Output

Notes about Output Formats: Renderers

by Keiron Liddle, Art Welch

1 Output Formats

FOP supports a number of different output formats. This is achieved by using different
renderers that create the output.

Here we will explain some information for uses to be able to understand what the renderers
are doing and what difference there may be between different renderers.

1.1 Common Information

Each renderer is given an area tree to render to its output format. The area tree is ssimply a
representation of the pages and the placement of text and graphical objects on those pages.

The renderer will be given each page asit is ready and an output stream to write the data out.
The renderer is responsible for managing the output format and associated data and flow.

Fonts and Layout - some formats (eg. PDF and AWT) rely on different font information. The
fonts for these outputs have different sizes for the same point size. This means that the layout
can be quite different for the same FO document.

DPI - Thisis an important issue when creating output for printing. The dpi is used to convert
measurements into points. For example lin = 2.54cm = 72 points. It is also used when
determining the size of images and the rendering of certain graphics in the output. Currently
FOP uses avalue of 72dpi.

You may want to send your output directly to a printer. The print renderer can use the Java
API to print the document. You might also be able to send the output stream directly to a
printer. If your printer supports postscript you could send the postscript to the printer. If you
have a printer that supports PCL you could stream the PCL document to your printer. On
Windows, you can use:

fop ... -ps \\conputernane\printer or fop ... -pcl \\conputernane\printer

On UNIX:

Page 1



Output

proc = Runtinme.getRuntine().exec("lp -d* + print_queue + " -0 -dp -");

out = proc. getQutput Stream);

Set the OutputStream (out) to the PCLRenderer and it happily sends the PCL to the UNIX
printer queue.

1.2 PDF

PDF is the best supported output format. It is aso the most accurate with text and layout.
This creates a PDF document that is streamed out as each page is rendered. This means that
the internal page index information is stored near the end of the document. The PDF version
supported is 1.3 which is currently the most popular version for Acrobat Reader (4.0), PDF
versions are forwards/backwards compatible.

PDF has a set of fonts that are always available to all PDF viewers, to quote from the PDF
Specification: "PDF prescribes a set of 14 standard fonts that can be used without prior
definition. These include four faces each of three Latin text typefaces (Courier, Helvetica,
and Times), as well as two symbolic fonts (Symbol and ITC Zapf Dingbats). These fonts, or
suitable substitute fonts with the same metrics, are guaranteed to be available in all PDF
viewer applications.”

1.3 PCL

This format is for the Hewlett-Packard PCL printers. It should produce output as close to
identical as possible to the printed output of the PDFRenderer within the limitations of the
renderer, and output device.

The output created by the PCLRenderer is generic PCL 5 as documented in the "HP PCL 5
Printer Language Technical Reference Manual” (copyright 1990). This should allow any
device fully supporting PCL 5 to be able to print the output generated by the PCL Renderer.

1.3.1 Limitations

» Text or graphics outside the | eft or top of the printable area are not rendered properly. In
general things that should print to the left of the printable area are shifted to the right so
that they start at the left edge of the printable area and an error message is generated.

» The Helveticaand Times fonts are not well supported among PCL printers so Helveticais

mapped to Arial and Timesis mapped to Times New. Thisis done in the PCLRenderer,

no changes are required in the FO's. The metrics and appearance for Helvetica/Aria and

Times/Times New are nearly identical, so this has not been a problem so far.

Only the original fonts built into FOP are supported.

For the non-symbol fonts, the ISO 8859/1 symbol set isused (PCL set "ON").

Multibyte characters are not supported.

SV G support is limited. Currently only lines, rectangles (may be rounded), circles,

Page 2



Output

ellipses, text, simple paths, and images are supported. Colors are supported (dithered
black and white) but not gradients.

« Images print black and white only (not dithered). When the renderer prints a color image
it uses athreshold value, colors above the threshold are printed as white and below are
black. If you need to print a non-monochrome image you should dither it first.

» Image scaling is accomplished by modifying the effective resolution of the image data.
The available resolutions are 75, 100, 150, 300, and 600 DPI.

