [OK] to delete it.

3.5 How to rename the application window

There are two ways to rename the application window: The first way is to
change the WSNname property on the Property Editor, the other is to change
it in the [Attributes] section of the inspector.

3.5. How to rename the application window 28

[Choosing an application window to rename]

To change the name using the first method, select ((menu:Edit → Proper-
ties)), or select the [Properties] tab on the inspector.

Now find the WSNname property and change it’s value.
(Notice) The name of an application window is the same of the instance of

a top-level window.

[The properties]

29 WideStudio Application Builder User’s Guide 3.20

[Editing the name: WSNname property]

Using the second method, choose the [Attributes] tab on the inspector or
choose ((menu:Edit → Attributes)).

Under the attributes window, put the new name into the [Name] field and
press the [Update] button.

(Notice) This is the same as changing the WSNname property of the in-
stance.

[The attributes]

3.6. How to save the application window as specified file name 30

[Changing the name]

3.6 How to save the application window as spec-
ified file name

Usually, the file name of the application window is ”[name].win”. You can save
it to a different file name by ((menu:File → Save as)).

[Save as]

The following figure shows you how to save to a different file name.

31 WideStudio Application Builder User’s Guide 3.20

[Input a new file name]

3.7 How to open the file of an application win-
dow

Select ((menu:File → Open window)) to load an application window from a file.

[Open an application window]

The following shows the file selection dialog to select a file of an application
window.

3.7. How to open the file of an application window 32

[Selecting the file]

You can input the file name directly, or select by double-clicking the desired
file name.

Chapter 4

Object

4.1 What are the GUI objects?

GUI objects like a window or push buttons are made by C++ classes and are
easy to customize through the following functions.

• Property

The GUI objects have properties - a particular kind of member variables,
which the developer handles through an unified interface. There are prop-
erties like the color, width, shape, value, string, and so on.

• Event Procedure

The developer sets the event procedures for each instance of a GUI object.
Each procedure has a trigger and is executed when its trigger fires. The
procedure handles it for that instance so you can add to the instances
various kind of functionality which the objects do not have by definition.
Therefore, you are free from creating many new classes which are unnec-
essary.

The following table shows the kinds of GUI objects which have the child
management function.

4.1. What are the GUI objects? 34

Class Name Description
Windows WSCwindow Top-level window; base class for

an application window
WSCmainWindow Top-level window; usually used
WSCdialog Base class for a dialog
WSCmessageDialog Dialog for popup a message
WSCinputDialog Dialog for input a text
WSCwizardDialog Dialog for switch panels like as a

wizard software
WSCfileSelect window for file selection
WSCworkingDialog window with a prograss meter

Forms WSCform Rectangle area which can man-
age child objects

WSCindexForm Area which has tabs to switch
sub areas

WSCsform Area with several sub areas resiz-
able by separators

WSCscrForm Scroll area
WSCradioGroup Groups radio buttons
WSCcheckGroup Groups checkboxes (radio but-

tons)
WSCvertForm Form for vertical alignment
WSChorzForm Form for horizontal alignment
WSCmenuArea Bar for pull-down menu
WSCffrom Floating form that can be an in-

dependent window
WSCprform Form that can be printed and ex-

ported as PostScript
WSCj3wform Form for J3W; 3D graphic li-

brary
WSCopenglform Form for OpenGL

The following table shows kinds of the objects which is placed as a child; do
not have the child management.

35 WideStudio Application Builder User’s Guide 3.20

Class Name Description
Label /
Button

WSCvbtn Push button

WSCvtoggle Toggle button
WSCvradio Checkbox (radio button)
WSCvlabel Text label with border
WSCvklabel Label with keyboard focus
WSCvslabel Label with string selection for

copy & past
WSCvarrow Button with triangle arrow

Control WSCpulldownMenu Pull-down menu
WSCpopupMenu Pop-up menu
WSCoption Option menu to choose values
WSCcomboBox Input field combined with option

menu
WSCvscrBar Scroll bar to adjust a value of the

bar
WSCvslider Slider to adjust a value of the bar

WSCvmetger Prograss meter
WSCvclock Digital clock
WSCvifield Text input field
WSCvpifield Text input field with mask for

password input
WSCvmifield Multi-line text input field
WSCtextField Scrolled text input field
WSClist List of items
WSCtreeList Tree list
WSCdirLTree Tree of file system directory
WSCverbList List of strings
WSCgrid Grid with cells that can be input

directly
WSCvimage Label for displaying image

4.2. Windows 36

Class Name Description
Drawing WSCdrawingArea Area for drawing figures

WSCvarc Arc or circle
WSCvrect Rectangle
WSCvline Line
WSCvpoly Polygon
WSCvlineGraph Line graph
WSCvbarGraph Bar graph
WSCvgraphMatrix Scale grid for graph
WSCvgraphScale Horizontal scale for graph

NonGUI WSCngbase Base class for nonGUI classes
WSCvtimer Timer
WSCvspace Space that fills spaces between

objects
WSCvballoonHelp Popup balloon help
WSCvcsocket Client socket for TCP communi-

cation
WSCvssocket Server socket for TCP communi-

cation
WSCvudpsocket Socket for UDP communication
WSCvremoteClient Client of remote instance
WSCvremoteServer Server of remote instance
WSCvdb Database client of SQL
WSCvodbc Database client of ODBC SQL

4.2 Windows

The top-level windows can be categorized roughly into two parts: Windows for
general use and Dialogs for prompting users to input something.

Usually, the WSCmainWindows class is used for a top-level window, but you
can set any class name, such as Dialog, to be the default base for a top-level
window in the project settings.

• WSCmainWindow

Used for a general top-level window. An instance of this class is created
by default when a new application window is created.

• WSCdialog

Base window for a Dialog. A Dialog is equipped with ”OK” and ”NO”
buttons beforehand, so you can get these buttons shown and this window
focused when needed.

• WSCmessageDialog

Dialog for displaying messages. Shows messages to get users noticed.

• WSCfileSelect

Dialog for file selection. Use this to give users the choice of a file or
directory.

