
Phorum Developer Reference Manual

Maurice Makaay, Brian Moon, Thomas Seifert, Andy Taylor, and Joe Curia

August 26, 2011



Contents

1 Templates 8
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 Template structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 How to start your own template . . . . . . . . . . . . . . . . . . . . . 10
1.4 The Phorum template language . . . . . . . . . . . . . . . . . . . . . 11

1.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4.2 General syntax . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4.3 Data types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4.3.1 Integers . . . . . . . . . . . . . . . . . . . . . . . 12
1.4.3.2 Strings . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4.3.3 PHP constants . . . . . . . . . . . . . . . . . . . . 14
1.4.3.4 Template variables . . . . . . . . . . . . . . . . . . 14

1.4.4 Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4.4.1 Display a variable . . . . . . . . . . . . . . . . . . 16
1.4.4.2 In line comments . . . . . . . . . . . . . . . . . . 16
1.4.4.3 DEFINE . . . . . . . . . . . . . . . . . . . . . . . 17
1.4.4.4 VAR . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.4.4.5 IF .. ELSEIF .. ELSE .. . . . . . . . . . . . . . . . 18
1.4.4.6 LOOP . . . . . . . . . . . . . . . . . . . . . . . . 19
1.4.4.7 INCLUDE . . . . . . . . . . . . . . . . . . . . . . 19
1.4.4.8 HOOK . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4.5 Need the power of PHP? . . . . . . . . . . . . . . . . . . . . 21

2 Modules 22
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.1 Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.2 Hacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.3 Add-ons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.4 Hooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.5 Hook functions . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Writing your own modules . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.2 Module information . . . . . . . . . . . . . . . . . . . . . . 24

1



2.3.3 Module file structure . . . . . . . . . . . . . . . . . . . . . . 26
2.3.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . 26
2.3.3.2 Single file modules . . . . . . . . . . . . . . . . . 26
2.3.3.3 Multiple file modules . . . . . . . . . . . . . . . . 28

2.3.4 Supporting multiple languages . . . . . . . . . . . . . . . . . 30
2.3.5 Module data storage . . . . . . . . . . . . . . . . . . . . . . 31

2.3.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . 31
2.3.5.2 Storing data for messages . . . . . . . . . . . . . . 31

2.3.5.2.1 From hooks that get an editable message
array as their argument . . . . . . . . . . 32

2.3.5.2.2 From other hooks . . . . . . . . . . . . . 33
2.3.5.3 Storing data for users . . . . . . . . . . . . . . . . 34

2.3.5.3.1 Custom profile fields for users . . . . . . 34
2.3.5.3.2 From hooks that get an editable user array

as their argument . . . . . . . . . . . . . 35
2.3.5.3.3 From other hooks . . . . . . . . . . . . . 36

2.3.6 Building URLs for Phorum . . . . . . . . . . . . . . . . . . . 36
2.3.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . 36
2.3.6.2 Build URLs for Phorum PHP scripts: phorum_get_url() 37
2.3.6.3 Build URLs to files in the Phorum tree . . . . . . . 38

2.3.7 Implementing a settings screen for your module . . . . . . . . 39
2.3.7.1 Building input forms . . . . . . . . . . . . . . . . . 39
2.3.7.2 Error and success feedback messages . . . . . . . . 39
2.3.7.3 Saving module settings to the database . . . . . . . 39
2.3.7.4 Prevent settings.php from being loaded directly . . 40
2.3.7.5 Full module settings page example . . . . . . . . . 40

3 Module hooks 42
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2 Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.1 ajax_<call> . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2.2 database_error . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2.3 external . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2.4 scheduled . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 Request initialization . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.1 parse_request . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.2 common_pre . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3.3 common_no_forum . . . . . . . . . . . . . . . . . . . . . . . 47
3.3.4 common_post_user . . . . . . . . . . . . . . . . . . . . . . . 47
3.3.5 common . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3.6 page_<phorum_page> . . . . . . . . . . . . . . . . . . . . . 49

3.4 Page output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4.1 phorum_shutdown . . . . . . . . . . . . . . . . . . . . . . . 50
3.4.2 get_template_file . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4.3 start_output . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.4.4 start_output_<page> . . . . . . . . . . . . . . . . . . . . . . 51

2



3.4.5 after_header . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4.6 after_header_<page> . . . . . . . . . . . . . . . . . . . . . . 52
3.4.7 output_templates . . . . . . . . . . . . . . . . . . . . . . . . 53
3.4.8 output_templates_<page> . . . . . . . . . . . . . . . . . . . 53
3.4.9 before_footer_<page> . . . . . . . . . . . . . . . . . . . . . 53
3.4.10 before_footer . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.4.11 end_output . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.4.12 end_output_<page> . . . . . . . . . . . . . . . . . . . . . . 54

3.5 Control center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.5.1 cc_panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.5.2 cc_save_user . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.6 Templating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.6.1 css_register . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.6.2 css_filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.6.3 javascript_register . . . . . . . . . . . . . . . . . . . . . . . 58
3.6.4 javascript_filter . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.7 Feed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.7.1 feed_sent . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.8 Admin interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.8.1 admin_forum_delete . . . . . . . . . . . . . . . . . . . . . . 60
3.8.2 admin_css_file . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.8.3 admin_menu . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.8.4 admin_editforum_form_save_after_defaults . . . . . . . . . . 62
3.8.5 admin_editforum_form_save_inherit . . . . . . . . . . . . . . 63
3.8.6 admin_editforum_form_save_inherit_others . . . . . . . . . . 63
3.8.7 admin_editforum_section_edit_forum . . . . . . . . . . . . . 64
3.8.8 admin_general . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.9 File storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.9.1 file_retrieve . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.9.2 file_purge_stale . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.9.3 after_detach . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.9.4 before_attach . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.9.5 after_attach . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.9.6 system_max_upload . . . . . . . . . . . . . . . . . . . . . . 68

3.10 User data handling . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.10.1 user_save . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.10.2 user_register . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.10.3 user_get . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.10.4 user_list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.10.5 user_delete . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.10.6 user_save_groups . . . . . . . . . . . . . . . . . . . . . . . . 72
3.10.7 before_register . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.10.8 after_register . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.11 User authentication and session handling . . . . . . . . . . . . . . . . 73
3.11.1 user_authenticate . . . . . . . . . . . . . . . . . . . . . . . . 73
3.11.2 user_session_create . . . . . . . . . . . . . . . . . . . . . . . 75

3



3.11.3 user_session_restore . . . . . . . . . . . . . . . . . . . . . . 76
3.11.4 user_session_destroy . . . . . . . . . . . . . . . . . . . . . . 77

3.12 Moderation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.12.1 email_user_start . . . . . . . . . . . . . . . . . . . . . . . . 78
3.12.2 send_mail . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.12.3 moderation . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.12.4 before_delete . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.12.5 delete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.12.6 move_thread . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.12.7 close_thread . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.12.8 reopen_thread . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.12.9 after_approve . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.12.10 hide_thread . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.12.11 after_merge . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.12.12 after_split . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.13 Page data handling . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.13.1 index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.14 Message handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.14.1 posting_action_cancel_post . . . . . . . . . . . . . . . . . . 86
3.14.2 before_edit . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.14.3 after_edit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.14.4 posting_action_edit_post . . . . . . . . . . . . . . . . . . . . 88
3.14.5 before_post . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.14.6 after_message_save . . . . . . . . . . . . . . . . . . . . . . . 89
3.14.7 after_post . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.14.8 after_post_redirect . . . . . . . . . . . . . . . . . . . . . . . 90
3.14.9 check_post . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.14.10 posting_init . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.14.11 posting_permissions . . . . . . . . . . . . . . . . . . . . . . 92
3.14.12 posting_custom_action . . . . . . . . . . . . . . . . . . . . . 92
3.14.13 before_editor . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.15 Login/Logout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.15.1 before_logout . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.15.2 after_logout . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.15.3 password_reset . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.15.4 after_login . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
3.15.5 failed_login . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.16 Module hooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.16.1 bbcode_register . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.17 Private message system . . . . . . . . . . . . . . . . . . . . . . . . . 99
3.17.1 pm_delete_folder . . . . . . . . . . . . . . . . . . . . . . . . 99
3.17.2 pm_delete . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
3.17.3 pm_before_send . . . . . . . . . . . . . . . . . . . . . . . . 100
3.17.4 before_pm_list . . . . . . . . . . . . . . . . . . . . . . . . . 100
3.17.5 pm_list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
3.17.6 pm_read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4



3.17.7 pm_send_init . . . . . . . . . . . . . . . . . . . . . . . . . . 102
3.17.8 pm_before_editor . . . . . . . . . . . . . . . . . . . . . . . . 102

3.18 Buddies system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
3.18.1 buddy_list . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.19 Read messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
3.19.1 read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.20 Message search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
3.20.1 search_redirect . . . . . . . . . . . . . . . . . . . . . . . . . 104
3.20.2 search_output . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5



List of Tables

2.1 Keys and values in module information . . . . . . . . . . . . . . . . 25

6



Introduction

This is the Phorum developer reference manual for Phorum version 5.2.x and up. It is
not intended for use with older versions of Phorum, although a lot of information will
apply.

Please keep in mind that this manual is neither complete, nor final. If you have
any remarks about it, please let us know in the development forum on our website.
With your contribution, we hope to make this manual a useful tool for Phorum users in
understanding and working with our software.

The Phorum development team
Phorum.org

7

http://www.phorum.org/


Chapter 1

Templates

1.1 Introduction
Phorum uses a template system for separating application code from presentation code.
Application code contains all the logic that is needed for running Phorum. This is PHP
code which is maintained by programmers. Presentation code is used to translate the
data that is generated by the application code into a HTML page that can be viewed by
the end user. This Presentation code can be maintained by HTML designers.

The big advantages of this type of system are that HTML designers will not be
bothered with complicated PHP code and that it is easy to create multiple presentation
styles for Phorum.

Although there is no application logic in the templates, it is still possible to put
presentation logic in there. Presentation logic is only used for things like making de-
cisions on what to show and how to show it and for processing data that has been
generated by the application code. For writing presentation logic, a very simple cus-
tom programming language is available (more on that will follow when we talk about
the Section 1.4).

1.2 Template structure
A template set is a collection of files that together form a single template. All tem-
plate sets are stored in their own subdirectory under the directory {phorumdir}/
templates. If we asume that we have three templates default, template1 and
template2, then the directory structure for storing these templates would look like
this:

{phorum dir}
|
+-- templates

|
+-- default

8



|
+-- template1
|
+-- template2

Inside these template subdirectories, the files for the templates are stored. There,
the the following files can be found:

info.php This is a PHP file that is used for describing some properties of the template.
This file can define the following variables:

• $name
Mandatory variable. This variable hold the name that you want to give to
the template. This is the name that will be displayed in template selection
boxes. The name of the directory for the template will only be used by
Phorum internally.

• $version
Mandatory variable. This variable holds the version number for your tem-
plate. It’s used so you can track what version of the template is installed
for Phorum. You can use any type of version numbering you like. If you
do not know what to use, then simply give your first version of the template
version 1, the second number 2, and so on.

• $template_hide
Optional variable. If set to a true value, the template will be hidden from
user select boxes where the end user can choose the template that he wants
to use.

Example 1.2.1 Template information file: $info.php

<?php
// Prevent loading from outside the Phorum application.
if (!defined("PHORUM")) return;

// Template information.
$name = "A brilliant template";
$version = "1.2-beta";
$template_hide = 1;
?>

.tpl and .php files These are the files that hold the actual template code. When the
Phorum application wants to display a template, it is always referenced by its
basename (i.e. without any file extension like .php or .tpl after it). If the file
<templatebasename>.php exists in the template directory, then Phorum
will use that file as the template input. Else, <templatebasename>.tpl
will be used.

9



An example: if Phorum wants to display the "header" template, it will first search
for header.php in the template directory. If that file does not exist, it will use
header.tpl instead.

PHP files (*.php) contain pure PHP/HTML code. In Phorum template files
(.tpl) you can additionally make use of the Section 1.4.

Using this system, template authors can completely revert to using pure PHP-
code for templates, without using the template language at all. The Phorum
development team does not recommend doing this. To keep templates simple,
always try to stick to the combination of HTML code and the template language.

Other files and subdirectories In most cases these will be image files which are stored
in a subdirectory images of the template. But template authors are free to add
whatever subdirectories and files they like to the template directory (e.g. Flash
based page components, CSS stylesheets, audio files, JavaScript libraries, etc.).

Combining all this, the full tree for a typical template would look like this:

{phorum dir}
|
+-- templates

|
+-- templatename

|
+-- info.php
|
+-- *.tpl
|
+-- images

|
+-- *.gif, *.jpg, *.png

1.3 How to start your own template
Although you can start writing a new template totally from scratch, it is of course much
easier to take an existing template and modify that one for your needs. Here are the
steps that you have to take for accomplishing this:

• Copy the default template
Take the emerald template directory from {phorumdir}/templates/emerald
and copy it over to another directory, for example {phorumdir}/templates/
mytpl.

• Edit info.php for your template
Edit {phorumdir}/templates/mytpl/info.php. In this file you have

10



to edit at least the $name variable, e.g. to $name = "My very own tem-
plate";

You can hide the template from the user template selection boxes by setting $t-
emplate_hide = 1. If you do this, you can only select this template through
the admin interface.

• Configure Phorum to use your template
Open Phorum’s admin page {phorumurl}/admin.php and go to "Default
Settings". There you will find the "Template" option. Set that option to your own
template. All forums that inherit their settings from the default settings will use
the template automatically. For other folders and forums, you will have to go to
their settings pages to set their template to the default template as well.

That is it! You are now using your own template. From here on, you can start
tweaking the template files in your {phorumdir}/templates/mytpl directory.

Phorum uses its own template language to allow for dynamic templates without
using PHP. More information on this can be found in the section about the Phorum
template language.

1.4 The Phorum template language

1.4.1 Introduction
The largest part of the code that can be found in Phorum template files (*.tpl) is
plain HTML. To be able to use and display the dynamic data that has been generated
by Phorum (like message information, lists of private messages and search results),
Phorum uses a custom template language which can be used to mix the HTML code
with dynamic data. The template language is a very simple programming language
with only a few statements to use. This section will describe the template language in
detail.

1.4.2 General syntax
Templates are built using HTML code. Embedded in this HTML code, there can be
template language statements. All template statements in the templates are surrounded
by "{" and "}" characters. Here’s a simple example of what a template could look like:

11



Example 1.4.1 Template example

<html>
<head>

<title>{HTML_TITLE}</title>
</head>
<body>

Your username is: {USER->username}

{IF USER->username "george"}
<b>Hello, George!</b>

{/IF}
</body>

</html>

Because curly braces have a special meaning in the templates, you have to take
care when using them for other things than Phorum template code. This applies to
plain PHP code, JavaScript code and CSS code that you use in your templates. To
prevent the template engine from getting confused, you can add a space after "{" and
before "}". Examples:

Code that will cause problems if used in a template file:

PHP: if ($a == $b) {print "They are the same!\n";}
JavaScript: if (a == b) {alert("They are the same!\n");}
CSS: #phorum .thing {font-size: 110%;}

What it should be written like:

PHP: if ($a == $b) { print "They are the same!\n"; }
JavaScript: if (a == b) { alert("They are the same!\n"); }
CSS: #phorum .thing { font-size: 110%; }<sbr/>

1.4.3 Data types
The template language supports four data types to use in statements:

• Integers

• Strings

• PHP Constants

• Template variables

1.4.3.1 Integers

Integers are formatted as a sequence of numbers.

12



Example 1.4.2 Integer values

403
90
4231

Here is an example of template code in which integers are used:

Example 1.4.3 Code using integer values

{VAR INTEGERVAR 1000}
The variable INTEGERVAR is {INTEGERVAR}.

{IF INTEGERVAR 333}
The INTEGERVAR has the value 333.

{/IF}

1.4.3.2 Strings

Strings are sequences of characters within quotes (both double and single quotes can
be used).

Example 1.4.4 String values

"this is a string value"
"My 1st string!"
’Single quoted string is possible too’

Now if you need the quote which you used to surround the string with inside the
string itself, you must escape it using \" or \’. This is consistent with the way that PHP
strings are escaped.

Example 1.4.5 Escaped quotes in string values

"this is a \"string\" value"
’Single quoted \’string\’ value’
"You can use both \" and ’ for strings!"

Here are some examples of template code in which strings are used:

13



Example 1.4.6 Code using string values

{VAR QUESTION "Do you know what \"fubar\" means?"}
{VAR CORRECT "That was the right answer!"}
{VAR INCORRECT "No.. you were wrong!"}

{IF ANSWER ’Fucked Up Beyond All Recognition’}
{CORRECT}

{ELSE}
{INCORRECT}

{/IF}

1.4.3.3 PHP constants

It is possible to define constants within PHP. This is done using the define() PHP state-
ment. Here’s an example:

<?php define("MY_CONSTANT", "The constant value") ?>

You can reference PHP constants from the template language by using its name, with-
out any quotes. So the constant that was defined in the code above, can be used like
this in a template:

Example 1.4.7 Code using a PHP constant definition

The value of my PHP constant is {MY_CONSTANT}

Apart from defining your own PHP constants, you can also use constants that are
already defined by PHP. Two useful constants to use are true (value = 1) and false
(value = 0). Using these, you can write template code like this:

Example 1.4.8 Code using built-in PHP constants

{VAR SOME_OPTION true}

{IF SOME_OPTION true}
The option SOME_OPTION is true.

{/IF}

1.4.3.4 Template variables

About the most important data type for the template language is the template variable.
Template variables are used by Phorum to store dynamic data, which can be used by
your templates. You can also use the variables for storing dynamic data of your own
from the templates. Template variables can contain both simple values and complex
arrays of data.

14



You can reference a template variable by using the variable’s name, without any
quotes. This is the same type of notation as the one that is used for referencing PHP
constants (see Section 1.4.3.3). If there are both a constant and a variable with the same
name, the value of the contstant will take precedence over the template variable.