« Color printing is not supported. Colors are rendered by mapping the color intensity to one
of the PCL fill shades (from white to black in 9 steps).

e SVGclipping is not supported.

1.3.2 Additional Features

There are some special features that are controlled by some public variables on the
PCLRenderer class.

orientation

The logical page orientation is controlled by the public orientation variable. Legal
values are:

curdiv, paperheight

The curdiv and paperheight variables allow multiple virtual pages to be printed on
a piece of paper. This allows a standard laser printer to use perforated paper
where every perforation will represent an individual page. The paperheight sets
the height of a piece of paper in decipoints. This will be divided by the
page.getHeight() to determine the number of equal sized divisions (pages) that
will fit on the paper. The curdiv variable may be read/written to get/set the current
division on the page (to set the starting division and read the ending division for
multiple invocations).

topmargin, leftmargin

The topmargin and leftmargin may be used to increase the top and left margins
for printing.

1.4 PostScript

The PostScript renderer is still in its early stages and therefore still missing some features. It
provides good support for most text and layout. Images and SV G are not fully supported, yet.
Currently, the PostScript renderer generates PostScript Level 3 with most DSC comments.
Actuadly, the only Level 3 feature used is FlateDecode, everthing elseis Level 2.

1.4.1 Limitations
« Imagesand SVG may not be display correctly. SV G support is far from being complete.
No image transparency is available.

Page 3



Output

Character spacing may be wrong.

No font embedding is supported.
Multibyte characters are not supported.
PPD support is still missing.

The renderer is not yet configurable.

15RTF

This is currently not integrated with FOP but it will soon. This will create an rtf (rich text
format) document that will attempt to contain as much information from the fo document as
possible.

1.6 SVG

This format creates an SV G document that has links between the pages. Thisis primarily for
slides and creating svg images of pages. Large documents will create SVG files that are far
too large for and SVG viewer to handle. Since fo documents usually have text the SVG
document will have a large number of text elements. The font information for the text is
obtained from the jvm in the same way asthe AWT viewer, if the svg is view where the fonts
are different, such as another platform, then the page will appear wrong.

1.7 XML

This is for testing and verification. The XML created is ssmply a representation of the
internal areatree put into XML. It does not perform any other purpose.

1.8 Print

It is possible to directly print the document from the command line. This is done with the
same code that renders to the AWT renderer.

19AWT

The AWT viewer shows awindow with the pages displayed inside ajava graphic. It displays
one page at a time. The fonts used for the formatting and viewing depend on the fonts
available to your JRE.

1.10MIF

This format is the Maker Interchange Format which is used by Adobe Framemaker. Thisis
currently not fully implemented.

Page 4



Output

LI11TXT

Text as you could imagine does not work very well. It is an output format that you should
expect bad results. The main purpose of thisisto get a quick and dirty view of the document
and the text insideit.

The TXTRenderer is a FOP renderer that produces plain ASCII text output that attempts to
match the output of the PDFRenderer as closely as possible. Thiswas originally developed to
accommodate an archive system that could only accept plain text files. Of course when
limited to plain fixed pitch text the output does not always ook very good.

The TXTRenderer works with a fixed size page buffer. The size of this buffer is controlled
with the textCPl and textLPl public variables. The textCPl is the effective horizontal
characters per inch to use. The textLPI isthe vertical lines per inch to use. From these values
and the page width and height the size of the buffer is calculated. The formatting objects to
be rendered are then mapped to this grid. Graphic elements (lines, borders, etc) are assigned a
lower priority than text, so text will overwrite any graphic element representations.

Page 5



	Output
	1 Output Formats
	1.1 Common Information
	1.2 PDF
	1.3 PCL
	1.3.1 Limitations
	1.3.2 Additional Features

	1.4 PostScript
	1.4.1 Limitations

	1.5 RTF
	1.6 SVG
	1.7 XML
	1.8 Print
	1.9 AWT
	1.10 MIF
	1.11 TXT