37 WideStudio Application Builder User’s Guide 3.20

• WSCwizardDialog

Dialog with switching screen functions by the ”¡ Back” ”Next ¿” buttons.

4.3 Forms

The Forms manages the client region of the parent window by allowing other
objects to be placed on it. Objects on a Form move along as the Form moves.
Also, when a Form is displayed, the objects on it appear too.

• WSCform

Used for a general Form. This Form provides coordinates dependent from
the parent window, and raises a resize event. When a resize event is raised,
an event procedure for that event allows for complex replacing which is
difficult for users to do by only setting anchor properties.

• WSCscrForm

Form with scrolling function. Useful for handling an area larger than the
actual window size. Use Scroll bar to scroll the area. You can set various
properties such as the size of the area, the scrolling unit and so on.

• WSCsform

Form with a separator to separate regions. This separator has a mouse
scaling to decide the size of the area.

• WSCindexForm

Form with indexing tab. Select an index to show the corresponding area.
This form appears as if it has multiple layers.

4.4 Commands

Command controls are used chiefly for displaying, to allow users to raise events
by using the mouse (Push buttons), to select a value (Selecting value), to select
an action out of a menu (Pull-down menu) or to input/edit strings by keyboard
(Pull-down menu).

• DISPLAYING

WSCvlabel (Strings, Pictures), WSCvclock (Clock), WSCvmeter (Meter)

• PUSHING BUTTON

WSCvbtn, WSCvfbtn

Clicking the mouse on it raises an ACTIVATE event.

• INPUT VIA KEYBOARD

WSCvifield, WSCvmifield, WSCtextField

All of them are used to input texts.

4.5. Drawings 38

• SELECTING VALUE

WSCvradio, WSCoption, WSCcomboBox, WSClist, WSCvslider

Used for selecting a value.

• PULL-DOWN MENUS

WSCpulldownMenu, WSCpopupMenu

An event procedure set on the menu item activates when the item is
selected.

4.5 Drawings

The Drawing controls represent various kinds of graphics.

• Circle, Oval, Arc, Filled Circle

WSCvarc

• Line, Polygon

WSCvline

• Rectangle, Filled rectangle

WSCvrect

• Polygon, Filled polygon

WSCvpoly

• Free graphics

WSCvdrawingArea

• Graph

WSCvbarGraph (the bar graph), WSCvlineGraph (the line graph), WSCv-
graphScale (the scale of the graph), WSCvgraphMatrix (the lattice of the
graph)

4.6 Place instances on an application window

The dialog for creating an instance is the object dialog box. Select ((menu:View
→ ObjectBox)) to pop it up.

[To pop-up the object dialog box]

39 WideStudio Application Builder User’s Guide 3.20

The following figure shows the object dialog box.

[A view of the object box dialog]

If you move the mouse pointer over the icons in the object dialog box, it
shows its class name and some description in a balloon help. You can drag and
drop an icon to the instance of the application window which is displayed.

See the section:[How to see the list of the application windows]. After dis-
playing the application window, drag the icon and drop it on the instance to
place the object.

The following shows the kinds of objects.

Kind Description
Windows Top windows or dialogs which receive a border

from the window manager
Forms Areas which have window resources and man-

age child objects
Commands Objects which have various functions, and do

not have window resources
Imported Objects which are imported by the external

libraries

4.7. Set Properties 40

[A new push button on the application window.]

We call the object which manages child instances ”Manager”. The following
shows manager objects.

Manager Class Name Description
Windows WSCwindow Top window which is the base of

the application window
WSCdialog Dialog

Forms WSCform Area which has window
resources.

WSCscrForm Scrolled area
WSCsform Area which has several sub-areas

and separators
WSCindexForm Area which has some index tabs

The instances of manager objects show a grid made of dots in editing mode
on the application builder.

4.7 Set Properties

Each GUI object has internal variables, called ”properties”, which define its
shape, color, and actions. To customize an instance, you alter its properties.
The properties are set via the Property Editor of the Inspector. The Property
Editor can be opened in two ways: ((Builder → menu:Edit → Properties)) or
((Inspector → tab:Properties)).

41 WideStudio Application Builder User’s Guide 3.20

[Above, how to access Properties from (top) the Builder’s menu-bar and
(bottom) the Inspector.]

4.7. Set Properties 42

[Above, how to access Properties from an Instance’s context-menu.]

Using any of the above three methods, you’ll get a properties sheet similar to
the one below. This example shows the properties of WSCvbtn (a push button).

[Above, view of the Properties sheet (to the right of the Inspector).]

The properties sheet contains many rows, one per property. Each row has a
label, to the left, and a control (most often a text box), to the right. After editing
a property, hit [Enter] to confirm the change, and send it to the instance. The
example below shows three properties being changed (”Width”, ”Foreground”,
and ”Label string”), and their effects upon the instance.

43 WideStudio Application Builder User’s Guide 3.20

[Above, (top) changes in the Properties sheet, and (below) corresponding
changes in the Instance.]

You can specify a hexadecimal RGB value, or press color button to display
the color selection dialog, when the property is a color property.

Color properties (”Foreground”, ”Background”, ”Top shadow color”, ”Bot-
tom shadow color”) can be adjusted in one of two ways. You can either click
the color swatch to open a special color selection dialog box, or directly type a
six-digit hexadecimal RGB value.

4.7. Set Properties 44

[Above, setting the ”Foreground” color property to purple. Top, the property
in the Properties sheet. Bottom, the color selection dialog.]

A hexadecimal color value is represented by a ”number” sign (”#”) followed
by three hexadecimal pairs, representing the intensity of Red, Green, and Blue.
A hex digit is 0-9,a,b,c,d,e,f. ”00” is zero intensity, and ”ff” is maximum. Hence,
white is ”#ffffff”, medium grey is ”#999999”, and black is ”#000000”. Red is
”#ff0000”, medium green is ”#00cc00”, dark blue is ”#000033”, and so forth.
Valid colors are in the range:

#00000 - #ffffff

(Most computer graphics applications represent colors in this way.)
You can also specify system default colors with the color selection dialog.