Example 1.4.9 Template variables

NAME
HTML_TITLE
MESSAGES

In case the variable represents an array, you can reference the array elements by
using the following pointer notation:

Example 1.4.10 Referencing elements in a template variable array

ARRAYVARIABLE->SIMPLE_ELEMENT
ARRAYVARIABLE->ARRAY_ELEMENT->SIMPLE_ELEMENT

Within a template, variables are used like this:

Example 1.4.11 Code using template variables

{VAR MY_VAR "Assign a value to a variable from the template"}

You username is: {USER->username}<br/>
The current forum’s name is: {NAME}<br/>

{LOOP MESSAGES}
Subject: {MESSAGES->subject}<br/>

{/LOOP MESSAGES}

What variables are available for what template pages is fully determined by Pho-
rum.

1.4.4 Statements
The template language has a number of statements that can be used for executing tem-
plating actions and decisions.

• Display a variable

• In line comments

• DEFINE

15



• VAR

• IF .. ELSEIF .. ELSE ..

• LOOP

• INCLUDE

• HOOK

1.4.4.1 Display a variable

Function This is both the most simple and the most important template statement there
is. Using this statement, you can display the contents of a value.

Syntax {<VALUE>}

Example 1.4.12 Display a variable

The name of the current forum is: {NAME}

Example code

1.4.4.2 In line comments

Function Sometimes, it’s useful to explain what you are doing when writing compli-
cated templating code. In that case you can use comments to document what you
are doing. You can also use comments to add general info to the template (like
in the example below).

Syntax {! <COMMENT TEXT>}

The <COMMENT TEXT> can contain any characters you like, except for "}".

Example 1.4.13 Add in line comments

{! This template was created by John Doe and his lovely wife ←↩
Jane }

Example code

16



1.4.4.3 DEFINE

Function Using this statement, you can set definitions that can be used by the Pho-
rum software. These are mainly used for doing settings from the template file
"settings.tpl" to tweak Phorum’s internal behaviour.

Definitions that have been set using this statement are not available from other
template statements.

Syntax {DEFINE <PHORUM DEFINITION> <VALUE>}

What you can use for <PHORUM DEFINITION> is fully determined by the
Phorum software (and possibly modules). The <VALUE> can be any of the data
types that are supported by the template language (see Section 1.4.3).

Example 1.4.14 DEFINE statement usage

{DEFINE list_pages_shown 5}

Example code

1.4.4.4 VAR

Function Using this statement, you can set variable definitions that can be used by the
Phorum template language.

Syntax {VAR <TEMPLATE VARIABLE> <VALUE>}

<TEMPLATE VARIABLE> can be an existing or a new variable name (see Sec-
tion 1.4.3.4). The <VALUE> can be any of the data types that are supported by
the template language (see Section 1.4.3).

Example 1.4.15 VAR statement usage

{VAR MY_VAR "This is my first variable!"}
{VAR MY_VAR OTHER_VAR}
{VAR MY_VAR 1234}

{VAR IS_COOL true}
{IF IS_COOL}
Yes, this is cool

{/IF}

Example code

17



1.4.4.5 IF .. ELSEIF .. ELSE ..

Function Using these statements, you can control if certain blocks of code in your
template are processed or not, based on a given <CONDITION>. This can for
example be useful if you want certain parts of the page to be only visible for
registered users.

Syntax {IF <CONDITION>}
.. conditional code ..

[{ELSEIF <CONDITION>}
.. conditional code ..]

[{ELSE}
.. conditional code ..]

{/IF}

<CONDITION> Syntax: [NOT] <TEMPLATE VARIABLE> [<VALUE>]

The <TEMPLATE VARIABLE> in a <CONDITION> has to be an existing vari-
able name. The <VALUE> can be any of the data types that are supported by the
template language (see Section 1.4.3).

If a <VALUE> is used, the <TEMPLATE VARIABLE> will be compared to the
<VALUE>. If the <VALUE> is omitted, then the condition will check whether
the <TEMPLATE VARIABLE> is set and not empty.

A condition can be negated by prepending the keyword NOT to it.

Multiple conditions can be chained using the keywords AND or OR.

Example 1.4.16 IF .. ELSEIF .. ELSE .. statement usage

{IF NOT LOGGEDIN}
You are currently not logged in.

{ELSEIF USER->username "John"}
Hey, it’s good to see you again, mr. John!

{ELSE}
Welcome, {USER->username}!

{/IF}

{IF ADMINISTRATOR true OR USER->username "John"}
You are either an administrator or John.

{/IF}

{IF VARIABLE1 VARIABLE2}
Variable 1 and 2 have the same value.

{/IF}

Example code

18



1.4.4.6 LOOP

Function The LOOP statement is used for looping through the elements of array based
template variables (for example arrays of forums, messages and users).

Syntax {LOOP <ARRAY VARIABLE>}
{<ARRAY VARIABLE>}

{/LOOP <ARRAY VARIABLE>}

The <ARRAY VARIABLE> has to be the name of an existing template variable
containing an array.

Within the LOOP, the active array element is assigned to a variable that has the
same name as the <ARRAY VARIABLE> that you are looping over. In our ex-
ample below, we are looping over USERS, which is an array of user data records.
Within the loop, USERS is no long the array of users itself, but the user data
record for a single user instead.

Example 1.4.17 LOOP statement usage

<ul>
{LOOP USERS}
<li>{USERS->username}</li>

{/LOOP USERS}
</ul>

Example code

1.4.4.7 INCLUDE

Function Include another template in the template.

Syntax {INCLUDE [ONCE] <INCLUDE PAGE>}

The <INCLUDE PAGE> can be any of the data types that are supported by the
template language (see Section 1.4.3).

By specifiying the keyword ONCE before the name of template to include, you
can make sure that that template is only included once per page.

Example 1.4.18 INCLUDE statement usage

{INCLUDE "paging"}

{VAR include_page "cool_include_page"}
{INCLUDE include_page}

{INCLUDE ONCE "css"}

19



Example code

Limitiation It is not possible to use a dynamic INCLUDE statement (one where the <-
INCLUDE PAGE> is set through a template variable) within a LOOP statement,
in case the included template needs to have access to the active LOOP element.
There is no problem if you use a static INCLUDE statement (one where the
<INCLUDE PAGE> is set through a string value).

If you really need this kind of functionality though, you can work around this
limitation by assigning the active LOOP element to a new template variable,
prior to including the dynamic <INCLUDE PAGE>. Example:

{! include_page holds the dynamic page to include }
{VAR include_page "some_page"}

{LOOP loop_variable}
{! Makes loop_variable available as temp_variable in ←↩

the include }
{VAR temp_variable loop_variable}
{INCLUDE include_page}

{/LOOP loop_variable}

This way you can access the active LOOP element from the included template
through temp_variable. If you would access loop_variable from there,
you’d see that it does not contain the active LOOP element, but the full array that
you are looping over instead.

1.4.4.8 HOOK

Function The HOOK statement can be used to run a module hook from a template.
By using hooks in the templates, you have an easy way for modules to add data
to a page, without having to change the templates too much. Because these
hooks need an activated module that acts upon them, creating HOOK statements
is certainly for advanced users only.

Syntax {HOOK <HOOK NAME> [<ARG1> <ARG2> .. <ARGn>]}

Both the <HOOK NAME> and the arguments that are used in the HOOK state-
ment can be any of the data types that are supported by the template language
(see Section 1.4.3).

How hook functions are called Depending on the number or arguments that are used
in the HOOK statement, different type of calls are made to the hook function for
the given <HOOK NAME>.

• No arguments:
the hook function is called without any arguments at all:
hook_function()

20



• One argument:
The single argument is used directly for calling the hook function:
hook_function($ARG1)

• Multiple arguments:
The arguments are wrapped in an array, which is then used for calling the
hook function:
hook_function(array($ARG1,$ARG2,..$ARGn))

Example 1.4.19 HOOK statement usage

{HOOK "template_hook"}

{LOOP MESSAGES}
{HOOK "show_message" MESSAGES}

{/LOOP MESSAGES}

{VAR HOOKNAME "my_magic_hook"}
{HOOK HOOKNAME "my argument"}

Example code

1.4.5 Need the power of PHP?
Template writers for whom the template language is too limited can break into PHP
at any point in the templates, using the regular <?php ... ?> syntax. It is not
mandatory at all to use the Phorum template language for your templates.

The biggest drawback here, is that knowledge of the Phorum internals is required
if you want to work with the data that has been generated by Phorum.

Most template writers will normally only be using HTML and the Phorum template
language.

To prevent confusion between PHP code blocks and template statements (which are
both surrounded by "{" and "}" characters), always use a whitespace after an opening
"{" character in your PHP code. So instead of writing:

<?php if ($this = true) {print "It’s true";} ?>

you now have to write:

<?php if ($this = true) { print "It’s true"; } ?>

This way you can mix PHP code with template code without running into problems.

21



Chapter 2

Modules

2.1 Introduction
This section describes Phorum’s module system. It is targeted at developers who want
to do customization and extend the functionality of Phorum. Modules are the preferred
way to archieve this.

For much of this document, we will be talking about an example module "foo". Of
course you will not name your module "foo", but something much more appropriate. If
you’re not familiar with the terms "foo" and "bar", you can visit Wikipedia to see why
we chose them.

Be sure to read at least the CAUTIONS AND SECURITY ISSUES section, before
making your own modules.

2.2 Terminology

2.2.1 Modules
Modules are self contained pieces of software, that can be added to Phorum to change
or extend its functionality. Modules can do this without having to change anything in
the standard Phorum distribution files or database structure.

The big advantage of modules this is that upgrading the Phorum code is easy (no
file changes to redo after upgrading) and that modules can be easily uninstalled when
needed.

Installing a module means: drop the code in the Phorum mods directory, go to the
admin "Modules" page, enable the module and enjoy! One additional thing that might
be needed, is editing one or more template files to display data that is generated by the
module.

22

TODO: Link to section once it's ready

http://en.wikipedia.org/wiki/Metasyntactic_variable


2.2.2 Hacks
The moment it is necessary to make changes to the standard Phorum distribution files
or database structure to implement some kind of functionality, we are talking about a
hack (even if the changes that have to be made are accompanied by a drop in module).

Although there is nothing wrong with writing hacks, the Phorum team wants to
urge you to try if you can write a module before resorting to a hack. Especially if you
are going to publish your changes to the public. Modules are the preferred way of mod-
ifying Phorum functionality, because that will make both upgrading your distribution
and having your modification adopted by others easier.

2.2.3 Add-ons
If you add functionality to Phorum by providing extra scripts that go in the Phorum
install directory and/or extra templates that need to be added to the main template
directory (templates/templatename/...), then we talk about an add-on.

For Phorum 5.0, this was a pretty common thing to do. For Phorum 5.1 and up,
a special script was added for being able to implement addon code fully through a
module. Therefore, there is no real need anymore for writing add-ons: addon.php.

2.2.4 Hooks
The Phorum core and Phorum modules are interconnected through hooks. Hooks are
points in the application where Phorum stops and runs its data through the modules
that are configured to handle the hook. The modules can act upon and change this data.

The following image visualizes what happens when Phorum reaches a hook point
in the application, for which two modules ("foo" and "bar") have been configured.

Phorum
Application

(1) (1) Phorum is running.
| (2) Phorum reaches the
| hook named "some_hook".
v Phorum (3) Phorum sends data to

some_hook >----- data ------+ the module system.
(2) (3) | (4) The module "foo" is run.

v (5) The module "bar" is run.
(4) module "foo" (6) The Phorum data (which

| might be modified by the
v modules) is sent back

(5) module "bar" to Phorum.
| (7) Phorum continues running

Phorum Modified | with the modified data.
Application <---- data ------+

(7) (6)
|

23



|
v

2.2.5 Hook functions
A module contains PHP functions that act as hook functions. Hook functions will re-
ceive some data from Phorum through their arguments and have to return the (possibly
modified) data, which will then go either back to Phorum or to the input of another
module which also handles the same hook (see [??]). Based on this, the most basic
(and useless) hook function you could write would look somewhat like this (see XXX
for an explanation of the naming scheme that was used for the function):

function phorum_mod_foo_some_hook ($data) {
return $data;

}

The exact nature of the data that is sent to the hook functions depends solely on the
hook that is run. See Chapter 3 for a description of all supported hooks, including a
specification of the type of data that is sent.

2.3 Writing your own modules

2.3.1 Introduction
This section will explain to you how to roll your own Phorum modules. We will start
out by explaining some of the terminology that relates to modules. After that, we
will explain a very important part modules: the module information. This contains
information for both Phorum (what hooks to run in what order, version dependancies)
and module users (title, description and other interesting facts). From there on we will
walk you through all the possibilities that modules have.

2.3.2 Module information
Module information is the glue between your module and Phorum. It provides in-
formation to Phorum about your module. Before we explain how to add this module
information to your module, we will first explain what data can be put in there and how
that data is formatted.

Module information is formatted using lines of plain text. Each line contains a
piece of information about the module. The general format for each of the lines in the
module information is:

<key>: <value>

Empty lines are allowed between these key/value pairs. Below, you can find a list of
the keys and values that can be used in the module information.

It is allowed to use multiple hook lines in your module information, so your module
can act upon multiple hooks. When doing this, it is also allowed to use the same

24



<key> <value>

title

This is the title for the module that is
displayed in the "Modules" page of
the admin interface.
Example:
title: Foo

desc

This is the description that is
displayed along with the title in the
admin interface, to give a little more
information about the module. Using
HTML in the <value> part is allowed.
Example:
desc: This is a very
cool module to do stuff.

hook

This describes which hook functions
are called for which Phorum hooks.
The value consists of two fields,
separated by a pipe "|" symbol. The
first field contains the name of the
hook that this module is hooking into.
The second field contains the name of
the hook function that will be called
for the hook.
Example:
hook: some_hook|phorum_-
mod_foo_some_hook

priority

This can be used for changing
priorities and dependancies for
modules and hooks. Possible values
are (in order in which they are
processed):

• run module
before|after *

• run module
before|after <other
module name>

• run hook <hook name>
before|after *

• run hook <hook name>
before|after <other
module name>

Examples:

Run this module before all other
modules:
priority: run module
before *
Run this module before the bbcode
module.
priority: run module
before bbcode
Run the "format" hook for this module
before the "format" hook of the
smileys module.
priority: run hook
format before smileys
Run the "after_header" hook for this
module after all other "after_header"
hooks.
priority: run hook
after_header after *
The main difference between "run
module" and "run hook" is that "run
module" will affect the priority for
each hook of the module and that "run
hook" is used to specifically change
the priority of a single hook. So to run
all hooks for a module as early as
possible, but run the "foo" hook as late
as possible and the "bar" hook before
the smileys mod, one could use the
following priority lines:
priority: run module
before *
priority: run hook foo
after *
priority: run hook bar
before smileys

require_version

This describes which phorum version
is required to use this module.
Modules with a requirement above the
current phorum version are
automatically disabled when going to
the modules page. This feature was
added in Phorum 5.2.
Example:
require_version: 5.2.2

author
url
version
release_date

These fields are all informational. The
information from these fields will be
shown on the Modules admin page.
You are allowed to omit these fields
from the module information, but we
advice you to fill them to provide as
much useful info to the users of your
module.
The fields are free form. The "url"
field should contain a URL to a page
where more information about the
module can be found. This can for
example be a dedicated page about
your module or a discussion page in
the phorum.org support forums.
Example:
author: John Doe, Phorum
hacker
url: http://example.com-
/phorum/mod_foo/
version: 0.9.1-alpha
release_date: May 17th,
2007

category

The category field is used for
categorizing the module. You can
place your module inside one or more
categories by adding one or more
category lines to the module
information. The category is used for
automatically generating a categorized
list of available modules on the
phorum.org web site.
For consistency and for preventing
wild growth of categories, we use a
fixed set of categories from which you
can choose. Please select your
category / categories carefully and do
not put your module in too many
categories. Available categories to
choose from are:

• admin
Modules that are useful for
performing administrative tasks
and for handling advanced
Phorum configuration.

• bbcode
Modules that implement extra
BBcode tags.

• embed_content
Modules for embedding content
(e.g. images, audio, video,
flash, etc.) in message bodies.
These modules implement
viewers that are shown inside
the message bodies when
reading the message and which
take away the need to launch
some external viewer to open
attachments and/or linked files.

• phorum3conversion
Modules that can help sites to
convert from the old Phorum 3
system to Phorum 5.

• email
Modules that extend or enhance
the email system.

• integration
Modules that can be used for
integrating Phorum with other
systems.

• user_management
These modules deal with user
registration, logging in and out,
login status and user
management tasks.

• moderator
Modules that extend or enhance
the moderation system.

• posting
Modules that extend or enhance
posting and/or editing
messages.

• search
Modules that provide search
features or that replace the full
message search backend.

• seo
Modules that apply search
engine optimization measures to
Phorum.

• spam
Modules that help protecting
Phorum against spam.

• user_features
Modules that give the users new
options and enhance their
experience.

• viewlayout
Modules that add information to
or alter the view / layout of
Phorum pages.

• uncategorized
Modules that do not have a
category assigned. This one is
mainly mentioned for
completeness. In the online
module list, this category will
be assigned to modules that
don’t have a category set in
their info.txt.

Example:
category: user_features
category: posting

Table 2.1: Keys and values in module information

25



hook function for handling different hooks in your module (asuming the hooks are
compatible).

Here is an example of what the module information for our example module "foo"
might look like:

Example 2.3.1 Module information

title: Foo
desc: This is the Foo module for Phorum. Nothing exciting...
version: 1.0.2
release_date: Jan 1st, 2008
url: http://www.phorum.org
author: John Doe <johndoe@example.com>
require_version: 5.2.2
category: user_features

hook: some_hook|phorum_mod_foo_some_hook
hook: some_other_hook|phorum_mod_foo_some_other_hook
hook: yet_another_hook|phorum_mod_foo_some_other_hook

priority: run some_hook before some_other_module

What this module info does, is telling Phorum that when it gets to "some_other_hook",
it will have to call the function phorum_mod_foo_some_other_hook() in your
module. It also tells that for "yet_another_hook" the same function has to be called.
It will also take care that the hook "some_hook" is run before the same hook in the
module "some_other_module".