You have better use these colors on development for Windows system.
The color selection dialog permits you to use the standard Windows system

colors, that is, the ones shared by all the applications. When developing a
program for use under Windows, use these to ensure that it matches everybody
else.

[Above: how to select the system default colors.]

45 WideStudio Application Builder User’s Guide 3.20

4.8 Delete an instance and a window

4.8.1 How to delete the instance

To delete an Instance, first select it, then issue one of these two commands:
((menu:Edit → Delete)) or ((context menu → Delete))

[Above: deleting an Instance by (a) the menu-bar or (b) the Instance’s
context menu.]

A confirmation dialog will appear. Click [OK] to delete the instance – and
also, all of its child instances are deleted.

4.9. Copy instance(s) 46

[Above: delete confirmation dialog]

4.8.2 How to delete the application window

As an alternative to the method described in Chapter 1, you can delete the
application window using its context menu, in the same way you would delete
an Instance. Just right-click on a blank spot in the application window to invoke
the context menu, and select [Delete].

[Above: deleting the application window using the context menu.]

4.9 Copy instance(s)

First, select the Instance you wish to copy. Either select it in the Inspector’s
list, or in the application window. Next, invoke the copy command. As usual,
there are two ways to do this: ((Builder → menu:Edit → Copy)) or ((context
menu → Copy))

47 WideStudio Application Builder User’s Guide 3.20

[Above, copying an Instance using (top) the Builder’s menu-bar and (bottom)
the context menu.]

Select the instance to paste with the inspector or by clicking directly, next.
then you can paste the instances on it, with [Paste] of the [Edit] menu or [Paste]
of the right button pop-up menu.

Select the instance either by the Inspector, or by clicking on it.
To paste, execute either of the following commands: ((menu-bar → Edit →

Paste)) or ((context → Paste)).
To paste the copy into existing object (either another Instance, or the ap-

plication window itself), first select the object (either in the Inspector’s list, or
in the application window). Next, invoke the paste command, either: ((Builder
→ menu:Edit → Paste)) or ((context menu → Paste)).

4.9. Copy instance(s) 48

[Above, pasting a copied Instance using (top) the Builder’s menu-bar and
(bottom) the context menu.]

The following screen shot shows the copy, having been pasted atop the orig-
inal.

[Above, an Instance pasted to the application window.]

49 WideStudio Application Builder User’s Guide 3.20

4.10 Make an instance be an external variable

You can make an Instance be an ”external” variable, so that it can be ac-
cessed and manipulated by a C++ program. First, open the Attributes tab of
the Inspector, either by: ((Builder menu:Edit → Attributes)) or ((Inspector →
tab:Attributes)).

[Above, activating the Attributes tab of the Inspector.]

Select the ”Access / Global variable” check-box.
Note: the application window is always an external variable: you don’t

need to set it, and you can’t change it. Instances defined as Arrays are also
automatically external.

4.11. View the list of instances 50

[Make the instance a global/external variable]

4.11 View the list of instances

4.11.1 How to see a composition of the instances of the
application window

You can display a tree which shows the composition of the instances by clicking
where the following figure indicates, or by double-clicking the instance name. It
shows the child instance of the selected instance, and closes them once again.

[A composition of the instances]

4.11.2 How to see the details of the children

You can see the details of the children by clicking the [Instances] tab of the
inspector.

51 WideStudio Application Builder User’s Guide 3.20

[The details of the children]

You can copy the children by multi-selection within the Detail List. Select
the instances as follows, and execute [Copy] and [Paste] from the [Edit] menu.

[A multi-selection of the instances]

4.12 Rename the name of an instance

The application builder names the instances when they are placed on the ap-
plication window. You can change the name with the Property Settings of
that instance. Select ((menu:Edit → Properties)) or the [Properties] tab of the
inspector.

4.12. Rename the name of an instance 52

[The properties menu]

You can change the instance’s name with the WSNname Property. In addi-
tion, when the instance is the top window of the application window, it reflects
the application’s window name. See the section:[How to rename the application
window].

[WSNname Property of the instance]

53 WideStudio Application Builder User’s Guide 3.20

4.13 Define Instances as an Array

You can make the instances become an array, by giving them an array name.
See the section:[How to rename the instances] to rename them.

Specify the array name as follows.

arrayname[No]

”arrayname” is given by alphabet and number which is used for an array
name, ”No” is the index number of the element and must begin from 0.

You can only make the instances become an array if they are the same class
type, and exist on the same application window. So you can not make the
application windows become an array.

[The arrayed instance.]

See the section:[How to access to the arrayed instance] of the Programming
Guide.

4.14 Use new classes imported fron a class li-
braries

You can use the new classes of import libraries on the application builder. Spec-
ify import libraries with the Project Setting dialog:[Imports] section, which pops
up by selecting [Component] from the [View] menu or [Project settings] from
the [Project] menu.

As you add them, you should specify the linking libraries on the [Linking]
section of the dialog as well. See section: [How to specify libraries for linkage]
for detail.

4.14. Use new classes imported fron a class libraries 54

[View of the project setting dialog]

Push the [Add] button to add a import library, and specify it on the File
Selection dialog which pops up. The import library is a dynamic link library
for WideStudio.

[Importing a library]

[A library imported]

55 WideStudio Application Builder User’s Guide 3.20

[A class which is in the imported library]

If you want change the imported library, select it on the Project Setting
dialog, as the following figure shows. And press the [Delete] button to delete it,
then add the new library you want.

[Deleting the imported library]

4.15 See the class name of an instance

Selecting ((menu:Edit → Properties)) will show the class name of the placed
object. It displays the class name in the class name form.

Chapter 5

Event Procedure

5.1 What is the Event procedure?

The event procedure is used to do something when an event is fired, in order
to do a complicated task which is too difficult to realize within the object. You
can code an event procedure with usual knowledge of the C++ language.

It has a trigger and a client instance, and is executed when the trigger is
fired on the client. See the Programming Guide. The following shows what the
event procedure has.

• Name

An instance has many event procedures, so they have their names to
identify them.

• C++ function

The event procedure has a function which is coded in the c++ language.
The function is executed if the event is fired.

• Trigger

The event procedure waits for the event on the client instance. If the event
is fired, it executes its function.

[The event procedure]

57 WideStudio Application Builder User’s Guide 3.20

5.1.1 The function for the event procedures

The function has one parameter in which a pointer to the client object is passed.
The following function is a template generated by the application.

#include <WScom.h>
#include <WSCfunctionList.h>
#include <WSCbase.h>

//--
//Function for the event procedure
//--
void sample(WSCbase* object){
//do something...

}
static WSCfunctionRegister op("sample",(void*)sample);

5.2 Triggers

There are four kinds of triggers as follows.

• Change in the state of the instance

It is fired by changing a state of the instance.

• Mouse pointer event

It is fired by the mouse being clicked, moved, and so on.

• Keyboard event

It is fired by the keyboard.

• The others

Change of the state Description
WSEV INITIALIZE instance is initialized.
WSEV DELETE instance is released.
WSEV ACTIVATE instance is activated.
WSEV VALUE CH value of the instance changes.
WSEV VISIBLE CH visibility of the instance changes.
WSEV PARENT VISIBLE CH visibility of the parent instance changes.
WSEV EXPOSE instance is exposed.
WSEV RESIZE instance is resized.
WSEV SENSITIVE CH sensitivity of the instance changes.
WSEV PARENT SENSITIVE CH sensitivity of the parent instance changes.

5.3. How to create / setup / delete event procedures 58

About the mouse pointer Description
WSEV MOUSE IN the mouse pointer comes into the area.
WSEV MOUSE OUT the mouse pointer goes away from the area.
WSEV MOUSE PRESS a mouse button is pressed.
WSEV MOUSE RELEASE a mouse button is released.
WSEV MOUSE MOVE the mouse pointer is moved over the area

About the keyboard Description
WSEV FOCUS CH the focus changes.
WSEV KEY PRESS a key is pressed.
WSEV KEY RELEASE a key is released.
WSEV KEY HOOK Hooking of the key event before dispatching.

The other Description
WSEV NONE None.

5.3 How to create / setup / delete event pro-
cedures

5.3.1 How to see the event procedures of the instance

It is the procedure window of the inspector which is used for creating the event
procedures. Select ((menu:Edit → Procedures → List up)) or the [Procedures]
tab of the inspector to display the procedure window.

59 WideStudio Application Builder User’s Guide 3.20

[A view of the procedure window]

5.3.2 How to create an event procedure

Select the target instance for the event procedure on the inspector, then select
((menu:Edit → Procedures → New procedure)), or the following icon.

5.3. How to create / setup / delete event procedures 60

[Creating an event procedure]

Enter a name for the procedure, trigger and function, respectively, into the
procedure setting window. Press the [Template] button if you want template
code to be created for the function of the event procedure.

• Procedure name:

Enter the procedure name which is used to identify the event procedure.

• Function name:

Enter the name of a c++ function for the event procedure.

• Trigger:

Choose the trigger for executing.

61 WideStudio Application Builder User’s Guide 3.20

[The settings of a new event procedure]

5.3.3 How to set up an event procedure

Select the event procedure as per the following picture, then select ((menu:Edit
→ Procedures → Properties)) or click the following icon to change the properties
of the event procedure.

[The settings of the event procedure]

5.3.4 How to delete an event procedure

Select the event procedure to delete, then select ((menu:Edit → Procedures →
Delete)) or click the following icon.

5.4. How to create/edit a function 62

[Deleting the event procedure]

5.4 How to create/edit a function

5.4.1 How to create a template file for a function

You can create a template file of the function by clicking the [Template] button
after filling the function name.

[Generating a template]

5.4.2 How to edit a function

Click the following icon, or double click the procedure name, Then, the text
editor is activated, and you can edit the function.

63 WideStudio Application Builder User’s Guide 3.20

[Editing of a function]

[A view of the editor which stood up]

5.4.3 How to specify your favorite editor

You can use your favorite editor with the environment settings window. Select
((menu:Project → Project settings)), then select the [Environments] tab. Please
enter the command line of your editor, arguments included.

5.4. How to create/edit a function 64

[Representation of the environment settings window]

5.4.4 How to use a function which is in a library.

You can use a compiled function which is in a library for the event procedure.
Do not select the item from the source but do as follows. In this case, the
application builder links the library, but does not compile and link the object
file of the function.

[Use a function from a library]

You need to specify a library which includes the object file of the function
in the linker options window. See the section:[How to build the project].

Chapter 6

Project

6.1 What is the Project?

A project is the basic unit for the administration of an application which a
developer builds with the application builder. A project must be defined for an
application in order to build it.

There are many windows and many event procedures in a typical application.
The developer needs not manage these source files one by one, the project does
it as follows.

• Administration of the program source compilation

The project compiles the managed application windows and event proce-
dures, and makes the application. There is a function for compiling the
updated program sources and for rebuilding the loaded modules.

• Administration of the application windows in the project

You can add application windows to the project. The application builder
generates corresponding program sources for them, and compiles them
automatically.

• Administration of the event procedures for the application windows

The project manages the event procedures for application windows too.
They are compiled automatically to become part of the application.

• Administration of the working environment settings

The project contains settings such as the default colors or window dimen-
sions, path of the include files/libraries and compiler options.

[Project]

6.2. Create a new project, Delete / Save a project 66

6.2 Create a new project, Delete / Save a project

6.2.1 See the project name

Look at the following figure for where to see the name of the current project. If
it is blank, then no project is open.

[Project name]

6.2.2 Create a new project

Select ((menu:Project → New project)), or click the following icon to create a
new project.

[Creating a new project]

Then, a wizard dialog for the new project appears; input a project name
and specify the type.

67 WideStudio Application Builder User’s Guide 3.20

[Wizard for new project]

6.2.3 Save a project

Select ((menu:Project → Save project)) to save.

[Saving a project]

6.2.4 Rename and save a project

Select ((menu:Project → Rename project)) to rename the project and save it.
Then a file selection dialog shows up so you can specify the file name which is
used as the new project name.

[Renaming project]

6.2.5 Open an already created project

Select ((menu:Project → Open project)) to open an existing, already created
project.