2.3.3 Module file structure
2.3.3.1 Introduction

This section describes the file structure of Phorum modules. This structure contains
things like the module information, hook functions and possibly additional stuff like
templates, translations, modules settings, images, scripts, classes, etc.

If your module only needs module information and hook functions to function, it
is possible to use the single file structure. If you need more than that, then use the
multiple file structure.

2.3.3.2 Single file modules

Single file modules are useful in case case no additional files have to be distributed
with your module. Because the module consists of only one single file, it is very easy
to distribute. Beware though that the moment that you want to support for example
a settings screen, multiple languages or custom images, you will have to switch to
the multiple file module structure. Switching does mean some extra work for your

26



users. So only use this format for modules for which you are sure that you do not need
additional files in the future.

Single file modules consist of one single PHP file. The name of this file is not
restricted. We advice you to use mod_<modulename>.php though for clarity and
consitency with other module (e.g. mod_foo.php). This file contains both the mod-
ule information and the hook function definitions. For storing the module informaton,
a special PHP comment is used. This comment must look like the following:

/* phorum module info
<module information lines go here>

*/

Using the example module info from Example 2.3.1, the complete single file module
would look like this (see XXX why we use the check on PHORUM at the start of this
file):

27



Example 2.3.2 Single file module

{phorum dir}/mods/mod_foo.php
<?php

if(!defined("PHORUM")) return;

/* phorum module info
title: Foo
desc: This is the Foo module for Phorum. Nothing exciting...
version: 1.0.2
release_date: Jan 1st, 2008
url: http://www.phorum.org
author: John Doe <johndoe@example.com>
require_version: 5.2.2
category: user_features

hook: some_hook|phorum_mod_foo_some_hook
hook: some_other_hook|phorum_mod_foo_some_other_hook
hook: yet_another_hook|phorum_mod_foo_some_other_hook

priority: run some_hook before some_other_module

*/

function phorum_mod_foo_some_hook ($data) {
// Do stuff for "some_hook".
return $data;

}

function phorum_mod_foo_some_other_hook ($data) {
// Do stuff for "some_other_hook" and "yet_another_hook".
return $data;

}

?>

Installation of a single file module is done by putting the PHP file (e.g. mod_foo.
php) directly in the directory {phorumdir}/mods/ and activating the module from
the "Modules" screen in your admin interface.

2.3.3.3 Multiple file modules

These modules are useful in case you need additional files to be stored with your mod-
ule, for example a settings screen, language files or custom images.

They are stored in their own subdirectory below the directory {phorumdir}/
mods/. If you have a module named "foo", you will have to create a directory
{phorumdir}/mods/foo/ for storing all module files.

Inside this subdirectory, you will have to create a least two files:

28



• A file called info.txt. This file contains the module information for your
module (see Section 2.3.2).

• The PHP file which contains the hook function definitions for your module. The
basename of this file should be the same as the name of the module subdirectory.
So for our example module "foo", you will have to create a file named foo.php.

Using the example module info from Example 2.3.1, the complete multiple file
module would look like this (see XXX why we use the check on PHORUM at the start
of the PHP file):

Example 2.3.3 Multi file module

{phorum dir}/mods/foo/info.txt
title: Foo
desc: This is the Foo module for Phorum. Nothing exciting...
version: 1.0.2
release_date: Jan 1st, 2008
url: http://www.phorum.org
author: John Doe <johndoe@example.com>
require_version: 5.2.2
category: user_features

hook: some_hook|phorum_mod_foo_some_hook
hook: some_other_hook|phorum_mod_foo_some_other_hook
hook: yet_another_hook|phorum_mod_foo_some_other_hook

priority: run some_hook before some_other_module

{phorum dir}/mods/foo/foo.php
<?php

if(!defined("PHORUM")) return;

function phorum_mod_foo_some_hook ($data) {
// Do stuff for "some_hook".
return $data;

}

function phorum_mod_foo_some_other_hook ($data) {
// Do stuff for "some_other_hook" and "yet_another_hook".
return $data;

}

?>

So far, the module has exactly same functionality as the single file module from
Section 2.3.3.2. From here on, the functionality can be extended. Some of the possi-
bilities are:

29



• Adding custom files to your module tree (images, classes, libs, etc.);

• Letting your module support multiple languages;

• Implementing a settings screen for your module;

• Adding template files for your module; (See XXX about module template files)

2.3.4 Supporting multiple languages
This feature is supported by the multiple file structure.

If your module includes text that will be displayed to end users, you should strongly
consider making it support multiple languages. This will allow Phorum installations
that use a different language(s) to display output of your module in the same lan-
guage(s), instead of the language you have written the module in.

For supporting multiple languages, the first thing to do is add the following line to
your module information file info.txt:

hook: lang|

There is no actual hook function configured here, because the "lang" hook is only used
as a marker for Phorum. It tells Phorum that your module supports multiple languages.

Next, you must provide at least one language file with your module. Language files
are stored in a subdirectory name "lang" inside your module directory. In our sample
module, the full directory would be {phorumdir}/mods/foo/lang/. The lan-
guage files must be named identical to the main language files that Phorum uses. To
include both English and French, your module would require the following file struc-
ture:

Example 2.3.4 Tree structure for a module that supports languages

{phorum dir}/
|
+-- mods/

|
+-- foo/

|
+-- info.txt
|
+-- foo.php
|
+-- lang/

|
+-- english.php
|
+-- french.php

The structure of your language files will be almost identical to that of the main
Phorum language files. However, for your own language files it is advisable to add an

30



extra level in the language variables, to avoid conflicts with language string from other
modules or Phorum itself. Here is an example of how you could do that:

Example 2.3.5 Custom language file for a module

<?php
$PHORUM["DATA"]["LANG"]["mod_foo"] = array(

"Hello" => "Hello!",
"Bye" => "Good bye!"

);
?>

Here, the extra inserted level is ["mod_foo"]. To access the "Hello" string from
your module code you would use the PHP variable:

$PHORUM["DATA"]["LANG"]["mod_foo"]["Hello"]

When you want to use the language string from a template file, the you would use the
following template variable:

{LANG->mod_foo->Hello}

In case a Phorum installation is using a language that your module does not support,
Phorum will automatically attempt to fallback to English. So it is highly recommend
that you include an english.php language file in all your modules. If both the
current language and English are not found, Phorum will be unable to load a language
for your module and will display empty space instead of your language strings.

Always try to reuse strings that are already in the main Phorum language files itself.
Only create custom strings when there is no alternative available. Having more text to
translate is more work for translators and using core language strings helps in keeping
the used terminology consistent.

2.3.5 Module data storage
2.3.5.1 Introduction

Sometimes, modules will have to store some data in the Phorum system. For example
an avatar module would have to store what avatar a user want to show and a poll module
would have to add the question, answers and voting results for a poll to messages in
which a poll is added.

This section description what standard methods are available for letting modules
store their data in the Phorum system. Of course, as a module writer, you can divert
from this and use any kind of storage that you like. You are in no way limited to only
use Phorum specific methods here.

2.3.5.2 Storing data for messages

If your module needs to store data along with a Phorum message, the easiest way is to
make use of the meta information array that is attached to each message array ($me-

31



ssage["meta"]). This array is a regular PHP array, which is stored in the database
as serialized data (see PHP’s serialize manual). Because Phorum and other modules
make use of this meta data as well, you should never squash it, neither access the meta
data in the database directly. Instead use the methods described in this section.

To prevent name space collissions with other modules or Phorum, it is good practice
to create only one key in the meta data array named mod_<yourmodule> (in our
example: mod_foo). If your module needs to store only one single value, then put it
directly under this key:

$message["meta"]["mod_foo"] = "the single value";

If multiple values need to be stored, then put an array under the key. This array can be
as complicated as you like:

$message["meta"]["mod_foo"] = array(
"key1" => "value1",
"key2" => "value2",
"complex" => array(

0 => "what",
1 => "a",
2 => "cool",
3 => "module"

)
);

because the meta data is stored as serialized data in the database, it is not possible
to handle the data you store in there through SQL queries.

When storing information in the meta data from a hook function, you can encounter
two different situations, which both need a different way of handling: hooks that get
an editable message array as their argument and hooks that don’t.

2.3.5.2.1 From hooks that get an editable message array as their argument
There are some hooks that send a full message structure to the hook functions. These
can change the message structure before returning it to Phorum. Examples are the
hooks "hook.before_post" and "before_edit". For these kind of hooks, you can update
the meta information in the message structure and be done with it. Here’s an example
of what this could look like in your hook function:

function phorum_mod_foo_before_post ($message)
{

// Make sure that we have an array for mod_foo in the ←↩
meta data.

if (!isset($message["meta"]["mod_foo"]) ||
!is_array($message["meta"]["mod_foo"])) {
$message["meta"]["mod_foo"]["foodata"] = array();

}

// Add some fields to the mod_foo data.
$message["meta"]["mod_foo"]["foodata"] = "Some data";

32

 If you see ??? below at the places where you are supposed to see hook docs, then it is because the hook docs for "before_post" and "before_edit" have not yet been written. 

http://www.php.net/serialize


$message["meta"]["mod_foo"]["bardata"] = "Some more data ←↩
";

// Return the updated message. Phorum will take care of
// storing the "mod_foo" array in the database.
return $message;

}

2.3.5.2.2 From other hooks For other hooks, the proper way to store information
in the meta data is to first retrieve the current message data (including the current
meta data) using the phorum_db_get_message() function. After this, merge
the information for your module with the existing meta data and store the updated data
in the database using the phorum_db_update_message() function. Here is an
example of what this could look like in your hook function:

function phorum_mod_foo_some_hook ($data)
{

// Somehow you get the id for the message. Here we asume
// that it is stored in the $data hook parameter.
$message_id = $data["message_id"];

// Retrieve the message from the database.
$message = phorum_db_get_message ($message_id);

// Extract the current meta data.
$meta = $message[’meta’];

// Make sure that we have an array for mod_foo in the ←↩
meta data.

if (!isset($meta["mod_foo"]) || !is_array($meta["mod_foo ←↩
"])) {
$meta["mod_foo"]["foodata"] = array();

}

// Add some fields to the mod_foo data.
$meta["mod_foo"]["foodata"] = "Some data";
$meta["mod_foo"]["bardata"] = "Some more data";

// Store the updated meta data in the database.
phorum_db_update_message($message_id, array("meta" => ←↩

$meta));

// Return the data that we got as input for this hook ←↩
function.

return $data;
}

Changing meta data for a message this way will ensure that the existing meta data is
kept intact.

33



2.3.5.3 Storing data for users

2.3.5.3.1 Custom profile fields for users If your module needs to store data along
with a Phorum user, you can make use of custom profile fields. These fields will be
accessible from within the user data. E.g. if you create a custom profile field named
"foobar", the value of that field will be stored in $user["foobar"] (so right next to the
standard fields like $user["username"] and $user["email"]).

Creating custom profile fields can be done from the admin interface, under "Custom
Profiles". It is also possible to let your module create the custom profile field fully
automatical, by using the Custom Profile Fields API. If you choose to let the user of
your module create the field by hand, then please include a thorough description of
what configuration the user has to do. A lot of problems with modules that require
manual configuration come from using wrong options for a custom profile field.

Using a separate field for each piece of data
When using a custom profile field for storing module information, you can use a

separate field for each piece of data you want to store. The advantage of doing this,
is that you can then use the option "Disable HTML" for the fields that you will be
sending to the user’s browser. In fields with this option enabled, characters that have
a special meaning in HTML will be escaped after loading the user from the database.
This prevents the field from being vulnerable to XSS attacks. Recommended settings
for storing a single value in a profile field are:

• Field Name:
Name your field mod_<module name> if you only need to store one single
value. If you need to store more values, then use the format mod_<module n-
ame>_<field name>. This prevents the risk of clashing with standard Pho-
rum user fields or custom fields that are added for other modules. For example,
the "foo" module could use the field names mod_foo_size and mod_foo_-
name.

• Field Length:
If you want some field to contain a predefined maximum number of characters,
then fill in that number of characters in this field. Before storing the field data
to the database, Phorum will trim the data down if it is longer than the defined
number of characters. If you need no limit, you can also use 65000 here.

• Disable HTML:
Enable this option, unless you are absolutely sure that the data for this field is
either not shown in the browser or escaped by your module before showing it.

• Show in user admin:
If you want the field to be visible along with the user data for a user in the admin
interface, then enable this option.

Using a single field for storing a complex data structure
Instead, you can also create a single field for storing a complete array of informa-

tion. Phorum will automatically take care of storing this information (serialized) in the
database. You only should make sure that the custom profile field is large enough to

34

file:../api/PhorumAPI/CustomProfileFieldAPI/_custom_profile_fields.php.html


store all the data and that HTML is allowed for the field, so the special PHP serializa-
tion code will not be broken by escaping special characters. When your module needs
to store multiple fields, this is the preferred way. Recommended settings for storing a
full array in a profile field are:

• Field Name:
Name your field mod_<module name>, so you will not risk clashes with stan-
dard Phorum user fields or custom fields that are added for other modules. For
example, the "foo" module would use the field name mod_foo.

• Field Length:
Use 65000 here. Using smaller values will not make the database storage
smaller. This value is only used to trim down the data to the provided length.
So for storing serialized data, it is best to set this value as high as possible.

• Disable HTML:
Disable this option, so the serialize data will not be broken by escaping special
characters.

• Show in user admin:
Disable this option. There is currently no support for showing serialized fields
in the user admin pages in a readable way.

2.3.5.3.2 From hooks that get an editable user array as their argument There
are some hooks that send a full message structure to the hook functions. These can
change the message structure before returning it to Phorum. An example is the hook
"[??]". For these kind of hooks, you can update the custom profile field data in the user
structure and be done with it. Here’s an example of what this could look like in your
hook function:

function phorum_mod_foo_user_save ($user)
{

// Some data to store in the "mod_foo" custom field.
$data = array(

"user_id" => $user_id,
"mod_foo" => array (

"foodata" => "Some user data",
"bardata" => "Some more user data"

)
);

// Put the data in the user sructure.
$user["mod_foo"] = $data;

// Return the updated user. Phorum will take care of
// storing the "mod_foo" array in the database.
return $user;

}

35



2.3.5.3.3 From other hooks For storing data in the custom profile field, you can
make use of the phorum_api_user_save() function. This function needs the
user_id of the user and all fields that need to be updated. Below are two pieces of code
which show how our example module might store data for a user (asuming $user_id is
the id of the user that must be changed).

Example 2.3.6 Filling custom profile fields for a user with data

// When using multiple fields "mod_foo_foodata" and " ←↩
mod_foo_bardata".

$userdata = array(
"user_id" => $user_id,
"mod_foo_foodata" => "Some user data",
"mod_foo_bardata" => "Some more user data"

);
phorum_api_user_save($userdata);

// When using a single custom field "mod_foo" for this ←↩
module:

$userdata = array(
"user_id" => $user_id,
"mod_foo" => array (

"foodata" => "Some user data",
"bardata" => "Some more user data"

)
);
phorum_api_user_save($userdata);

2.3.6 Building URLs for Phorum
2.3.6.1 Introduction

You might have noticed that all URLs that are used by Phorum are full absolute URLs.
Phorum does not use relative URLs anywhere. and all of the URLs that point to Phorum
PHP scripts are generated by the function phorum_get_url(). This was done for
several reasons. Here are some of them, for the curious developer:

• By generating full URLs, we guarantee ourselves that the user is always opening
pages within the same domain. With relative URLs, the user might end up at
a different domain because of some webserver redirect (e.g. from http://-
example.com to http://www.example.com), causing possible loss of
cookies as a result (since cookies bind to domains). Loss of cookies result in the
user being logged out.

• Integrating Phorum in a website is a lot easier when using absolute URLs. When
editing the header template for example, it should be okay to add a <base hr-

36



ef="..."/> in there, pointing at the URL where the original site exists. After
doing so, the header template can use the same constructions and paths as the
main site’s header template.

• This becomes even more important when running Phorum in portable or embed-
ded setups. There, Phorum will be run from some script at a random location
and no longer from a script in the Phorum directory. By using absolute URLs,
the linked resources can still be found.

• Code for generating absolute URLs is needed for generating URLs that can be
put in mail messages. It’s a logical choice to use the same code for generat-
ing the other URLs in Phorum, so only one URL generating function has to be
maintained.

• By letting phorum_get_url() generate all URLs, we are prepared for future
changes and new features. If changes are needed in the URL schema, we only
have to update this function and nothing further. All core code and modules that
use this function will automatically follow the changes.

2.3.6.2 Build URLs for Phorum PHP scripts: phorum_get_url()

Phorum uses the function phorum_get_url() to consistenly build URLs that point
to Phorum PHP scripts. It is recommended that you use this function as well when cre-
ating URLs to scripts yourself, so special features and future changes will automatically
be incorporated in the links you use.

Here is an example of building an URL, which will open the profile page for the
user with user_id = 17:

Example 2.3.7 Generating a profile URL using phorum_get_url()

$url = phorum_get_url(PHORUM_PROFILE_URL, 17);

The argument list that this function takes, depends on the first argument which tells
Phorum what URL type has to be built. When building other URLs, other arguments
will be used.

About all URL types that phorum_get_url() supports are used for building
URLs that point to the scripts that are bundled with Phorum. Sometimes, you might
want to add an extra script of your own to the Phorum tree (see Section 2.2.3). For
those, you can use phorum_get_url() as well. The way to go is simple. You need
to use PHORUM_CUSTOM_URL as the first argument and add the following parameters
to it:

• The first parameter needs to be the filename of the file to link to, without the
(.php) extension.

• The second parameter needs to be FALSE or TRUE. If it is TRUE, then the
current forum_id is added to the URL.

37



• All other parameters are added directly to the URL.

Here is an example of building a URL which links to the add-on file myfile.php
in the Phorum installation directory. Lets asume that the URL has to have the forum_id
in it and that it needs to contain the additional parameters foo=bar and baz=foo:

Example 2.3.8 Generating a custom script URL using phorum_get_url()

// Build the URL for the add-on script.
$url = phorum_get_url(PHORUM_CUSTOM_URL, "myfile", 1, "foo= ←↩

bar", "baz=foo");

// After this, you could store the URL in the template data, ←↩
so you

// can use it from the templates to link to the add-on script ←↩
.

// Here an example for filling the template variable {URL-> ←↩
MYFILE}:

$PHORUM["DATA"]["URL"]["MYFILE"] = $url;

2.3.6.3 Build URLs to files in the Phorum tree

If you have some non-script files in your module that you need to access through a
URL, then make sure that you are generating absolute URLs for these. You can make
use of the Phorum setting variable $PHORUM[’http_path’] to build these. This
setting relates to the "HTTP Path" option under "General Settings" in the admin inter-
face.

Let’s asume you have a file named foobar.gif in your "foo" module tree, then
you could generate the URL for that file like this:

Example 2.3.9 Generating an absolute URL for a file in a module directory

// Since the code probably runs inside a function scope,
// the global $PHORUM variable needs to be imported.
global $PHORUM;

// Build the URL for the foobar.gif.
$url = $PHORUM[’http_path’] . "/mods/foo/foobar.gif";

// After this, you could store the URL in the template data, ←↩
so you

// can use it from the templates. Here an example for filling ←↩
the

// template variable {MOD_FOO->IMAGE_URL}:
$PHORUM["DATA"]["MOD_FOO"]["IMAGE_URL"] = $url;

38



2.3.7 Implementing a settings screen for your module
Note: this feature is only available for modules that use the multiple file module struc-
ture

Some modules that you write might need to store settings for later use. For those,
you can create a settings page that can be accessed from the "Modules" page in the
admin interface.

The settings page must be put in your module’s directory by the name of "settings.
php". So for our example module "foo" the file would go in {phorum dir}/mods/foo/settings.php.
In the admin interface under the option "Modules", a link to the settings.php page will
automatically be added if the settings.php file is available for your module.

Although you can do anything you want in your settings.php script, it is recom-
mended that you use the tools that are handed to you by Phorum for building pages and
storing settings.
If the standard tools are not enough for building your settings page, then it is of course
fine to do things differently (e.g. let your module create and use database tables or
build the full settings interface using your own form code.)

2.3.7.1 Building input forms

The Phorum PHP object "PhorumInputForm" can be used to build input forms and table
displays in the admin interface. The best thing you can do for learning the possibilities
of this class is to look at other Phorum modules (like "bbcode" or "replace") or the core
admin scripts from the {phorumdir}/include/admin directory.

2.3.7.2 Error and success feedback messages

For displaying error and success messages, make use of the functions phorum_adm-
in_error() and phorum_admin_okmsg(). Both functions take the message
to display as their argument. By using those functions, the messages are shown using
the standard Phorum admin formatting.

2.3.7.3 Saving module settings to the database

Another tool is the function phorum_db_update_settings() that can be used
for storing settings in the database. To store settings using this function, you can use
code like this:

39



Example 2.3.10 Storing settings for a module in the database

// It is possible to store either scalars or arrays in a ←↩
settings field.

// Phorum will automatically take care of correct handling.
$foo_settings = array();
$foo_settings["foodata"] = "Some setting data";
$foo_settings["bardata"] = "Some more setting data";

// Store the data in the database.
phorum_db_update_settings(array("mod_foo" => $foo_settings) ←↩

);

// In the next request, the settings data can be found in
// the variable $PHORUM[’mod_foot’], for example:
print $PHORUM[’mod_foo’][’foodata’];

2.3.7.4 Prevent settings.php from being loaded directly

To ensure that your settings.php file is only loaded from the admin interface, place this
line at the top of your settings.php file (see also XXX: secure against hackers):

if (!defined("PHORUM_ADMIN")) return;

2.3.7.5 Full module settings page example

Here is a full example settings page, using the tools from above. A real settings page
will often be much larger than this, but the basics are the same.

40



Example 2.3.11 An example module settings.php script

<?php

if (!defined("PHORUM_ADMIN")) return;

// If data is posted, then store the posted settings in the ←↩
database.

if (count($_POST))
{

$PHORUM[’mod_foo’][’field1’] = empty($_POST[’field1’]) ←↩
? 0 : 1;

$PHORUM[’mod_foo’][’field2’] = (int) $_POST[’field2’];

// Do some error checking.
if ($PHORUM[’mod_foo’][’field2’] > 1000) {

phorum_admin_error("The value for field 2 is too ←↩
high!");

}
// The data was okay. Store the settings.
else {

phorum_db_update_settings(array("mod_foo" => ←↩
$PHORUM["mod_foo"]));

phorum_admin_okmsg(’The settings were saved ←↩
successfully’);

}
}

// This block is standard for every settings page. The "mod ←↩
" field

// must be set to the name of the module for which the ←↩
settings

// page is written.
include_once "./include/admin/PhorumInputForm.php";
$frm = new PhorumInputForm ("", "post", "Submit this form") ←↩

;
$frm->hidden("module", "modsettings");
$frm->hidden("mod", "foo");

// Add a header row to the form.
$frm->addbreak("Foo module settings");

// Add a checkbox to the form.
$row = $frm->addrow(

"Field 1",
$frm->checkbox("field1", "1", "Yes", $PHORUM[’mod_foo ←↩

’][’field1’])
);

// Add a help balloon to Field 1.
$frm->addhelp(

$row, "Field 1",
"This is a help balloon text for Field 1."

);

// Add a text field to the form.
$frm->addrow(

"Field 2",
$frm->text_box("field2", $PHORUM[’mod_foo’][’field2’], ←↩

50)
);

// Display the form.
$frm->show();

?>

41



Chapter 3

Module hooks

3.1 Introduction
To satisfy the webmaster that needs every bell and whistle, or those that want to make
their web site unique, the Phorum team created a very flexible hook & module system.
The hooks allow a webmaster to create modules for doing things like using external
authentication, altering message data before it is stored, adding custom information
about users or messages, etc. Almost anything you can think of can be implemented
through the hook & module system.

This chapter describes all the hooks that are available within the Phorum code. It
is mainly targeted at developers that want to write modules.

3.2 Miscellaneous

3.2.1 ajax_<call>
(Phorum 5 >= 5.2.8)

This hook allows module writers to implement calls for the Phorum Ajax layer.

The "call" argument from the Ajax argument array is used to construct the name of
the hook that will be called. For example for the call "sayhello" the called hook will be
call_sayhello

A call implementation should always be using the provided functions phorum_aj-
ax_return() and phorum_ajax_error() to return data to the client. Because
these functions will call exit after they are done, hook functions that implement an
Ajax call stop page execution and do not return like other hook functions. Only if the
hook function decides for some reason that the Ajax call is not to be handled by the
module, it can return the Ajax argument array.

Call time:

42



Just before ajax.php tries to find a built-in handler script for an Ajax call. Therefore,
this hook can also be used to override core Ajax call implementations. We strongly
discourage doing so though.

Hook input:
The Ajax argument array
Hook output:

The same array as the one that was used for the hook call argument.
Example code:

function phorum_mod_foo_ajax_sayhello($ajax_args)
{

// An optional name=.... argument can be used in the ←↩
request.

$name = phorum_ajax_getarg(’name’, ’string’, ’Anonymous ←↩
Person’);

// This will return a JSON encoded string to the client.
phorum_ajax_return("Hello, $name");

}

For this hook implementation, a GET based URL to fire this Ajax call could look like
http://example.com/ajax.php?call=sayhello,name=JohnDoe.

3.2.2 database_error
Give modules a chance to handle or process database errors. This can be useful to im-
plement addional logging backends and/or alerting mechanisms. Another option is to
fully override Phorum’s default database error handling by handling the error and then
calling exit() from the hook to prevent the default Phorum code from running.

Note: If you decide to use the full override scenario, then it is best to make your mod-
ule run the database_error hook last, so other modules can still run their hook handling
before the script exits. To accomplish this, add this to your module info:

priority: run hook database_error after *

Call time:
At the start of the function phorum_database_error (which you can find in

common.php). This function is called from the database layer when some database
error occurs.

Hook input:
The error message that was returned from the database layer. This error is not

HTML escaped, so if you send it to the browser, be sure to preprocess it using html-
specialchars().

Hook output:
Same as input.
Example code:

43

http://www.php.net/htmlspecialchars
http://www.php.net/htmlspecialchars


function phorum_mod_foo_database_error($error)
{

// Log database errors to syslog facility "LOCAL0".
openlog("Phorum", LOG_PID | LOG_PERROR, LOG_LOCAL0);
syslog(LOG_ERR, $error);

return $error;
}

3.2.3 external
The external hook functions are never called from any of the standard Phorum pages.
These functions are called by invoking script.php on the command line with the
--module parameter. This can be used to pipe output from some arbitrary command
to a specific module, which can do something with that input. If your module does not
need any command line input and is meant to be run on a regular basis, you should
consider using the [??] hook.

Mind that for using an [??] hook, the module in which it is handled must be enabled in
your admin interface. So if an [??] hook is not running, the containing module might
be disabled.

To run this hook from the command line, you have to be in the Phorum installation
directory. So running the [??] hook of a module named external_foo would be
done like this on a UNIX system prompt:

# cd /your/phorum/dir
# php ./script.php --module=external_foo

For easy use, you can of course put these commands in a script file.
Call time:

In the script.php when called from the command prompt or a script file.
Hook input:

Any array of arguments. (Optional)
Hook output:

Same as input.

3.2.4 scheduled
[??] hook functions are similar to [??] ones, except these functions do not require
any input from the command line. The modules containing this hook are invoked by
running script.php with the --scheduled argument (no module name is taken;
this argument will run all scheduled hooks for all available modules).

Like the name of the hook already suggests, this hook can be used for creating tasks
which have to be executed on a regular basis. To archieve this, you can let script.

44



php run from a scheduling service (like a cron job on a UNIX system).

In general, [??] hooks are used for automating tasks you want to execute without
having to perform any manual action. Practical uses for a scheduled hook could be:

• housekeeping (cleanup of stale/old data)

• daily content generation (like sending daily digests containing all posted mes-
sages for that day)

• forum statistics generation

Keep in mind that for using this hook, the module in which it is handled must be en-
abled in your admin interface. So if this hook is not running, the containing module
might be disabled.

To run this hook from the command line or from a scheduling service, you have to
be in the Phorum installation directory. So running this hook for your Phorum installa-
tion would be done like this on a UNIX system prompt:

# cd /your/phorum/dir
# php ./script.php --scheduled

When creating a scheduling service entry for running this automatically, remember to
change the directory as well. You might also have to use the full path to your PHP
binary (/usr/bin/php or whatever it is on your system), because the scheduling
service might not know the path to it. An entry for the cron system on UNIX could
look like this:

0 0 * * * cd /your/phorum/dir && /usr/bin/php ./script.php -- ←↩
scheduled

Please refer to your system’s documentation to see how to use your system’s scheduling
service.

Call time:
In the script.php when called from the command prompt or a script file with

the --scheduled argument.
Hook input:

None
Hook output:

None

3.3 Request initialization

3.3.1 parse_request
This hook gives modules a chance to tweak the request environment, before Phorum
parses and handles the request data. For tweaking the request environment, some of
the options are:

45



• Changing the value of $_REQUEST["forum_id"] to override the used fo-
rum_id.

• Changing the value of $_SERVER["QUERY_STRING"] or setting the global
override variable $PHORUM_CUSTOM_QUERY_STRING to feed Phorum a dif-
ferent query string than the one provided by the webserver.

Tweaking the request data should result in data that Phorum can handle.
Call time:

Right before Phorum runs the request parsing code in common.php.
Hook input:

No input.
Hook output:

No output.
Example code:

function phorum_mod_foo_parse_request()
{

// Override the query string.
global $PHORUM_CUSTOM_QUERY_STRING
$PHORUM_CUSTOM_QUERY_STRING = "1,some,phorum,query=string ←↩

";

// Override the forum_id.
$_SERVER[’forum_id’] = "1234";

}

3.3.2 common_pre
This hook can be used for overriding settings that were loaded and setup at the start of
the common.php script. If you want to dynamically assign and tweak certain settings,
then this is the designated hook to use for that.

Because the hook was put after the request parsing phase, you can make use of the
request data that is stored in the global variables $PHORUM[’forum_id’] and $P-
HORUM[’args’].

Call time:
Right after loading the settings from the database and parsing the request, but before

making descisions on user, language and template.
Hook input:

No input.
Hook output:

No output.
Example code:

function phorum_mod_foo_common_pre()
{

global $PHORUM;

46



// If we are in the forum with id = 10, we set the ←↩
administrator

// email information to a different value than the one ←↩
configured

// in the general settings.
if ($PHORUM["forum_id"] == 10)
{

$PHORUM["system_email_from_name"] = "John Doe";
$PHORUM["system_email_from_address"] = "John. ←↩

Doe@example.com";
}

}

3.3.3 common_no_forum
This hook is called in case a forum_id is requested for an unknown or inaccessible
forum. It can be used for doing things like logging the bad requests or fully overriding
Phorum’s default behavior for these cases (which is redirecting the user back to the
index page).

Call time:
In common.php, right after detecting that a requested forum does not exist or is

inaccessible and right before redirecting the user back to the Phorum index page.
Hook input:

No input.
Hook output:

No output.
Example code:

function phorum_mod_foo_common_no_forum()
{

// Return a 404 Not found error instead of redirecting
// the user back to the index.
header("HTTP/1.0 404 Not Found");
print "<html><head>\n";
print " <title>404 - Not Found</title>\n";
print "</head><body>";
print " <h1>404 - Forum Not Found</h1>";
print "</body></html>";
exit();

}

3.3.4 common_post_user
This hook gives modules a chance to override Phorum variables and settings, after the
active user has been loaded. The settings for the active forum are also loaded before this

47



hook is called, therefore this hook can be used for overriding general settings, forum
settings and user settings.

Call time:
Right after loading the data for the active user in common.php, but before decid-

ing on the language and template to use.
Hook input:

No input.
Hook output:

No output.
Example code:

function phorum_mod_foo_common_post_user()
{

global $PHORUM;

// Switch the read mode for admin users to threaded.
if ($PHORUM[’user’][’user_id’] && $PHORUM[’user’][’admin ←↩

’]) {
$PHORUM[’threaded_read’] = PHORUM_THREADED_ON;

}

// Disable "float_to_top" for anonymous users.
if (!$PHORUM[’user’][’user_id’]) {

$PHORUM[’float_to_top’] = 0;
}

}

3.3.5 common
This hook gives modules a chance to override Phorum variables and settings near the
end of the common.php script. This can be used to override the Phorum (settings)
variables that are setup during this script.

Call time:
At the end of common.php.
Hook input:

No input.
Hook output:

No output.
Example code:

function phorum_mod_foo_common()
{

global $PHORUM;

// Override the admin email address.
$PHORUM["system_email_from_name"] = "John Doe";
$PHORUM["system_email_from_address"] = "John.Doe@example. ←↩

com";

48



}

3.3.6 page_<phorum_page>
(Phorum 5 >= 5.2.7)

This hook gives modules a chance to run hook code for a specific Phorum page
near the end of the the common.php script.

It gives modules a chance to override Phorum variables and settings near the end of
the common.php script. This can be used to override the Phorum (settings) variables
that are setup during this script.
The phorum_page definition that is set for each script is used to construct the name
of the hook that will be called. For example the index.php script uses phorum_page
index, which means that the called hook will be page_index.

Call time:
At the end of common.php, right after the [??] hook is called.

You can look at this as if the hook is called at the start of the called script, since
including common.php is about the first thing that a Phorum script does.

Hook input:
No input.
Hook output:

No output.
Example code:

function phorum_mod_foo_page_list()
{

global $PHORUM;

// Set the type of list page to use, based on a cookie.
if (empty($_COOKIE[’list_style’])) {

$PHORUM[’threaded_list’] = PHORUM_THREADED_DEFAULT;
} elseif ($_COOKIE[’list_style’] == ’threaded’) {

$PHORUM[’threaded_list’] = PHORUM_THREADED_ON;
} elseif ($_COOKIE[’list_style’] == ’flat’) {

$PHORUM[’threaded_list’] = PHORUM_THREADED_OFF;
} elseif ($_COOKIE[’list_style’] == ’hybrid’) {

$PHORUM[’threaded_list’] = PHORUM_THREADED_HYBRID;
}

}

49



3.4 Page output

3.4.1 phorum_shutdown
This hook gives modules a chance to easily hook into PHP’s register_shutdown_function()
functionality.

Code that you put in a phorum_shutdown hook will be run after running a Phorum
script finishes. This hook can be considered an expert hook. Only use it if you really
need it and if you are aware of implementation details of PHP’s shutdown functionality.

Call time:
After running a Phorum script finishes.
Hook input:

No input.
Hook output:

No output.

3.4.2 get_template_file
(Phorum 5 >= 5.2.11)

Allow modules to have influence on the results of the phorum_get_template_file()
function. This function translates a page name (e.g. list) into a filename to use as the
template source for that page (e.g. /path/to/phorum/templates/emerald/
list.tpl).

Call time:
At the start of the phorum_get_template_file() function from common.php.
Hook input:

An array containing two elements:

• page: The page that was requested.

• source: The file that has to be used as the source for the page. This one is
initialized as NULL.

Hook output:
Same as input. Modules can override either or both of the array elements. When

the "source" element is set after running the hook, then the file named in this element is
directly used as the template source. It must end in either ".php" or ".tpl" to be accepted
as a template source. Phorum does not do any additional checking on this source file
name. It is the module’s duty to provide a correct source file name.
Otherwise, the template source file is determined based on the value of the "page"
element, following the standard Phorum template resolving rules.

Example code:

function phorum_mod_foo_get_template_file($data)
{

// Override the index template with a custom template
// from the "foo" module.

50

http://www.php.net/register_shutdown_function


if ($data[’page’] == ’index_new’) {
$data[’page’] = ’foo::index_new’;

}

// Point the "pm" template directly at a custom PHP ←↩
script.

if ($data[’page’] == ’pm’) {
$data[’source’] = ’./mods/foo/pm_output_handler.php’;

}

return $data;
}

3.4.3 start_output
This hook gives modules a chance to apply some last minute changes to the Phorum
data. You can also use this hook to call ob_start() if you need to buffer Phorum’s full
output (e.g. to do some post processing on the data from the [??] hook.