6.3. Set the project environment 68

[Opening a project]

6.3 Set the project environment

Select ((menu:Project → Project settings)) to set the environment of the project.

[Menu of project settings dialog]

You can set environment variables as follows.

• Default value

Specifies default values of the WideStudio instance such as window dimen-
sions and so on.

• Tools

Specifies a terminal, a web browser and a source code editor.

• Import libraries

Specifies importing of libraries which contain new GUI objects. See sec-
tion:[How to import libraries which supply new objects].

• Compiler options

Specifies options for the compiler, header path, which compiler to use,
compilation mode.

• Linker options

Specifies options for the linker, library path, which library to link, which
linker to use, which debugger to use.

69 WideStudio Application Builder User’s Guide 3.20

• Font settings

Specifies fonts.

[Project settings dialog]

After setting each item, push the [OK] button to make the change reflect.
The settings are stored into a file ”[project-name].prj” which is a text file, so
you can see it with any text editor / viewer.

6.4 Add an application window to the project

You can add application windows to the project, which will be loaded together
with the whole project.

Select an application window to add then select the [Attributes] tab of the
inspector.

6.4. Add an application window to the project 70

[Displaying of window attributes]

Check the [Belong to this project] radio button as the following figure.

[Add an application window to the project]

Registration information of the application window is stored into the ”[project-
name].prj” file which is a text file, so you can see it with any text editor / viewer.

71 WideStudio Application Builder User’s Guide 3.20

6.5 Add a color

6.5.1 How to add a color

You can add colors to the color selection dialog. Select ((menu:Options → Col-
ors)).

[Displaying of the color selection dialog]

Click the following icon to add a color.

[Displaying of the color editor]

You can set the color by typing the R,G,B value directly or with the sliders
or through the color map in the color editor. Once you specify a color, push the
[OK] button.

[Color editor]

6.6. How to edit a color 72

6.6 How to edit a color

Select the color you want to change in the color selection dialog, then click the
following icon; you can only change an user defined color.

[Editing a color]

6.7 How to delete a color

Select the color you want to delete in the color selection dialog, then click the
following icon; you can only delete an user defined color.

[Deleting a color]

6.8 Set up fonts

You can set up fonts for the project. Select ((menu:Option →Fonts)), then push
the button for the font you want to change.

73 WideStudio Application Builder User’s Guide 3.20

[Displaying the font settings dialog]

Choose your favorite font. The following figure is what you should see on
Windows.

[Choosing a font]

Select the following items:

• 1. font height: dots

• 2. font vendor

• 3. font code

• 4. font family

• 5. font weight

• 6. font slant

6.9. Find application windows and instances 74

6.9 Find application windows and instances

You can find an application window and/or instance in a project by its name,
the value of a property, or by event procedure.

Select ((menu:Edit → Find)).

[Search for instances]

There are three ways to search instances:

• by instance name

You can use the name of an instance as search key.

• by property value

You can use the value of a property as search key.

Specify a property in this format: WSNxxxxxx, and a value.

• by procedures

You can use the name of a procedure, trigger or function name as search
key.

Once an instance is found by the application builder, it will be highlighted
in the inspector; push the [Find] button for the next one.

[by property]

75 WideStudio Application Builder User’s Guide 3.20

[by procedure]

6.10 Files in a project

In developing an application with the WideStudio Application Builder, various
files will be created. Say there is a project ”project1”, and it has an application
window ”newwin000”; the following files are created by the builder.

FILE NAME DESCRIPTION
project1.prj Contains the settings of the project.
project1.cpp The source code of the project.
project1.wns A list of the application windows.
project1.col A list of the user defined colors.
newwin000.win Data for the application window

”newwin000”
newwin000.cpp The source code for the application win-

dow ”newwin000”

Chapter 7

Compiling / Building

7.1 Build a Project

7.1.1 How to build a project

To execute your application, you need to build a project. The application builder
builds compatible project automatically. Select ((menu:Build → Build all)) or
((menu:Build → Rebuild)).

[Building a project]

• Build all

[Build all] command allows the application builder to compile only modi-
fied files, making it fast.

• Rebuild

[Rebuild] command builds the project from scratch compiling all the files.
Rebuild command is required when the header file of most of the files is
modified.

The compilation window looks like the one below when compilation begins.
It displays information from the compiler and the linker. It also displays com-
pilation errors if any.

77 WideStudio Application Builder User’s Guide 3.20

[Compilation window]

7.1.2 How to set header and library path

Select ((menu:Project → Project setting)), then select ”compile” or ”link” tab.

[Settings for the compiler and linker]

You can set the following options using compile or link command.

• Include path

Use this option to set the header path.While using a usual compiler of
Unix you can set the path as follows:

-Ipath1 -Ipath2...

• Compiler flags

”Compiler flags” option sets flags for compiler.

• compile mode

”Compile mode” option allows you to select normal mode or debugging
mode.

• Class library

You can generate a normal and executable or a Class library (shared li-
brary) using ”class library” option.

• Compiler

Compiler option allows you to set your favorite compiler.

7.2. Execute a compiled load module 78

• Libraries

”Libraries” option sets the path of libraries to linking. For a standard
linker of UNIX, You can set the path as follows.

-Lpath1 -Lpath2 ... -llibrary1 -llibrary2...

• Linker flags

”Linker flag” option sets flags for linker.

• Linker

”Linker” option allows you to set your favorite linker.

• Debugger

”Debugger” option allows you to set your favorite debugger.

7.2 Execute a compiled load module

You can execute a successful compilation using ((menu:Build → Execute)).

[Executing an application]

To abort the application, select ((menu:Build → Abort)).

7.3 Set compiler options

7.3.1 How to set compiler options

Select ((menu:Project → Project settings)), then select ”compiling” option.

79 WideStudio Application Builder User’s Guide 3.20

[Settings of compiler]

You can set the following options using ”compiling” command.

• set path

Use this option to set the header path. While using a usual compiler of
Unix you can set the path as follows:

-Ipath1 -Ipath2...

• Compiler flags

”Compiler flags” option sets flags for compiler.

• compile mode

”Compile mode” option allows you to select normal mode or debugging
mode. Debugging mode debugs application with debugger.