Note: this hook is only called for standard pages (the ones that are constructed us-
ing a header, body and footer) and not for output from scripts that do raw output like
file.php, javascript.php, css.php and rss.php.

Call time:
After setting up all Phorum data, right before sending the page header template.
Hook input:

No input.
Hook output:

No output.
Example code:

function phorum_mod_foo_start_output()
{

global $PHORUM;

// Add some custom data to the page title.
$title = $PHORUM[’DATA’][’HTML_TITLE’];
$PHORUM[’DATA’][’HTML_TITLE’] = "-=| Phorum Rocks! |=- ←↩

$title";
}

3.4.4 start_output_<page>
This hook provides the same functionality as the [??] hook. The difference is that this
hook is called for a specific phorum_page, which makes this a lightweight hook if you
only need to do processing for a single phorum_page.

Call time:

51

http://www.php.net/ob_start


After setting up all Phorum data, right before sending the page header template.
Hook input:

No input.
Hook output:

No output.

3.4.5 after_header
This hook can be used for adding content to the pages that is displayed after the page
header template, but before the main page content.

Call time:
After sending the page header template, but before sending the main page content.
Hook input:

No input.
Hook output:

No output.
Example code:

function phorum_mod_foo_after_header()
{

// Only add data after the header for the index and list ←↩
pages.

if (phorum_page != ’index’ && phorum_page != ’list’) ←↩
return;

// Add some static notification after the header.
print ’<div style="border:1px solid orange; padding: 1em ←↩

">’;
print ’Welcome to our forums!’;
print ’</div>’;

}

3.4.6 after_header_<page>
This hook provides the same functionality as the [??] hook. The difference is that this
hook is called for a specific phorum_page, which makes this a lightweight hook if you
only need to do processing for a single phorum_page.

Call time:
After sending the page header template, but before sending the main page content.
Hook input:

No input.
Hook output:

No output.

52



3.4.7 output_templates
This hook can be used to alter the list of templates that will be displayed by the pho-
rum_api_output() call.

Call time:
After sending the page header template, but before sending the main page content.
Hook input:

An array, containing the names of the templates to display in the page body (be-
tween the header and footer template).

Hook output:
Same as input, possibly modified.
Example code:

function phorum_mod_foo_output_templates($templates)
{

// Add some advertisements at the top and bottom of the ←↩
page.

array_unshift($templates, "foo::top_advertisement);
array_push($templates, "foo::bottom_advertisement);

return $templates;
}

3.4.8 output_templates_<page>
This hook provides the same functionality as the [??] hook. The difference is that this
hook is called for a specific phorum_page, which makes this a lightweight hook if you
only need to do processing for a single phorum_page.

Call time:
After sending the page header template, but before sending the main page content.
Hook input:

An array, containing the names of the templates to display in the page body (be-
tween the header and footer template).

Hook output:
Same as input, possibly modified.

3.4.9 before_footer_<page>
This hook provides the same functionality as the [??] hook. The difference is that this
hook is called for a specific phorum_page, which makes this a lightweight hook if you
only need to do processing for a single phorum_page.

Call time:
After sending the main page content, but before sending the page footer template.
Hook input:

No input.
Hook output:

No output.

53



3.4.10 before_footer
This hook can be used for adding content to the pages that is displayed after the main
page content, but before the page footer.

Call time:
After sending the main page content, but before sending the page footer template.
Hook input:

No input.
Hook output:

No output.
Example code:

function phorum_mod_foo_before_footer()
{

// Add some static notification before the footer.
print ’<div style="font-size: 90%">’;
print ’ For technical support, please send a mail to ’;
print ’ <a href="mailto:tech@example.com">the webmaster ←↩

</a>.’;
print ’</div>’;

}

3.4.11 end_output
This hook can be used for performing post output tasks. One of the things that you
could use this for, is for reading in buffered output using ob_get_contents() in case you
started buffering using ob_start() from the [??] hook.

Call time:
After sending the page footer template.
Hook input:

No input.
Hook output:

No output.
Example code:

function phorum_mod_foo_end_output()
{

// Some made up call to some fake statistics package.
include("/usr/share/lib/footracker.php");
footracker_register_request();

}

3.4.12 end_output_<page>
This hook provides the same functionality as the [??] hook. The difference is that this
hook is called for a specific phorum_page, which makes this a lightweight hook if you
only need to do processing for a single phorum_page.

54

http://www.php.net/ob_get_contents
http://www.php.net/ob_start


Call time:
After sending the page footer template.
Hook input:

No input.
Hook output:

No output.

3.5 Control center

3.5.1 cc_panel
This hook can be used to implement an extra control center panel or to override an
existing panel if you like.

Call time:
Right before loading a standard panel’s include file.
Hook input:

An array containing the following fields:

• panel: the name of the panel that has to be loaded. The module will have to
check this field to see if it should handle the panel or not.

• template: the name of the template that has to be loaded. This field should be
filled by the module if it wants to load a specific template.

• handled: if a module does handle the panel, then it can set this field to a true
value, to prevent Phorum from running the standard panel code.

• error: modules can fill this field with an error message to show.

• okmsg: modules can fill this field with an ok message to show.

• force_okmsg: modules can fill this field if their okmsg should take precedence
over the okmsg set from the core controlcenter panel.

• force_error: modules can fill this field if their error should take precedence over
the error set from the core controlcenter panel.

Hook output:
The same array as the one that was used for the hook call argument, possibly with

the "template", "handled", "error" and "okmsg" fields updated in it.

3.5.2 cc_save_user
This hook works the same way as the [??] hook, so you can also use it for changing
and checking the user data that will be saved in the database. There’s one difference.
If you want to check a custom field, you’ll also need to check the panel which you are
on, because this hook is called from multiple panels. The panel that you are on will be
stored in the panel field of the user data.

55



The example hook belows demonstrates code which could be used if you have added a
custom field to the template for the option Edit My Profile in the control panel.

Call time:
In control.php, right before data for a user is saved in the control panel.
Hook input:

An array containing the user data to save.

• error: modules can fill this field with an error message to show.

Hook output:
The same array as the one that was used for the hook call argument, possibly with

the "error" field updated in it.
Example code:

function phorum_mod_foo_cc_save_user ($data)
{

// Only check data for the panel "user".
if ($data[’panel’] != "user") return $data;

$myfield = trim($data[’your_custom_field’]);
if (empty($myfield)) {

$data[’error’] = ’You need to fill in my custom field ←↩
’;

}

return $data;
}

3.6 Templating

3.6.1 css_register
Modules can provide extra CSS data for CSS code that is retrieved through the css.php
script. Extra CSS definitions can be added to the start and to the end of the base CSS
code. Modules that make use of this facility should register the additional CSS code
using this hook.

Call time:
At the start of the css.php script.
Hook input:

An array, containing the following fields:

• css
The name of the css file that was requested for the css.php script. Phorum re-
quests either "css" or "css_print". The module can use this parameter to decide
whether CSS code has to be registered or not.

56



• register
An array of registrations, filled by the modules. Modules can register their CSS
code for inclusion in the base CSS file by adding a registration to this array. A
registration is an array, containing the following fields:

– module
The name of the module that adds the registration.

– where
This field determines whether the CSS data is added before or after the base
CSS code. The value for this field is either "before" or "after".

– source
Specifies the source of the CSS data. This can be one of:

* file(<path to filename>)
For including a static CSS file. The path should be absolute or relative
to the Phorum install directory, e.g. "file(mods/foobar/baz-
.css)". Because this file is loaded using a PHP include() call, it is
possible to include PHP code in this file. Mind that this code is stored
interpreted in the cache.

* template(<template name>)
For including a Phorum template, e.g. "template(foobar::ba-
z)"

* function(<function name>)
For calling a function to retrieve the CSS code, e.g. "function(m-
od_foobar_get_css)"

– cache_key
To make caching of the generated CSS data possible, the module should
provide the css.php script a cache key using this field. This cache key
needs to change if the module will provide different CSS data.

Note: in case "file" or "template" is used as the source, you are allowed
to omit the cache_key. In that case, the modification time of the involved
file(s) will be used as the cache key.

It is okay for the module to provide multiple cache keys for different situa-
tions (e.g. if the CSS code depends on a group or so). Keep in mind though
that for each different cache key, a separate cache file is generated. If you
are generating different CSS code per user or so, then it might be better to
add the CSS code differently (e.g. through a custom CSS generating script
or by adding the CSS code to the $PHORUM[’DATA’][’HEAD_DATA’]
variable. Also, do not use this to only add CSS code to certain phorum
pages. Since the resulting CSS data is cached, it is no problem if you add
the CSS data for your module to the CSS code for every page.

Hook output:

57



The same array as the one that was used for the hook call arguments, possibly with
the "register" field updated. A module can add multiple registrations to the register
array.

3.6.2 css_filter
(Phorum 5 >= 5.2.11)

This hook can be used to apply a filter to the Phorum CSS code. This can for
example be used for compressing or cleaning up the CSS.

Call time:
Right after the css.php script has generated a new CSS file and right before storing

that file in the cache. The filter hook will not be run for every request to css.php, but
only in case the CSS code has to be refreshed.

Hook input:
The generated CSS code.
Hook output:

The filtered CSS code.

3.6.3 javascript_register
Modules can provide JavaScript code that has to be added to the Phorum pages. Mod-
ules that make use of this facility should register the JavaScript code using this hook.

Call time:
At the start of the javascript.php script.
Hook input:

An array of registrations. Modules can register their JavaScript code for inclusion
by adding a registration to this array. A registration is an array, containing the following
fields:

• module
The name of the module that adds the registration.

• source
Specifies the source of the JavaScript data. This can be one of:

– file(<path to filename>)
For including a static JavaScript file. The path should be absolute or relative
to the Phorum install directory, e.g. "file(mods/foobar/baz.j-
s)". Because this file is loaded using a PHP include() call, it is possible to
include PHP code in this file. Mind that this code is stored interpreted in
the cache.

– template(<template name>)
For including a Phorum template, e.g. "template(foobar::baz)"

– function(<function name>)
For calling a function to retrieve the JavaScript code, e.g. "function(-
mod_foobar_get_js)"

58



• cache_key
To make caching of the generated JavaScript code possible, the module should
provide a cache key using this field. This cache key needs to change if the mod-
ule will provide different JavaScript code.

Note: in case "file" or "template" is used as the source, you are allowed to omit
the cache_key. In that case, the modification time of the involved file(s) will be
used as the cache key.

It is okay for the module to provide multiple cache keys for different situations
(e.g. if the JavaScript code depends on a group). Keep in mind though that for
each different cache key, a separate cache file is generated. If you are generat-
ing different JavaScript code per user or so, then it might be better to add the
JavaScript code differently (e.g. through a custom JavaScript generating script
or by adding the code to the $PHORUM[’DATA’][’HEAD_DATA’] variable).
Also, do not use this to only add JavaScript code to certain phorum pages. Since
the resulting JavaScript data is cached, it is no problem if you add the JavaScript
code for your module to the code for every page.

Hook output:
The same array as the one that was used as the hook call argument, possibly ex-

tended with one or more registrations.

3.6.4 javascript_filter
This hook can be used to apply a filter to the Phorum JavaScript code. This can for
example be used for compressing or cleaning up the JavaScript.

Call time:
Right after the javascript.php script has generated a new JavaScript file and right

before storing that file in the cache. The filter hook will not be run for every request to
javascript.php, but only in case the JavaScript code has to be refreshed.

Hook input:
The generated JavaScript code.
Hook output:

The filtered JavaScript code.

3.7 Feed

3.7.1 feed_sent
This hook is called whenever the feed has been sent to the client (regardless of the
cache setting). This can be used to add internal server side tracking code.

Call time:
Feed sent to the client
Hook input:

None

59



Hook output:
None
Example code:

function phorum_mod_foo_feed_after ()
{
# E.g. do server side tracking
@file_get_contents(’your tracking service’);

}

3.8 Admin interface

3.8.1 admin_forum_delete
This hook is called whenever a forum is deleted.

Call time:
Right before the forum will be deleted from the database
Hook input:

The ID of the forum.
Hook output:

Same as input.
Example code:

function phorum_mod_foo_admin_forum_delete ($id)
{

// E.g. Notify the external system that the forum has ←↩
been deleted

// Return forum ID for other hooks
return $id;

}

3.8.2 admin_css_file
This hook can be used to pull in an alternate css file for the admin screens. That’s pretty
much all it’s useful for. This hook is allowed to change the path to the admin css files
because if we didn’t allow it, someone would request it.

Call time:
Just before output begins on the admin page.
Hook input:

A string containing the path to the css file which will be used for the admin page.
Hook output:

The path to the actual css file to use.
Example code:

60



function phorum_mod_foo_admin_css_file($cssfile)
{

// Force admin screens to use the "bar.css" style sheet.
$pieces = explode(’/’, $cssfile);
$pieces[count($pieces)-1] = ’bar.css’;
$cssfile = implode(’/’, $pieces);
return $cssfile;

}

3.8.3 admin_menu
(Phorum 5.2.16)

This hook allows to inject custom HTML into the Phorum admin menu. The hook
will receive an instance of PhorumAdminMenuHookPosition which is required to de-
termine at which position in the Phorum admin menu the module author wishes to place
his custom menu. Although any HTML can be injected, it is advised to use the Phoru-
mAdminMenu class. Use the methods appendAt(position, html) and appendLast(html)
to tell where you want them to appear.

Call time:
Admin header
Hook input:

Object of PhorumAdminMenuHookPosition
Hook output:

Return the object
Example code:

function phorum_mod_foo_admin_menu($pos)
{

$menu = new PhorumAdminMenu("MyImportantLinks");
$menu->addCustom(

"Event log",
phorum_admin_build_url(array(

’module=modsettings’,
’mod=event_logging’,
’el_action=logviewer’

))
);
$menu->addCustom(

"My module subpage",
phorum_admin_build_url(array(

’module=modsettings’,
’mod=foo’,
’action=subpage’

))
);

$pos->appendLast($menu->getHtml());

61



$menu = new PhorumAdminMenu("Who rocks?");
$menu->addCustom(

"Guess!",
"http://phorum.org/",
"Phorum rocks!",
"_blank"

);

$pos->appendAt(0, $menu->getHtml());

return $pos;
}

3.8.4 admin_editforum_form_save_after_defaults
This hook is called whenever a forum is created/saved and passes the basic checks
(i.e. no error is generated there). The raw $_POST request can be accessed and a
new custom error can be generated. At this stage, the $_POST is still accessible in it’s
(almost) original form.

Call time:
Forum created or saved, passing basic phorum verification steps.
Hook input:

The $error variable (a single string message). The first hook being called always
has an empty error (as the whole hook chain is only invoked in such a case), but each
hook may generate an error which is passed on to other hooks in the chain. It is strongly
advised that, once your hook gets called and it detects the input string containing an
error (i.e. is non-zero string length), simply bail out and return the error instead of
doing work and possible generating a new error. Only one error at a time can be passed
to the end user through the whole chain.

Hook output:
Same as input. However, a non-zero length string signals to abort and not save any

data!
Example code:

function ←↩
phorum_mod_foo_admin_editforum_form_save_after_defaults ( ←↩
$error)

{
# Early bail out in case another hook generated already ←↩

an error
if (strlen($error) > 0) {

return $error;
}
# Do your stuff, possible setting $error to a error ←↩

string
# for the user to be shown; or simply leave it untouched.

62



return $error;

}

3.8.5 admin_editforum_form_save_inherit
This hook can be used for intercepting requests where the forum settings get overriden
with the inherited settings a forum is created or saved. At this stage, the $_POST is
still accessible in it’s (almost) original form. When this hook has run, $_POST will be
replaced with the $forum_settings_inherit parameter !

Call time:
After creating/saving a forum, after checking inherited settings before applying

them.
Hook input:

The $forum_settings_inherit content.
Hook output:

Same as input.
Example code:

function phorum_mod_foo_admin_editforum_form_save_inherit ( ←↩
$forum_settings_inherit)

{
return $forum_settings_inherit;

}

3.8.6 admin_editforum_form_save_inherit_others
This hook gets called for every other forum which inherits settings from this forum
and thus gets updated. This can be used to prevent other settings from inherited. Be
cautious what you modify in $forum_settings, as it will be used without re-initialization
in the loop going through all forums which inherit from this one!

Call time:
When iterating over all forums which inherit from this forum.
Hook input:

The $forum_settings which will be applied to the inherited forums and the $in-
herit_setting .

Hook output:
$forum_settings, modified at wish, but be cautious, as it gets re-used during the

loop
Example code:

function ←↩
phorum_mod_foo_admin_editforum_form_save_inherit_others ( ←↩
$forum_settings, $inherit_setting)

{

63



return $forum_settings;

}

3.8.7 admin_editforum_section_edit_forum
Allow injecting custom field logic right before the (possible inherited) permissions/set-
tings begin.

Call time:
Editing an empty or new forum, right after the first section.
Hook input:

An PhorumInputForm object
Hook output:

Nothing
Example code:

function phorum_mod_foo_admin_editforum_section_edit_forum ( ←↩
$frm)

{
}

3.8.8 admin_general
This hook can be used for adding items to the form on the "General Settings" page of
the admin interface.

Call time:
Right before the PhorumInputForm object is shown.
Hook input:

The PhorumInputForm object.
Hook output:

Same as input.
Example code:

function phorum_mod_foo_admin_general ($frm)
{

// Add a section for the foo settings
$frm->addbreak( "Foo Module Settings" );

// Add the option to cache the bar
$row=$frm->addrow( "Enable Bar Caching:", $frm-> ←↩

select_tag( "mod_foo[enable_bar_caching]", array( "No ←↩
", "Yes" ), $PHORUM["mod_foo"]["enable_bar_caching"] ←↩
) );

$frm->addhelp($row, "Enable Bar Caching", "If you select ←↩
yes for this option, then the bar will be cached." );

// Return the modified PhorumInputForm

64



return $frm;

}

3.9 File storage

3.9.1 file_retrieve
This hook allows modules to handle the file data retrieval. The hook can use phor-
um_api_error_set() to return an error. Hooks should be aware that their input
might not be $file, but FALSE instead, in which case they should immediately return
FALSE themselves.

Call time:
In include/api/file_storage.php, right before a file attachment is re-

trieved from the database.
Hook input:

Two part array where the first element is an empty file array and the second element
is the flags variable.

Hook output:
Same as input with file_data filled in.

3.9.2 file_purge_stale
This hook can be used to feed the file storage API function phorum_api_file_purge_stale()
extra stale files. This can be useful for modules that handle their own files, using a cus-
tom link type.

Call time:
Right after Phorum created its own list of stale files.
Hook input:

An array containing stale files, indexed by file_id. Each item in this array is an
array on its own, containing the following fields:

• file_id: the file id of the stale file

• filename: the name of the stale file

• filesize: the size of the file in bytes

• add_datetime: the time (epoch) at which the file was added

• reason: the reason why it’s a stale file

Hook output:
The same array as the one that was used for the hook call argument, possibly ex-

tended with extra files that are considered to be stale.

65



3.9.3 after_detach
The primary use of this hook would be for creating an alternate storage system for
attachments. Using this hook, you can delete the file from your alternate storage.

Call time:
In include/posting/action_attachments.php, right after a file at-

tachment is deleted from the database.
Hook input:

Two part array where the first element is the message array and the second element
is a file array that contains the name, size, and file_id of the deleted file.

Hook output:
Same as input.
Example code:

function phorum_mod_foo_reopen_after_detach($data)
{

global $PHORUM;

// Remove the attachment from the log of messages with
// attachments
unset($PHORUM["mod_foo"]["messages_with_attachments"][ ←↩

$data[0]["message_id"]][$data[1]["file_id"]]);

// If there are now no attachments on the current
// message, remove the message from the log
if (empty($PHORUM["mod_foo"]["messages_with_attachments ←↩

"][$data[0]["message_id"]]))
unset($PHORUM["mod_foo"]["messages_with_attachments ←↩

"][$data[0]["message_id"]]);
phorum_db_update_settings(array("mod_foo" => $PHORUM[" ←↩

mod_foo"]));

return $data;
}

3.9.4 before_attach
The primary use of this hook would be for creating an alternate storage system for
attachments. You would need to use the [??] hook to complete the process as you do
not yet have the file_id for the file. You will need to use the [??] hook to retreive
the file data later.

Call time:
In include/posting/action_attachments.php, right before a file at-

tachment is saved in the database.
Hook input:

Two part array where the first element is the message array and the second element
is a file array that contains the name, size, and file data.

66



Hook output:
Same as input.
Example code:

function phorum_mod_foo_reopen_before_attach($data)
{

// Save the file with the amazing alternate_file_storage
// function I haven’t yet created
alternate_file_storage($data[1]);

// Remove the file data saved with the ←↩
alterante_file_storage

// function
$data[1]["file_data"] = "";

return $data;
}

3.9.5 after_attach
The primary use of this hook would be for creating an alternate storage system for
attachments. You would need to use the [??] hook to remove the file data and in this
hook it could be saved properly. You will need to use the [??] hook to retreive the file
data later.

Call time:
In include/posting/action_attachments.php, right after a file at-

tachment is saved in the database.
Hook input:

Two part array where the first element is the message array and the second element
is a file array that contains the name, size, and file_id of the newly saved file.

Hook output:
Same as input.
Example code:

function phorum_mod_foo_reopen_after_attach($data)
{

global $PHORUM;

// Log the messages with attachments, including the
// attachment names
$PHORUM["mod_foo"]["messages_with_attachments"][$data ←↩

[0]["message_id"]][$data[1]["file_id"]] = $data[1][" ←↩
name"];

phorum_db_update_settings(array("mod_foo" => $PHORUM[" ←↩
mod_foo"]));

return $data;
}

67



3.9.6 system_max_upload
This hook allows a module to control the maximum file size for a file upload. Most
notable would be file system storage. It could ignore the db_limit.

Call time:
In include/upload_functions.php, in the function phorum_get_system_max_upload.
Hook input:

An array containing the default limit, the data layer limit and the PHP limit
Hook output:

A 3 part array with the limits adjusted as you wish. The first element in the array
would be the most important.

Example code:

function phorum_mod_foo_system_max_upload($data)
{

// ignore the db_limit
$data[0] = $data[2];
return $data;

}

3.10 User data handling

3.10.1 user_save
This hook can be used to handle the data that is going to be stored in the database for
a user. Modules can do some last minute change on the data or keep some external
system in sync with the Phorum user data.

In combination with the [??] hook, this hook could also be used to store and retrieve
some of the Phorum user fields using some external system.

Call time:
Just before user data is stored in the database.
Hook input:

An array containing user data that will be sent to the database.
Hook output:

The same array as the one that was used for the hook call argument, possibly with
some updated fields in it.

Example code:

function phorum_mod_foo_user_save($user)
{

// Add "[A]" in front of admin user real_name fields.
$A = $user["admin"] ? "[A]" : "";
$real_name = preg_replace(’/^\[A\]/’, $A, $user[" ←↩

real_name"]);
$user[’real_name’] = $real_name;

68



// Some fictional external system to keep in sync.
include("../coolsys.php");
coolsys_save($user);

return $user;
}

3.10.2 user_register
This hook is called when a user registration is completed by setting the status for the
user to PHORUM_USER_ACTIVE. This hook will not be called right after filling in
the registration form (unless of course, the registration has been setup to require no
verification at all in which case the user becomes active right away).

Call time:
Right after a new user registration becomes active.
Hook input:

An array containing user data for the registered user.
Hook output:

The same array as the one that was used for the hook call argument, possibly with
some updated fields in it.

Example code:

function phorum_mod_foo_user_register($user)
{

// Log user registrations through syslog.
openlog("Phorum", LOG_PID | LOG_PERROR, LOG_LOCAL0);
syslog(LOG_NOTICE, "New user registration: $user[username ←↩

]");

return $user;
}

3.10.3 user_get
This hook can be used to handle the data that was retrieved from the database for a
user. Modules can add and modify the user data.

In combination with the [??] hook, this hook could also be used to store and retrieve
some of the Phorum user fields in some external system

Call time:
Just after user data has been retrieved from the database.
Hook input:

This hook receives two arguments.
The first argument contains an array of users. Each item in this array is an array con-
taining data for a single user, which can be updated.

69



The second argument contains a boolean that indicates whether detailed information
(i.e. including group info) is retrieved.

Hook output:
The array that was used as the first argument for the hook call, possibly with some

updated users in it.
Example code:

function phorum_mod_foo_user_get($user, $detailed)
{

// Let’s asume that our usernames are based on the
// system users on a UNIX system. We could merge some
// info from the password file with the Phorum info here.

// First try to lookup the password file entry.
// Return if this lookup fails.
$pw = posix_getpwnam($user[’username’]);
if (empty($pw)) return $user;

// On a lot of systems, the "gecos" field contains
// the real name for the user.
$user[’real_name’] = $pw["gecos"] != ’’

? $pw["gecos"]
: $user["real_name"];

// If a custom profile field "shell" was created, then
// we could also put the user’s shell in the data.
$user[’shell’] = $pw[’shell’];

return $user;
}

3.10.4 user_list
This hook can be used for reformatting the list of users that is returned by the pho-
rum_api_user_list() function. Reformatting could mean things like changing the sort
order or modifying the fields in the user arrays.

Call time:
Each time the phorum_api_user_list() function is called. The core Phorum code

calls the function for creating user drop down lists (if those are enabled in the Pho-
rum general settings) for the group moderation interface in the control center and for
sending private messages.

Hook input:
An array of user info arrays. Each user info array contains the fields "user_id",

"username" and "display_name". The hook function is allowed to update the "user-
name" and "display_name" fields.

Hook output:
The same array as was used for the hook call argument, possibly with some updated

fields in it.

70



Example code:

function phorum_mod_foo_user_list($users)
{

// Only run this hook code for authenticated users.
if (empty($PHORUM["user"]["user_id"])) return $users;

// Retrieve a list of buddies for the active user.
// If there are no buddies, then no work is needed.
$buddies = phorum_db_pm_buddy_list();
if (empty($buddies)) return $users;

// Flag buddies in the user list.
$langstr = $GLOBALS["PHORUM"]["DATA"]["LANG"]["Buddy"];
foreach ($buddies as $user_id => $info) {

$users[$user_id]["display_name"] .= " ($langstr)";
}

return $users;
}

3.10.5 user_delete
Modules can use this hook to run some additional user cleanup tasks or or to keep some
external system in sync with the Phorum user data.

Call time:
Just before a user is deleted.
Hook input:

The user_id of the user that will be deleted.
Hook output:

The same user_id as the one that was used for the hook call argument.
Example code:

function phorum_mod_foo_user_delete($user_id)
{

// Get user info
$user = phorum_api_user_get($user_id);

// Log user delete through syslog.
openlog("Phorum", LOG_PID | LOG_PERROR, LOG_LOCAL0);
syslog(LOG_NOTICE, "Delete user registration: $user[ ←↩

username]");

return $user_id;
}

71



3.10.6 user_save_groups
This hook can be used to handle the groups data that is going to be stored in the database
for a user. Modules can do some last minute change on the data or keep some external
system in sync with the Phorum user data.

Call time:
Just before the groups for a user are stored in the database.
Hook input:

An array containing user_id and groups-data as another array.
Hook output:

The same array as the one that was used for the hook call argument, possibly with
some updated fields in it.

Example code:

function phorum_mod_foo_user_save_groups($data)
{

list($user_id,$groups) = $data;
foreach($groups as $group_id => $group_permission) {

// do something with the groups permissions
}

return array($user_id,$groups);
}

3.10.7 before_register
This hook can be used for performing tasks before user registration. This hook is useful
if you want to add some data to or change some data in the user data and to check if
the user data is correct.

When checking the registration data, the hook can set the "error" field in the returned
user data array. When this field is set after running the hook, the registration processed
will be halted and the error will be displayed. If you created a custom form field "foo"
and you require that field to be filled in, you could create a hook function like the one
in the example below.

The error must be safely HTML escaped, so if you use untrusted data in your error,
then make sure that it is escaped using htmlspecialchars() to prevent XSS (see also
paragraph 3.6: Secure your pages from XSS).

Call time:
In register.php, right before a new user is stored in the database.
Hook input:

An array containing the user data of the soon-to-be-registered user.
Hook output:

Same as input.
Example code:

72

http://www.php.net/htmlspecialchars


function phorum_mod_foo_before_register ($data)
{

$myfield = trim($data[’foo’]);
if (empty($myfield)) {

$data[’error’] = ’You need to fill in the foo field’;
}

return $data;
}

3.10.8 after_register
This hook can be used for performing tasks (like logging and notification) after a suc-
cessful user registration.

Call time:
In register.php, right after a successful registration of a new user is done and

all confirmation mails are sent.
Hook input:

An array containing the user data of the newly registered user (read-only).
Hook output:

Same as input.
Example code:

function phorum_mod_foo_after_register($data)
{

global $PHORUM;

// Keep a log of user registrations by user id with
// the IP address of the computer they used to
// register
$PHORUM["mod_foo"]["user_registrations"][$userdata[" ←↩

user_id"]] = $_SERVER["REMOTE_ADDR"];

phorum_db_update_settings(array("mod_foo" => $PHORUM[" ←↩
mod_foo"]));

return $data;
}

3.11 User authentication and session handling

3.11.1 user_authenticate
This hooks gives modules a chance to handle the user authentication (for example to
authenticate against an external source like an LDAP server).

Call time:

73



Just before Phorum runs its own user authentication.
Hook input:

An array containing the following fields:

• type: either PHORUM_FORUM_SESSION or PHORUM_ADMIN_SESSION;

• username: the username of the user to authenticate;

• password: the password of the user to authenticate;

• user_id: Always NULL on input. This field implements the authentication state.

Hook output:
The same array as the one that was used for the hook call argument, possibly with

the user_id field updated. This field can be set to one of the following values by a
module:

• NULL: let Phorum handle the authentication

• FALSE: the authentication credentials are rejected

• 1234: the numerical user_id of the authenticated user

Example code:

function phorum_mod_foo_user_authenticate($auth)
{

// Only trust admin logins from IP addresses in ←↩
10.1.2.0/24.

if ($auth["type"] == PHORUM_ADMIN_SESSION) {
if (substr($_SERVER[’REMOTE_ADDR’],0,7) != ’10.1.2.’) ←↩

{
$auth["user_id"] = FALSE;
return $auth;

}
}

// Let Phorum handle autentication for all users that
// have a username starting with "bar" (not a really
// useful feature, but it shows the use of the NULL
// return value ;-).
if (substr($auth["username"], 0, 3) == "bar") {

$auth["user_id"] = NULL;
return $auth;

}

// Authenticate other logins against an external source. ←↩
Here

// we call some made up function for checking the ←↩
password,

// which returns the user_id for the authenticated user.
$user_id = some_func_that_checks_pw(

74



$auth["username"],
$auth["password"]

);
$auth["user_id"] = empty($user_id) ? FALSE : $user_id;
return $auth;

}

3.11.2 user_session_create
Allow modules to override Phorum’s session create management or to even fully omit
creating a session (for example useful if the hook [??] is used to inherit an external
session from some 3rd party application).

Call time:
Just before Phorum runs its own session initialization code in the user API function

phorum_api_user_session_create().
Hook input:

The session type for which a session must be created. This can be either PHORU-
M_FORUM_SESSION or PHORUM_ADMIN_SESSION.

Hook output:
Same as input if Phorum has to run its standard session initialization code or NULL

if that code should be fully skipped.
Example code:

function phorum_mod_foo_user_session_create($type)
{

// Let Phorum handle admin sessions on its own.
if ($type == PHORUM_ADMIN_SESSION) return $type;

// Override the session handling for front end forum ←↩
sessions.

// We could for example put the session in a standard PHP
// session by first starting a PHP session if that was
// not done yet...
if (!session_id()) session_start();

// ...and then storing the user_id of the current user in ←↩
the

// PHP session data. The user_id is really the only thing
// that needs to be remembered for a Phorum session, ←↩

because
// all other data for the user is stored in the database.
$phorum_user_id = $GLOBALS["PHORUM"]["user"]["user_id"];
$_SESSION[’phorum_user_id’] = $phorum_user_id;

// Tell Phorum not to run its own session initialization ←↩
code.

return NULL;
}

75



See the [??] hook for an example of how to let Phorum pick up this PHP based session.

3.11.3 user_session_restore
Allow modules to override Phorum’s session restore management. This hook is the
designated hook if you need to let Phorum inherit an authenticated session from some
external system.

The array that is passed to this hook, contains a key for each of the Phorum session
types:

• PHORUM_SESSION_LONG_TERM

• PHORUM_SESSION_SHORT_TERM

• PHORUM_SESSION_ADMIN

What the module has to do, is fill the values for each of these keys with the user_id
of the Phorum user for which the session that the key represents should be considered
active. Other options are FALSE to indicate that no session is active and NULL to tell
Phorum to handle session restore on its own.

Note that the user for which a user_id is provided through this hook must exist in
the Phorum system before returning from this hook. One option to take care of that
constraint is letting this hook create the user on-the-fly if needed. A cleaner way would
be to synchronize the user data from the main system at those times when the user data
changes (create, update and delete user). Of course it is highly dependent on the other
system whether you can implement that kind of Phorum user management in the main
application.

Hint: Creating users can be done using the phorum_api_user_save() user API
function.

Call time:
Just before Phorum runs its own session restore code in the user API function ph-

orum_api_user_session_restore().
Hook input:

An array containing three keys:

• PHORUM_SESSION_LONG_TERM

• PHORUM_SESSION_SHORT_TERM

• PHORUM_SESSION_ADMIN

By default, all values for these keys are NULL.
Hook output:

Same as input, possibly with updated array values.
Example code:

See the [??] hook for an example of how to let Phorum setup the PHP session that
is picked up in this example hook.

76



function phorum_mod_foo_user_session_restore($sessions)
{

// Override the session handling for front end forum ←↩
sessions.

// We could for example retrieve a session from a ←↩
standard PHP

// session by first starting a PHP session if that was
// not done yet...
if (!session_id()) session_start();

// ...and then retrieving the user_id of the current user
// from the PHP session data. The user_id is really the
// only thing that needs to be remembered for a Phorum
// session, because all other data for the user is stored
// in the database. If no user id was set in the session,
// then use FALSE to flag this to Phorum.
$phorum_user_id = empty($_SESSION[’phorum_user_id’])

? FALSE : $_SESSION[’phorum_user_id’];

// If we only use session inheritance for the front end
// forum session (highly recommended for security), then
// We keep PHORUM_SESSION_ADMIN at NULL (default value).
// The other two need to be updated. If the main system ←↩

does
// not use the concept of one long and one short term ←↩

cookie
// (named "tight security" by Phorum), then simply assign
// the user_id to both PHORUM_SESSION_LONG_TERM and
// PHORUM_SESSION_SHORT_TERM.
$sessions[PHORUM_SESSION_SHORT_TERM] = $phorum_user_id;
$sessions[PHORUM_SESSION_LONG_TERM] = $phorum_user_id;

return $sessions;
}

3.11.4 user_session_destroy
Allow modules to override Phorum’s session destroy management or to even fully omit
destroying a session (for example useful if the hook [??] is used to inherit an external
session from some 3rd party application).

Call time:
Just before Phorum runs its own session destroy code in the user API function

phorum_api_user_session_destroy().
Hook input:

The session type for which a session must be destroyed. This can be either PHOR-
UM_FORUM_SESSION or PHORUM_ADMIN_SESSION.

Hook output:

77



Same as input if Phorum has to run its standard session destroy code or NULL if
that code should be fully skipped.

Example code:
See the [??] hook for an example of how to let Phorum setup the PHP session that

is destroyed in this example hook.

function phorum_mod_foo_user_session_destroy($type)
{

// Let Phorum handle destroying of admin sessions on its ←↩
own.

if ($type == PHORUM_ADMIN_SESSION) return $type;

// Override the session handling for front end forum ←↩
sessions.