• Class library

You can generate a normal and executable or a Class library (shared li-
brary) using ”class library” option.

• Compiler

”Compiler” option allows you to set your favorite compiler.

• Runtime mode

”Runtime mode” sets options for normal mode only.

• Debug mode

”Debug mode” sets options for debugging mode only.

7.4 Set link options

7.4.1 How to set libraries to link

Select ((menu:Project → Project settings)) to set liking options, such as libraries
to link.

7.5. Add Source files 80

[Linking options]

You can set the following options using ”linking options” window.

• Libraries

Library option sets the path of libraries for linking. For a standard linker
of UNIX, You can set the path as follows:

-Lpath1 -Lpath2 ... -llibrary1 -llibrary2 ...

• Linker flags

”Linker flags option sets flags for linker.

• Linker

Linker option sets your favorite linker.

• Debugger

Debugger option sets your favorite debugger.

• Runtime mode

Runtime mode sets options for normal mode only.

• Debug mode

Debug mode sets options for debugging mode only.

• Output file

Output file displays the name of the executable file.

7.5 Add Source files

7.5.1 Source file addition setting

You can add any source files to the project by following this procedure. Select
((menu:Project → Project setting)), then select ”compile” option. List the object
name in the source code that you want to add to the ”Additional Object” field.

For example, to add src1.c, src2.c, src3.c to the project, specify as follows:

src1.o src2.o src3.o

81 WideStudio Application Builder User’s Guide 3.20

7.6 Turn on Debugging Mode

You can build a project with debugging mode. This mode enable us to effectively
debug with a debugger.

Select ((menu:Projects → Project setting)), then select ”compiling” option,
and check the ”debug mode”.

Rebuild the current application, if you change the mode.

[Debugging mode]

7.7 How to Debug an Application

To build an application with debugging mode, select ((menu:Build → Debug)).

[Start the debugger]

Usage of GDB
Enter ”run” to execute an application. Enter ”where” to stack trace when

the program is stopped by error. Enter ”list” to see the position of the source.
There are the following commands in GDB.

• Run

Run command starts the application.

• Cont

Cont command continues the interrupted application.

7.8. Trace Debugger 82

• Step/next

Step / next command runs the interrupted application step by step.

• Where

Where command Shows stack trace of function call.

• print

Print command shows the value of variables or functions.

• list

List command shows the current position of source.

• break

Break command adds a break point. Enter it as follows.

Break file.cpp:XXX

Break CLASS: FUNCTION ()

XXX is a line number.

• cntl-C

Cntl-C interrupts the application.

[Debugging the application]

7.8 Trace Debugger

7.8.1 How to use the trace debugger

Use the trace debugger to see the execution status of the event procedures
executed. Fist of all, build the application, and select ((menu:Build → Trace
Execution)), then the trace dialog appears as follows:

83 WideStudio Application Builder User’s Guide 3.20

[Trace Dialog]

Push [start] button on the trace dialog to start tracing. When an event
procedure is activated, the following outputs are shown in the trace dialog.
When you want to stop tracing, push [stop] button.

[Trace output]

You can find which event procedure has a bug when the application termi-
nates abnormally without the following trace message:

function functionname() end

where ”functionname” is the name of the function of the event procedure.
Further more, you can show a trace message from your application using

WSGFtrace() function as follows (A):

#include <WScom.h>
#include <WSCfunctionList.h>
#include <WSCbase.h>
//---
//Function for the event procedure
//---
void btn_ep1(WSCbase* object){

object->setProperty(WSNlabelString,"Hello!");
WSCstring string;
string = "btn_ep1 called!!!!!\n";
WSGFtrace(string); //(A)

}
static WSCfunctionRegister op("btn_ep1",(void*)btn_ep1);

7.8. Trace Debugger 84

Note that the output by WSGFtrace() is enabled only when the tracing is
turned on.

[Trace output by the application]

Chapter 8

Class Application Window

8.1 What is the Class Application Window?

You can make more complicated objects using the C++ object classes of the
WideStudio.

You can use a template class generated by the application builder, and it
inherits the object class of WideStudio. Developers can define a new class by
adding a new member function to it.

The class application window makes create a new object class easy.

• Same development as a normal application window

You can create and edit a class application window using the same methods
of a normal one.

• Definitions of new properties

You can add a new property to the new class by using the dialog, and the
application builder generates a source code for it automatically.

• Class library construction

The application builder can build a shared library for your new classes
which can be used by other projects.

8.2. Create a new class application window 86

The following table shows the different ways to generate a new class.

Window derivation The application window becomes the base for
a new class.

Composite derivation Several parts on the application window be-
come the base for a new class.

Component derivation One object on the application window be-
comes the base for a new class.

8.2 Create a new class application window

8.2.1 How to create a new class application window

Select ((menu:File → New window)) to bring up the application window wizard
dialog, then check the [Class] field.

87 WideStudio Application Builder User’s Guide 3.20

[A new class application window]

8.2.2 How to select an icon and set the title string of the
class

The class application window can be compiled as a class library, which can then
be used by other projects. When you load the library project, the classes in the
library appear in the [Imported] section of the object box.

You can select an image file for the the icon used by the object box, and
can set a title string displayed as the balloon help for the object. If no icon and
title string are set, the default icon and title string are used.

XPM, JPG, PNG and BMP can be used as the format of an icon.
The following figures show the field to select an icon file.

[specify the icon of the class instead of the default icon]

The following figures show the field to set the title string of the balloon help
in the Object box.

8.3. Select the base class for a new class 88

[Appointment of title string of the balloon help]

8.3 Select the base class for a new class

8.3.1 Default base class

By default, the window derivation is done: the class from the top window of
the class application window becomes the base class for the new class. The
application builder generates the following c++ source codes, where [classwin]
is the name of the class application window.

• ”[classwin].h”

A public header file for the class. You can add new members to this.

• ”[classwin].cpp”

A public source file for the class. You can add new codes to this.

• ”[classwin]P.h”

A private header file for the class. DO NOT EDIT THIS FILE.