// We could for example have stored the session in a ←↩
standard

// PHP session. First, we start a PHP session if that was
// not done yet.
if (!session_id()) session_start();

// After starting the PHP session, we can clear the ←↩
session

// data for the Phorum user. In the user_session_create ←↩
hook

// example code, we stored the user_id for the active ←↩
user

// in the session. Here we clear that data. We could also
// have destroyed the full PHP session, but in that case ←↩

we
// would risk destroying session data that was setup by
// other PHP scripts.
unset($_SESSION[’phorum_user_id’]);

// Tell Phorum not to run its own session destroy code.
return NULL;

}

3.12 Moderation

3.12.1 email_user_start
This hook is put at the very beginning of phorum_email_user() and is therefore
called for every email that is sent from Phorum. It is put before every replacement done
in that function so that all data which is sent to that function can be replaced/changed
at will.

Call time:
In the file email_functions.php at the start of phorum_email_user(),

before any modification of data.

78



Hook input:
An array containing:

• An array of addresses.

• An array containing the message data.

Hook output:
Same as input.
Example code:

function phorum_mod_foo_email_user_start (list($addresses, ←↩
$data))

{
global $PHORUM;

// Add our disclaimer to the end of every email message.
$data["mailmessage"] = $PHORUM["mod_foo"][" ←↩

email_disclaimer"];

return array($addresses, $data);
}

3.12.2 send_mail
This hook can be used for implementing an alternative mail sending system. The hook
should return true if Phorum should still send the mails. If you do not want to have
Phorum send the mails also, return false.

The SMTP module is a good example of using this hook to replace Phorum’s default
mail sending system.

Call time:
In the file email_functions.php in phorum_email_user(), right before

email is sent using mail().
Hook input:

Array with mail data (read-only) containing:

• addresses, an array of e-mail addresses

• from, the sender address

• subject, the mail subject

• body, the mail body

• bcc, whether to use Bcc for mailing multiple recipients

Hook output:
true or false - see description.

79

http://www.php.net/mail


3.12.3 moderation
This hook can be used for logging moderator actions. You can use the $PHORUM array
to retrieve additional info like the moderating user’s id and similar.

The moderation step id is the variable $mod_step that is used in moderation.
php. Please read that script to see what moderation steps are available and for what
moderation actions they stand.

When checking the moderation step id for a certain step, always use the contstants
that are defined for this in include/constants.php. The numerical value of this
id can change between Phorum releases.

Call time:
At the start of moderation.php
Hook input:

The id of the moderation step which is run (read-only).
Hook output:

Same as input.
Example code:

function phorum_mod_foo_moderation ($mod_step)
{

global $PHORUM;

// Update the last timestamp for the moderation step
$PHORUM["mod_foo"]["moderation_step_timestamps"][ ←↩

$mod_step] = time();
phorum_db_update_settings(array("mod_foo" => $PHORUM[" ←↩

mod_foo"]));

return $mod_step;
}

3.12.4 before_delete
This hook allows modules to implement extra or different delete functionality.

The primary use of this hook would be for moving the messages to some archive-area
instead of really deleting them.

Call time:
In moderation.php, just before deleting the message(s)
Hook input:

An array containing the following 5 parameters:

• $delete_handled: default = false, set it to true to avoid the real delete
afterwards

• $msg_ids: an array containing all deleted message ids

80



• $msgthd_id: the msg-id or thread-id to be deleted

• $message: an array of the data for the message retrieved with $msgthd_id

• $delete_mode: mode of deletion, either PHORUM_DELETE_MESSAGE or
PHORUM_DELETE_TREE

Hook output:
Same as input.

$delete_handled and $msg_ids are used as return data for the hook.
Example code:

function phorum_mod_foo_before_delete($data)
{

global $PHORUM;

// Store the message data in the module’s settings for
// future use.
$PHORUM["mod_foo"]["deleted_messages"][$msgthd_id] = ←↩

$message;
phorum_db_update_settings(array("mod_foo" => $PHORUM[" ←↩

mod_foo"]));

return $data;
}

3.12.5 delete
This hook can be used for cleaning up anything you may have created with the post_post
hook or any other hook that stored data tied to messages.

Call time:
In moderation.php, right after deleting a message from the database.
Hook input:

An array of ids for messages that have been deleted (read-only).
Hook output:

Same as input.
Example code:

function phorum_mod_foo_delete($msgthd_ids)
{

global $PHORUM;

// Log the deleted message ids
foreach ($msgthd_ids as $msgthd_id) {

$PHORUM["mod_foo"]["deleted_messages"][] = $msgthd_id ←↩
;

}
phorum_db_update_settings(array("mod_foo" => $PHORUM[" ←↩

mod_foo"]));

81



return $msgthd_ids;
}

3.12.6 move_thread
This hook can be used for performing actions like sending notifications or for making
log entries after moving a thread.

Call time:
In moderation.php, right after a thread has been moved by a moderator.
Hook input:

The id of the thread that has been moved (read-only).
Hook output:

Same as input.
Example code:

function phorum_mod_foo_move_thread($msgthd_id)
{

global $PHORUM;

// Log the moved thread id
$PHORUM["mod_foo"]["moved_threads"][] = $msgthd_id;
phorum_db_update_settings(array("mod_foo" => $PHORUM[" ←↩

mod_foo"]));

return $msgthd_ids;
}

3.12.7 close_thread
This hook can be used for performing actions like sending notifications or making log
entries after closing threads.

Call time:
In moderation.php, right after a thread has been closed by a moderator.
Hook input:

The id of the thread that has been closed (read-only).
Hook output:

Same as input.
Example code:

function phorum_mod_foo_close_thread($msgthd_id)
{

global $PHORUM;

// Log the closed thread id
$PHORUM["mod_foo"]["closed_threads"][] = $msgthd_id;

82



phorum_db_update_settings(array("mod_foo" => $PHORUM[" ←↩
mod_foo"]));

return $msgthd_ids;
}

3.12.8 reopen_thread
This hook can be used for performing actions like sending notifications or making log
entries after reopening threads.

Call time:
In moderation.php, right after a thread has been reopened by a moderator.
Hook input:

The id of the thread that has been reopened (read-only).
Hook output:

Same as input.
Example code:

function phorum_mod_foo_reopen_thread($msgthd_id)
{

global $PHORUM;

// Log the reopened thread id
$PHORUM["mod_foo"]["reopened_threads"][] = $msgthd_id;
phorum_db_update_settings(array("mod_foo" => $PHORUM[" ←↩

mod_foo"]));

return $msgthd_id;
}

3.12.9 after_approve
This hook can be used for performing extra actions after a message has been approved.

Call time:
In moderation.php, right approving a message and possibly its replies.
Hook input:

An array containing two elements:

• The message data

• The type of approval (either PHORUM_APPROVE_MESSAGE or PHORUM_AP-
PROVE_MESSAGE_TREE)

Hook output:
Same as input.
Example code:

83



function phorum_mod_foo_after_approve($data)
{

global $PHORUM;

// alert the message author that their message has been
// approved
$pm_message = preg_replace(

"%message_subject%",
$data[0]["subject"],
$PHORUM["DATA"]["LANG"]["mod_foo"][" ←↩

MessageApprovedBody"]
);

phorum_db_pm_send(
$PHORUM["DATA"]["LANG"]["mod_foo"][" ←↩

MessageApprovedSubject"],
$pm_message,
$data[0]["user_id"]
);

return $data;

}

3.12.10 hide_thread
This hook can be used for performing actions like sending notifications or making log
entries after hiding a message.

Call time:
In moderation.php, right after a message has been hidden by a moderator.
Hook input:

The id of the thread that has been hidden (read-only).
Hook output:

Same as input.
Example code:

function phorum_mod_foo_hide_thread($msgthd_id)
{

global $PHORUM;

// Log the hidden thread id
$PHORUM["mod_foo"]["hidden_threads"][] = $msgthd_id;
phorum_db_update_settings(array("mod_foo" => $PHORUM[" ←↩

mod_foo"]));

return $msgthd_id;
}

84



3.12.11 after_merge
This hook can be used for performing actions on merging threads

Call time:
In moderation.php, right after two threads have been merged by a moderator.
Hook input:

An array with the translated message-ids; old-message_id -> new-message_id
Hook output:

Same as input.

3.12.12 after_split
This hook can be used for performing actions on splitting threads

Call time:
In moderation.php, right after a thread has been split by a moderator.
Hook input:

The id of the newly created thread
Hook output:

Same as input.

3.13 Page data handling

3.13.1 index
This hook can be used to modify the data for folders and forums that are shown on the
index page.

Call time:
Just before the index page is shown.
Hook input:

An array containing all the forums and folders that will be shown on the index page.
Hook output:

The same array as the one that was used for the hook call argument, possibly with
some updated fields in it.

Example code:

function phorum_mod_foo_index($data)
{

global $PHORUM;

foreach ($data as $id => $item)
{

if (!$item[’folder_flag’])
{

$data[$id][’description’] .= ’<sbr/>Blah foo bar ←↩
baz’;

}
}

85



return $data;
}

3.14 Message handling

3.14.1 posting_action_cancel_post
Allow modules to perform custom action whenever the user cancels editing of his post.
This can be used to e.g. redirect the user immediately back to the edited post where he
came from.

Call time:
In action_cancel.php at the end of the file when everything has been done.
Hook input:

Array containing message data.
Hook output:

Same as input.
Example code:

function phorum_mod_foo_posting_action_cancel_post ($message)
{

global $PHORUM;

// perform a custom redirect
phorum_redirect_by_url($PHORUM["DATA"]["URL"]["REDIRECT ←↩

"]);
}

3.14.2 before_edit
This hook can be used to change the edited message before it is stored in the database.

Call time:
In include/posting/action_edit.php, right before storing an edited mes-

sage in the database.
Hook input:

An array containing message data and an optional parameter which holds the orig-
inal message data (added in Phorum 5.2.15)

Hook output:
Same as input.
Example code:

function phorum_mod_foo_before_edit($dbmessage,$orig_message)
{

global $PHORUM;

86



// If the message body does not contain the disclaimer, ←↩
add it

if (strpos($dbmessage["body"], $PHORUM["DATA"]["LANG"][" ←↩
mod_foo"]["Disclaimer"]) === false) {
$dbmessage["body"] .= "\n".$PHORUM["DATA"]["LANG"][" ←↩

mod_foo"]["Disclaimer"];
}

return $dbmessage;
}

3.14.3 after_edit
This hook can be used for sending notifications or for making log entries in the database
when editing takes place.

Call time:
In include/posting/action_edit.php, right after storing an edited mes-

sage in the database.
Hook input:

An array containing message data (read-only) and an optional parameter which
holds the original message data (added in Phorum 5.2.15)

Hook output:
Same as input.
Example code:

function phorum_mod_foo_after_edit($dbmessage, $orig_message)
{

global $PHORUM;

// If the message editor is not the same as the message ←↩
author, alert

// the message author that their message has been edited
if ($PHORUM["user"]["user_id"] != $dbmessage["user_id"]) ←↩

{
$pm_message = preg_replace(

"/%message_subject%/",
$dbmessage["subject"],
$PHORUM["DATA"]["LANG"]["mod_foo"][" ←↩

MessageEditedBody"]
);

phorum_db_pm_send(
$PHORUM["DATA"]["LANG"]["mod_foo"][" ←↩

MessageEditedSubject"],
$pm_message,
$dbmessage["user_id"]
);

}

87



return $dbmessage
}

3.14.4 posting_action_edit_post
Allow modules to perform custom action whenever the user edits his post. This can be
used to e.g. redirect the user immediately back to the edited post where he came from.

Call time:
In action_edit.php at the end of the file when everything has been done.
Hook input:

Array containing message data.
Hook output:

Same as input.
Example code:

function phorum_mod_foo_posting_action_edit_post ($message)
{

global $PHORUM;

// perform a custom redirect
phorum_redirect_by_url($PHORUM["DATA"]["URL"]["REDIRECT ←↩

"]);
}

3.14.5 before_post
This hook can be used to change the new message data before storing it in the database.

Call time:
In include/posting/action_post.php, right before storing a new mes-

sage in the database.
Hook input:

An array containing message data.
Hook output:

Same as input.
Example code:

function phorum_mod_foo_before_post($message)
{

global $PHORUM;

// Add the disclaimer to the new message body
$message["body"] .= "\n".$PHORUM["DATA"]["LANG"]["mod_foo ←↩

"]["Disclaimer"];

return $message;
}

88



3.14.6 after_message_save
This hook can be used for performing actions based on what the message contained or
altering it before it is emailed to the subscribed users. It is also useful for adding or
removing subscriptions.

Call time:
In include/posting/action_post.php, right after storing a new message

and all database updates are done.
Hook input:

An array containing message data.
Hook output:

Same as input.
Example code:

function phorum_mod_foo_after_message_save($message)
{

global $PHORUM;

// If the message was posted in a monitored forum, log ←↩
the id

if (in_array($message["forum_id"], $PHORUM["mod_foo"][" ←↩
monitored_forums"])) {
$PHORUM["mod_foo"]["monitored_messages"][$message[" ←↩

forum_id"]][] = $message["message_id"];
}

return $message;
}

3.14.7 after_post
This hook can be used for performing actions based on what the message contained. It
is specifically useful for fully overriding the redirect behavior. When you only need to
provide a different URL, then make use of the after_post_redirect hook.

Call time:
In include/posting/action_post.php, after all the posting work is done

and before executing the built-in redirect behavior.
Hook input:

An array containing message data.
Hook output:

Same as input.
Example code:

function phorum_mod_foo_after_post($message)
{

global $PHORUM;

89



// remove the post count increment for the user in select ←↩
forums

if (in_array($message["forum_id"], $PHORUM["mod_foo"][" ←↩
forums_to_ignore"])) {
phorum_api_user_save (

array (
"user_id" => $PHORUM["user"]["user_id"],
"posts" => $PHORUM["user"]["posts"]
)

);
}

return $message;
}

3.14.8 after_post_redirect
This hook can be used for modifying the URL that will be used to redirect the user
after posting a message.

Call time:
In include/posting/action_post.php, after the redirect URL has been

constructed and just before the user is redirected (back to the message list or read page.)
Hook input:

The redirect URL as the first argument and the message data as the second argu-
ment.

Hook output:
This hook must return the redirect URL to use.
Example code:

function phorum_mod_foo_after_post_redirect($url, $message)
{

// For some reason, we find it interesting to redirect
// the user to the Disney site after posting a message.
return "http://www.disney.com/";

}

3.14.9 check_post
This hook can be used for modifying the message data and for running additional
checks on the data. If an error is put in $error, Phorum will stop posting the message
and show the error to the user in the post-form.

Beware that $error can already contain an error on input, in case multiple mod-
ules are run for this hook. Therefore you might want to return immediately in your
hook function in case $error is already set.

90



Below is an example of how a function for this hook could look. This example will
disallow the use of the word "bar" in the message body.

Call time:
In the include/posting/check_integrity.php file, right after perform-

ing preliminary posting checks, unless these checks have returned something bad.
Hook input:

An array containing:

• An array of the message data.

• $error, used to return an error message

Hook output:
Same as input.
Example code:

function phorum_mod_foo_check_post ($args) {
list ($message, $error) = $args;
if (!empty($error)) return $args;

if (stristr($message["body"], "bar") !== false) {
return array($message, "The body may not contain ’bar ←↩

’");
}

return $args;
}

3.14.10 posting_init
This hook can be used for doing modifications to the environment of the posting scripts
at an early stage. One of the intended purposes of this hook is to give mods a chance
to change the configuration of the posting fields in $PHORUM["post_fields"].

Call time:
Right after the posting.php script’s configuration setup and before starting the

posting script processing.
Hook input:

None
Hook output:

None
Example code:

function phorum_mod_foo_posting_init()
{

global $PHORUM;

//add the default, descriptive text to the message body
$PHORUM["post_fields"]["body"][pf_INIT] = $PHORUM["DATA ←↩

"]["LANG"]["mod_foo"]["default_body_text"];

91



}

3.14.11 posting_permissions
This hook can be used for setting up custom abilities and permissions for users, by up-
dating the applicable fields in $GLOBALS["PHORUM"]["DATA"] (e.g. for giving
certain users the right to make postings sticky, without having to make the full moder-
ator for a forum).

Read the code in posting.php before this hook is called to find out what fields
can be used.

Beware: Only use this hook if you know what you are doing and understand Pho-
rum’s editor permission code. If used wrong, you can open up security holes in your
Phorum installation!

Call time:
In posting.php right after Phorum has determined all abilities that apply to the

logged in user.
Hook input:

None
Hook output:

None
Example code:

function phorum_mod_foo_posting_permissions()
{

global $PHORUM;

// get the previously stored id for the "sticky_allowed" ←↩
group

$mod_foo_group_id = $PHORUM["mod_foo"][" ←↩
sticky_allowed_group_id"];

// allow creating sticky posts for users in the " ←↩
sticky_allowed"

// group, if the option has not already been enabled.
if (!$PHORUM["DATA"]["OPTION_ALLOWED"]["sticky"])

$PHORUM["DATA"]["OPTION_ALLOWED"]["sticky"] = ←↩
phorum_api_user_check_group_access ( ←↩
PHORUM_USER_GROUP_APPROVED, $mod_foo_group_id);

}

3.14.12 posting_custom_action
This hook can be used by modules to handle (custom) data coming from the posting
form. The module is allowed to change the data that is in the input message. When a

92



module needs to change the meta data for a message, then this is the designated hook
for that task.

Call time:
In posting.php right after all the initialization tasks are done and just before

the posting script starts its own action processing.
Hook input:

Array containing message data.
Hook output:

Same as input.
Example code:

function phorum_mod_foo_posting_custom_actions ($message)
{

global $PHORUM;

// for some reason, create an MD5 signature for the ←↩
original body

if (!empty($message["body"])
$message["meta"]["mod_foo"]["body_md5"] = md5( ←↩

$message["body"]);

return $message;
}

3.14.13 before_editor
This hook can be used for changing message data, just before the editor is displayed.
This is done after escaping message data for XSS prevention is done. So in the hook,
the module writer will have to be aware that data is escaped and that he has to escape
data himself if needed.

This hook is called every time the editor is displayed. If modifying the message data
does not have to be done on every request (for example only on the first request when
replying to a message), the module will have to check the state the editor is in. Here’s
some hints on what you could do to accomplish this:

• Check the editor mode: this can be done by looking at the "mode" field in the
message data. This field can be one of "post", "reply" and "edit".