• ”[classwin]P.cpp”

A private source file for the class. DO NOT EDIT THIS FILE.

89 WideStudio Application Builder User’s Guide 3.20

[Definition of class application window]

A sample class application window, called ”class1”, is shown in the figure
below and is derived from the class of the WSCwork window, and becomes
the C++ class ”class1”. The top window is used as the base class by default,
but you can select a different base class using the [Attributes] section of the
inspector.

8.3.2 How to select a base class for a new class

For example of the composite derivation, a part of the class application window,
the form ”cla form000”, is used as a base class here. By default, the top window
is used as the base class, but if another instance of the class application window
is selected, it becomes the base class.

(NOTICE) You must re-generate the source code whenever you change the
base class. If you have edited the files, save your work into a different file
and add it back in after re-generation. To re-generate the sources, delete the
following files, where [classwin] is the name of the class application window:

• ”[classwin].h”

• ”[classwin].cpp”

8.4. Add / Edit / Delete a New Property 90

[Selection of a base class]

In this case, a new class ”class1” is created from the instance ”cla form000”
which is selected as the base class. So, the class ”class1” inherits WSCform,
along with any child instances on the form ”cla form000”.

8.4 Add / Edit / Delete a New Property

8.4.1 How to display the property setup dialog

You can add a new property to your class application window from the property
setup dialog. Pop-up the dialog by clicking the following button.

[The property setup dialog]

8.4.2 How to add a new property

Click the following icon to display the property creation dialog.

91 WideStudio Application Builder User’s Guide 3.20

[Creating a new property]

The following items must be set.

• Property name

Enter a property name beginning with ”WSN...”. You have to type the
prefix ”WSN” by yourself.

• Property type

Select a data type for the variable of the property.

• Variable name

Enter a variable name for the property. The property uses it to store data.

• Default value

Enter a default value for the property.

• Attribute

There are several attributes available.

Kind Description
Normal Create a normal property.
Invisible Create a property invisible to the builder.
Delete Delete the existing property in the base class.

Change default Change default value of the existing property
in the base class.

Change visibility Make the existing property in the base class
invisible to the builder.

• Builder title

Enter a property title to be displayed in the inspector, as shown below.

8.4. Add / Edit / Delete a New Property 92

[A view of the property creation dialog]

8.4.3 How to edit a property

Select a property and click the following icon to edit it.

[Editing of a property]

8.4.4 How to delete a property

Select a property and click the following icon to delete it.

[Deleting of a property]

93 WideStudio Application Builder User’s Guide 3.20

8.4.5 How to create a new invisible property

You can create a new property which is invisible to the application builder: the
property exists but doesn’t appear the property editor on the builder. Select
the [Invisible] attribute in the property create / edit dialog.

[Create an invisible property]

8.5 Delete / Invisible an Inherited Property

8.5.1 How to delete an inherited property

You can delete an existing property which is inherited from base classes. A new
property with the same name and the delete attribute set deletes it. Display
the property creation dialog.

[Displaying the property creation dialog]

Enter a name of an existing property, then select the delete attribute. The
Property type, Variable name, Default value and Builder title are not required.
See below, for example, how to delete ”WSNshadowThickness” property.

8.5. Delete / Invisible an Inherited Property 94

[Deleting an existing property]

8.5.2 How to make an existing property invisible

You can make invisible an existing property which is inherited from base classes.
With the property name, set the attribute as change visibility. Display the
property creation dialog and enter a name of an existing property, then se-
lect change visibility attribute. The Property type, Variable name, Default
value and Builder title are not required. The following, for example, makes
”WSNshadowThickness” property invisible.

[Making an existing property invisible]

95 WideStudio Application Builder User’s Guide 3.20

8.6 Child instances as members of the class

You can define the child instances as members of the class. Select a child on
the inspector, push the [Attributes] tab then check the [Access] radio button.

[Definition of members]

8.7 Add / Edit / Delete Triggers

8.7.1 How to display the trigger setup dialog

It is possible to add triggers to your class application window with the trigger
setup dialog. Click the following icon to display the trigger setup dialog.

[The trigger setup dialog]

8.7.2 How to add triggers

Select a trigger to add from the following menu, click the [Add] button and
update the data by pressing the [OK] button.

8.8. Add / Edit / Delete a User Trigger 96

[Adding triggers]

8.7.3 How to delete added triggers

Select an added trigger from the list, click the [Delete] button then update the
data by pressing the [OK] button.

[Deleting added triggers]

8.8 Add / Edit / Delete a User Trigger

8.8.1 How to display the user trigger setup dialog

It is possible to add user defined triggers to your class application window with
the user trigger setup dialog. Click the following icon to display the user trigger
setup dialog.

97 WideStudio Application Builder User’s Guide 3.20

[The user trigger setup dialog]

8.8.2 How to add user triggers

Select the following icon and input the name of the new user trigger, its value,
then click the create button.

[Adding user triggers]

8.8.3 How to delete added user triggers

Select an added user trigger in the list and click the following icon to delete it.

8.9. Create a Class Library 98

[Deleting added user triggers]

8.9 Create a Class Library

The application builder has a function to create a class library comprising your
classes. The output of the project is usually an executable file, but you can
select a mode to turn it into a shared library of classes.

Check the [Class library] radio button to make the project output be a class
library. The following figure shows the [Compiling] section of the project settings
dialog.

[Generating a class library]

In the following, [output] is the output file name which is specified in the
[Linking] section.

System library name
UNIX lib[output].so (shared library)

lib[output].a (static library)
Windows lib[output].dll (dynamic link library)

See section:[How to use the new classes of the import libraries] to use these
libraries from other projects.

Chapter 9

Stored Application Window

9.1 What is the Stored Application Window ?

You can store, or export, your application window by the application builder:
It then called a ”stored application window”. A WideStudio application has
the function to load the application window dynamically from the stored file,
during execution.

This function results in the following.

• Saving of memory, Speeding up start time

Applications do not contain all of the application windows at the start,
thus saving memory and speeding up start time. Display them by loading
them from stored files.

• Switching a part of application window

An application can load the partially stored windows as data, and display
it on its window as a part of the window. This function realizes to display
and switch figures like an ”Map”,”Drawing sheet” which is a partially
stored window on the window of the application.

• For easy maintenance

You can share the stored window with other applications, and you can
edit it directly, and the window of the application can be updated without
compiling. It is a merit for maintenance of an application.

You can store an application window with the application builder. In addi-
tion to storing it, you can give the stored window attributes, then the application
builder builds an executable which it excludes and stores automatically. The
executable is loaded individually with the WSGFloadWindow() function during
execution.

9.2. Making an Stored Window 100

9.2 Making an Stored Window

9.2.1 How to save an application window as a stored win-
dow

You can save a normal application window as a stored one. Select it with the
inspector, select the radio button:[Use object store] of the section:[Attribute].

[Be stored]

Next, select ((menu:Build → Generate source)) as follows.

101 WideStudio Application Builder User’s Guide 3.20

[Generate a stored application window]

9.2.2 How to add the stored application window to project

We do not hope to store it manually when building the executable. You can
select the stored attribute for each application window of project with the appli-
cation builder, Select it with the inspector, select the radio button:[Use object
store] of the section:[Attribute]. It is the same as the above method to make it
be stored attribute. The application builder does not compile it, but builds an
executable which it excludes and stores it to an object store file.

The file is ”[window name].oof”.
The executable then loads individually with the WSGFloadWindow() func-

tion during execution. See section:[How to load the stored application window
directly from the program] of the Programming Guide.

9.3 Make a Partially Stored Window

You can store a part of application window. The application can load the partial
stored window and display it on its own window. A merit of partially stored
windows is that application can display them next to next by switching on a
same window.

[Displaying partial stored windows]

9.3. Make a Partially Stored Window 102

For example, there are partially stored application window A, B, C which
store base is shaded coloring area in the figure. You can load them and display
A or B or C on the application window.

Select the [Attributes] tab of the inspector, and write the name of the base
instance for partial store in the following field.

If this field is blank, this case is default, the top window is used as the store
base instance.

[Field of the store base instance]

See section:[How to load a stored application window directly] of Program-
ming Guide.

Chapter 10

Remote Instance

10.1 What is the Remote Instance ?

WideStudio enables an instance existing on a remote computer running WideStu-
dio to be called on, the same way as if it exists on the local computer. The
remote instance feature covers the following:

• Distributed Computing

An instance (object) of the WideStudio application on a remote computer
can be accessed in the same manner as an instance (object) on the local
computer, for easy distributed computing. Large scale WideStudio ap-
plications can be designed with the functionality to separate tasks into
multiple processes, each operating and collaborating with each other.

• Seamless distribution over network

Instances of the WideStudio on remote computers over a network can be
seamlessly referred to without worrying their whereabouts. Agents run-
ning on each computer manage remote instances existing on their local
systems and exchange information among other agents, keeping any re-
mote instance whereabouts managed.

WideStudio applications automatically access remote instances without al-
locating to their whereabouts, plugging into the correct remote instances.

• Fault tolerance improvement

WideStudio applications can be run with multiplexing. For example, when
one application out of the multiplex goes down, an agent detects it and
interchanges the remote instance with another WideStudio on a remote
computer.

As for the WideStudio application, it can access the remote instance with-
out being aware of its exchange by multiplexing.

Accessing a remote instance is performed by using a remote instance acquired
with an object management, in the same way of accessing an usual instance
acquired by WSCGIappObjectList() object management.

10.2. Start up the WSAgent 104

In calling a remote instance existing on the same computer, the agent run-
ning on the same computer obtains a remote instance to be called.

In calling a remote instance existing on a remote computer, the agents run-
ning on each computer exchange information of remote instances to get and be
called.

10.2 Start up the WSAgent

The agent plays an important role in realizing the remote instances feature. It
provides information on the whereabouts of remote instances for clients who
want to access the instance.

The agent ’wsagent’ should be run on the computers before the remote
instance feature is used. The command is

% wsagent

for Unix / Linux,

105 WideStudio Application Builder User’s Guide 3.20

% wsagent.exe

for Windows.

[wsagent : the agent for the remote instance]

10.3 Construct a Remote Instance Server

A remote instance server is no different from a usual WideStudio application
and is to publicize remotely as usual instances existing within applications.

By publicizing as remote, the publicized instances are registered on the agent
automatically to be accessed from external applications.

10.3.1 How to make an application a remote instance
server

In order to get a WideStudio application to run as a remote instance server,
the WSCvremoteServer class is used. The application can become a remote
instance server by placing a WSCvremoteServer class instance in the Object
Box’s NonGUI section on any application window.

[WSCvremoteServer Placing]

10.3.2 How to publicize an instance as a remote instance

When you want to publicize an instance existing a WideStudio application to
external, enable the ”Export” property of the instance.

10.4. Summary 106

[Publicizing an instance as a remote instance]

10.3.3 How to start up an agent

Starting the agent that manages remote instances publicized on a remote in-
stance server.

[Starting up the agent ”wsagent”]

10.4 Summary

10.4.1 Before accessing remote instances

The WideStudio application can access remote instances existing on a remote
instance server, the same way as instances existing on that local computer.

First of all, in order to access remote instances, you will need to know the
whereabouts of the remote instance on a computer by asking the agent.

An agent manages remote instances existing on a remote instance server.

10.4.2 Before accessing remote instances

Before accessing a remote instances, the WSCvremoteClient class is used. WSCvre-
moteClient class supports communication to the agent who manages remote
instances.

107 WideStudio Application Builder User’s Guide 3.20

Only actions to communicate with an agent are to be placed on the WSCvre-
moteClient existing in Object Box’s NonGUI section on any given application
window of the application.

10.4.3 How to access remote instances

Specifying a name, a remote instance can be accessed via a virtual remote
instance given by object management. Please refer to Remote Instance Edition
in the Programming Guide for more details.

Acknowledgement

Special thanks to: F. Plesoianu and M. A. Mota Jr..
Thanks to: D. G. Phillips, M. Sudarsan, T. Richards and P. Thorne.

109 WideStudio Application Builder User’s Guide 3.20

Last modified : November 20, 2002