• Check if it’s the first request: this can be done by looking at the $_POST array.
If no field "message_id" can be found in there, the editor is handing the first
request.

Beware: this hook function only changes message data before it is displayed in the
editor. From the editor, the user can still change the data. Therefore, this hook cannot

93



be used to control the data which will be stored in the database. If you need that
functionality, then use the hooks [??] and/or [??] instead.

Call time:
In posting.php just before the message editor is displayed.
Hook input:

Array containing data for the message that will be shown in the editor screen.
Hook output:

Same as input.
Example code:

// Using this, an example hook function that appends the ←↩
string

// "FOO!" to the subject when replying to a message (how ←↩
useful ;-)

// could look like this:
function phorum_mod_foo_before_editor ($data)
{

if ($data["mode"] == "reply" && ! isset($_POST[" ←↩
message_id])) {
$data["reply"] = $data["reply"] . " FOO!";

}

return $data;
}

3.15 Login/Logout

3.15.1 before_logout
This hook can be used for performing tasks before a user logout. The user data will
still be availbale in $PHORUM["user"] at this point.

Call time:
In login.php, just before destroying the user session.
Hook input:

None
Hook output:

None

3.15.2 after_logout
This hook can be used for performing tasks after a successful user logout and for chang-
ing the page to which the user will be redirected (by returning a different redirection
URL). The user data will still be availbale in $PHORUM["user"] at this point.

Call time:
In login.php, after a logout, just before redirecting the user to a Phorum page.
Hook input:

94



The redirection URL.
Hook output:

Same as input.
Example code:

function phorum_mod_foo_after_logout($url)
{

global $PHORUM;

// Return to the site’s main page on logout
$url = $PHORUM["mod_foo"]["site_url"];

return $url;
}

3.15.3 password_reset
(Phorum 5 >= 5.2.13)

This hook is called after handling a password reset request. Based on whether a
user account can be found for the provided email address and what the account status
for that user is, different actions are performed by Phorum before calling this hook:

• If no user account can be found for the provided email address, then nothing is
done.

• If the account is not yet approved by a moderator, then no new password is
generated for the user.

• If the account is active, then a new password is mailed to the user’s email address.

• If the account is new and not yet confirmed by email, then a new account confir-
mation code is generated and sent to the user’s email address.

The main purpose of this hook is to log password reset requests.
Call time:

In login.php, after handling a password reset request.
Hook input:

An array containing four elements:

• status: the password reset status, which can be: "new_password" (a new pass-
word was generated and sent for an active account), "new_verification" (a new
account verification code was generated and sent for a new account that was
not yet confirmed by email), "unapproved" (in case the account was not yet ap-
proved by a moderator, no new password or verification code was generated for
the user) or "user_unknown" (when the provided email address cannot be found
in the database).

• email: the email address that the user entered in the lost password form.

95



• user: a user data array. This is the user data for the email address that the user
entered in the lost password form. If no matching user could be found (status =
"user_unknown"), then this element will be NULL.

• secret: The new password or verification code for respectively the statuses "new_password"
and "new_verification". For other statuses, this element will be NULL.

Hook output:
Same as input.
Example code:

function phorum_mod_foo_password_reset($data)
{

$log = NULL;
switch ($data[’status’])
{

case ’new_password’:
$log = ’New password generated for ’ .

$data[’user’][’username’] . ’: ’ .
$data[’secret’];

break;
case ’new_verification’:

$log = ’New verification code generated for ’ .
$data[’user’][’username’] . ’: ’ .
$data[’secret’];

break;
case ’user_unknown’:

$log = ’Could not find a user for email ’ .
$data[’email’];

break;
case ’unapproved’:

$log = ’No new password generated for ’ .
’unapproved user ’ . $user[’username’];

break;
}

if ($log !== NULL) {
log_the_password_reset($log);

}

return $user;
}

3.15.4 after_login
This hook can be used for performing tasks after a successful user login and for chang-
ing the page to which the user will be redirected (by returning a different redirection
URL). If you need to access the user data, then you can do this through the global
$PHORUM variable. The user data will be in $PHORUM["user"].

96



Call time:
In login.php, after a successful login, just before redirecting the user to a Pho-

rum page.
Hook input:

The redirection URL.
Hook output:

Same as input.
Example code:

function phorum_mod_foo_after_login($url)
{

global $PHORUM;

// Redirect to the user’s chosen page
$url = $PHORUM["user"]["phorum_mod_foo_user_login_url"];

return $url;
}

3.15.5 failed_login
This hook can be used for tracking failing login attempts. This can be used for things
like logging or implementing login failure penalties (like temporary denying access
after X login attempts).

Call time:
In login.php, when a user login fails.
Hook input:

An array containing three fields (read-only):

• username

• password

• location

– The location field specifies where the login failure occurred and its value
can be either forum or admin.

Hook output:
Same as input.
Example code:

function phorum_mod_foo_failed_login($data)
{

global $PHORUM;

// Get the current timestamp
$curr_time = time();

97



// Check for a previous login failure from the current
// IP address
if (!empty($PHORUM["mod_foo"]["login_failures"][$_SERVER ←↩

["REMOTE_ADDR"]])) {
// If the failures occur within the set time window,
// increment the login failure count
if ($curr_time <= ($PHORUM["mod_foo"]["login_failures ←↩

"][$_SERVER["REMOTE_ADDR"]]["timestamp"] + (int) ←↩
$PHORUM["mod_foo"]["login_failures_time_window"]) ←↩
) {
$PHORUM["mod_foo"]["login_failures"][$_SERVER[" ←↩

REMOTE_ADDR"]]["login_failure_count"] ++;
$PHORUM["mod_foo"]["login_failures"][$_SERVER[" ←↩

REMOTE_ADDR"]]["timestamp"] = $curr_time;
// Otherwise, reset the count.
} else {

$PHORUM["mod_foo"]["login_failures"][$_SERVER[" ←↩
REMOTE_ADDR"]]["login_failure_count"] = 1;

$PHORUM["mod_foo"]["login_failures"][$_SERVER[" ←↩
REMOTE_ADDR"]]["timestamp"] = $curr_time;

} else {
// Log the timestamp and IP address of a login ←↩

failure
$PHORUM["mod_foo"]["login_failures"][$_SERVER[" ←↩

REMOTE_ADDR"]]["login_failure_count"] = 1;
$PHORUM["mod_foo"]["login_failures"][$_SERVER[" ←↩

REMOTE_ADDR"]]["timestamp"] = $curr_time;
}
phorum_db_update_settings(array("mod_foo" => $PHORUM[" ←↩

mod_foo"]));

return $data;
}

3.16 Module hooks

3.16.1 bbcode_register
This hook is implemented by the BBcode module in the file mods/bbcode/api-
.php. It allows modules to provide extra or override existing BBcode tag descriptions.

Warning: do not delete tags from the list, e.g. removing a tag based on the login
status for a user. That would throw off and invalidate the caching mechanisms. If you
need to have some tag act differently for different users, then override the behavior for
the tag using a callback function and implement the logic in the callback function.

Call time:

98



This hook is called from the function bbcode_api_initparser() in the BB-
code module file mods/bbcode/api.php.

Hook input:
An array of tag description arrays. The keys in this array are tag names. The values

are arrays describing the tags. For examples of what these tag descriptions look like,
please take a look at the file mods/bbcode/builtin_tags.php.

Hook output:
The same array as the one that was used for the hook call arguments, possibly

updated with new or updated tags.

3.17 Private message system

3.17.1 pm_delete_folder
(Phorum 5 >= 5.2.13)

This hook can be used for working on deletion of a private message folder. E.g. for
deleting messages in the folder before.

Call time:
Right before Phorum deletes the private message folder.
Hook input:

The id of the private message folder going to be deleted.
Hook output:

Same as input.
Example code:

function phorum_mod_foo_pm_delete_folder($folder_id)
{

// do something with the folder going to be deleted

return $folder_id;
}

3.17.2 pm_delete
(Phorum 5 >= 5.2.13)

This hook can be used for working deletion of a private message.
Call time:

Right before Phorum deletes the private message.
Hook input:

The id of the private message going to be deleted.
Hook output:

Same as input.
Example code:

function phorum_mod_foo_pm_delete($pm_id)
{

99



// do something with the message going to be deleted

return $pm_id;
}

3.17.3 pm_before_send
(Phorum 5 >= 5.2.15)

This hook can be used for doing modifications to PM message data that is stored in
the database. This hook can also be used to apply checks to the data that is to be posted
and to return an error in case the data should not be posted.

Call time:
Just before the private message is stored in the database.
Hook input:

An array containing private message data. The fields in this data are "subject",
"message", "recipients" and "keep".

Hook output:
The message data, possibly modified. A hook can set the field "error" in the data.

In that case, sending the PM will be halted and the error message is shown to the user.
Example code:

function phorum_mod_foo_pm_send_init($message, $action)
{

if ($message[’error’] !== NULL) return $message;

// Enable "keep copy" option by default.
if ($action === NULL) {

$message[’keep’] = 1;
}

return $message;
}

3.17.4 before_pm_list
(Phorum 5 >= 5.2.17)

This hook can be used for retreiveing a list of messages via an alernate method
other than the built in.

Call time:
Before the private message list is retreived from the database
Hook input:

A PM folder id
Hook output:

A list of private messages compatible with phourm_db_pm_list()
Example code:

100



function phorum_mod_foo_before_pm_list($folder_id)
{

// Query the db directly and apply custom code

return $messages;
}

3.17.5 pm_list
(Phorum 5 >= 5.2.7)

This hook can be used for reformatting a list of private messages.
Call time:

Right after Phorum has formatted the private message list. This is primarily done
when a list of private messages is shown in the private message system.

Hook input:
An array of private message info arrays.
Hook output:

The same array as was used for the hook call argument, possibly with some updated
fields in it.

Example code:

function phorum_mod_foo_pm_list($messages)
{

// Filter out private messages that are sent by
// evil user X with user_id 666.
foreach ($messages as $id => $message) {

if ($message[’user_id’] == 666) {
unset($messages[$id]);

}
}
return $messages;

}

3.17.6 pm_read
(Phorum 5 >= 5.2.7)

This hook can be used for reformatting a single private message for reading.
Call time:

Right after Phorum has formatted the private message. This is primarily done when
a private message read page is shown in the private message system.

Hook input:
An array, describing a single private message.
Hook output:

The same array as was used for the hook call argument, possibly with some updated
fields in it. [example}

101



function phorum_mod_foo_pm_read($message)
{
// Add a notice to messages that were sent by
// evil user X with user_id 666.
if ($message[’user_id’] == 666) {
$message[’subject’] .= ’ [EVIL!]’;
}
return $message;
}

3.17.7 pm_send_init
(Phorum 5 >= 5.2.15)

This hook can be used for doing modifications to the PM message data that is used
for sending a PM at an early stage in the request.

Call time:
At the start of "send" page handling, after the code that sets up the message values

on the first request.
Hook input:

Two arguments: the private message data array and the action that is being handled
(one of NULL (initial request), rpct_add, preview, posting).

Hook output:
The private message data, possibly modified.
Example code:

function phorum_mod_foo_pm_send_init($message, $action)
{

// Enable "keep copy" option by default.
if ($action === NULL) {

$message[’keep’] = 1;
}

return $message;
}

3.17.8 pm_before_editor
(Phorum 5 >= 5.2.15)

This hook can be used for tweaking the template data that is used for setting up the
private message editor.

Call time:
Right after Phorum has formatted the template data for the editor and just before

the editor template is loaded.
Hook input:

Two arguments: the private message data array and the action that is being handled
(one of NULL (initial request), rpct_add, preview, posting).

102



Hook output:
The private message data, possibly modified.
Example code:

function phorum_mod_foo_pm_before_editor($message)
{

return $message;
}

3.18 Buddies system

3.18.1 buddy_list
(Phorum 5 >= 5.2.7)

This hook can be used for reformatting a list of buddies. Reformatting could mean
things like changing the sort order or modifying the fields in the buddy arrays.

Call time:
Right after Phorum has formatted the buddy list. This is primarily done when the

list of buddies is shown in the private message system.
Hook input:

An array of buddy info arrays. Each info array contains a couple of fields that
describe the budy: user_id, display_name, mutual (0 = not mutual, 1 = mutual), URL-
>PROFILE, date_last_active (formatted date) and raw_date_last_active (Epoch times-
tamp).

Hook output:
The same array as was used for the hook call argument, possibly with some updated

fields in it.
Example code:

function phorum_mod_foo_buddy_list($buddies)
{

// Add a CSS class around the display names for
// the mutual buddies (of course this could also
// easily be implemented as a pure template change,
// but remember that this is just an example).
foreach ($buddies as $id => $buddy)
{

if ($buddy[’mutual’])
{

$buddies[$id][’display_name’] =
’<span class="mutual_buddy">’ .
$buddy[’display_name’] .
’</span>’;

}
}

return $buddies;

103



}

3.19 Read messages

3.19.1 read
(Phorum 5)

This hook can be used to pre-process all the messages.
Call time:

Right before the countview is incremented and before the messages have been for-
matted.

Hook input:
The array of messages to be shown and the currently shown message_id. NOTE:

the read hook is also used in feed.php but without the $message_id parameter, thus be
advised to make the second parameter optional (default to 0), message_id was added
in 5.2.15

Hook output:
The array of messages. Data attached to messages can be added (e.g. for specific

usage in custom templates). The current message_id cannot be changed that way.
Example code:

function phorum_mod_foo_read($messages, $message_id = 0)
{

// extend all message with some data
foreach ($messages as &$message) {

$message[’random’] = rand();
}
// Do something special with the current message
if ($message_id > 0) {

$messages[$message_id][’random’] = 0;
}

return $messages;
}

3.20 Message search

3.20.1 search_redirect
Phorum does not jump to the search results page directly after posting the search form.
Instead, it will first do a redirect to a secondary URL. This system is used, so Phorum
can show an intermediate "Please wait while searching" page before doing the redirect.
This is useful in case searching is taking a while, in which case users might otherwise
repeatedly start hitting the search button when results don’t show up immediately.

104



This hook can be used to modify the parameters that are used for building the redi-
rect URL. This can be useful in case a search page is implemented that uses more
fields than the standard search page.

Call time:
Right before the primary search redirect (for showing the "Please wait while search-

ing" intermediate page) is done.
Hook input:

An array of phorum_get_url() parameters that will be used for building the redirect
URL.

Hook output:
The possibly updated array of parameters.

3.20.2 search_output
This hook can be used to override the standard output for the search page. This can be
useful for search modules that implement a different search backend which does not
support the same options as Phorum’s standard search backend.

Call time:
At the end of the search script, just before it loads the output template.
Hook input:

The name of the template to use for displaying the search page, which is "search"
by default.

Hook output:
The possibly updated template name to load or NULL if the module handled the

output on its own already.

105


	Templates
	Introduction
	Template structure
	How to start your own template
	The Phorum template language
	Introduction
	General syntax
	Data types
	Integers
	Strings
	PHP constants
	Template variables

	Statements
	Display a variable
	In line comments
	DEFINE
	VAR
	IF .. ELSEIF .. ELSE ..
	LOOP
	INCLUDE
	HOOK

	Need the power of PHP?


	Modules
	Introduction
	Terminology
	Modules
	Hacks
	Add-ons
	Hooks
	Hook functions

	Writing your own modules
	Introduction
	Module information
	Module file structure
	Introduction
	Single file modules
	Multiple file modules

	Supporting multiple languages
	Module data storage
	Introduction
	Storing data for messages
	 From hooks that get an editable message array as their argument 
	From other hooks

	Storing data for users
	Custom profile fields for users
	 From hooks that get an editable user array as their argument 
	From other hooks


	Building URLs for Phorum
	Introduction
	Build URLs for Phorum PHP scripts: phorum_get_url()
	Build URLs to files in the Phorum tree

	Implementing a settings screen for your module
	Building input forms
	Error and success feedback messages
	Saving module settings to the database
	Prevent settings.php from being loaded directly
	Full module settings page example



	Module hooks
	Introduction
	Miscellaneous
	ajax_<call>
	database_error
	external
	scheduled

	Request initialization
	parse_request
	common_pre
	common_no_forum
	common_post_user
	common
	page_<phorum_page>

	Page output
	phorum_shutdown
	get_template_file
	start_output
	start_output_<page>
	after_header
	after_header_<page>
	output_templates
	output_templates_<page>
	before_footer_<page>
	before_footer
	end_output
	end_output_<page>

	Control center
	cc_panel
	cc_save_user

	Templating
	css_register
	css_filter
	javascript_register
	javascript_filter

	Feed
	feed_sent

	Admin interface
	admin_forum_delete
	admin_css_file
	admin_menu
	admin_editforum_form_save_after_defaults
	admin_editforum_form_save_inherit
	admin_editforum_form_save_inherit_others
	admin_editforum_section_edit_forum
	admin_general

	File storage
	file_retrieve
	file_purge_stale
	after_detach
	before_attach
	after_attach
	system_max_upload

	User data handling
	user_save
	user_register
	user_get
	user_list
	user_delete
	user_save_groups
	before_register
	after_register

	User authentication and session handling
	user_authenticate
	user_session_create
	user_session_restore
	user_session_destroy

	Moderation
	email_user_start
	send_mail
	moderation
	before_delete
	delete
	move_thread
	close_thread
	reopen_thread
	after_approve
	hide_thread
	after_merge
	after_split

	Page data handling
	index

	Message handling
	posting_action_cancel_post
	before_edit
	after_edit
	posting_action_edit_post
	before_post
	after_message_save
	after_post
	after_post_redirect
	check_post
	posting_init
	posting_permissions
	posting_custom_action
	before_editor

	Login/Logout
	before_logout
	after_logout
	password_reset
	after_login
	failed_login

	Module hooks
	bbcode_register

	Private message system
	pm_delete_folder
	pm_delete
	pm_before_send
	before_pm_list
	pm_list
	pm_read
	pm_send_init
	pm_before_editor

	Buddies system
	buddy_list

	Read messages
	read

	Message search
	search_redirect
	search_output



