
Programmer’s Guide

Ve r s i o n 4 . 0

Borland International, Inc., 100 Borland Way
P.O. Box 660001, Scotts Valley, CA 95067-0001

Borland InterBase
Workgroup Server

Borland may have patents and/or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents.

Copyright © 1992, 1993, 1994 Borland International. All rights reserved. All Borland products are trademarks or
registered trademarks of Borland International, Inc. Other brand and product names are trademarks or registered
trademarks of their respective holders.

Printed in the U.S.A.

1E0R894
9495969798-9 8 7 6 5 4 3 2 1
I1

i

Table of Contents

Preface. . 1

Chapter 1: Introduction 7

Who Should Use This Guide. 7
Topics Covered in This Guide 7
Sample Database and Applications 8

Chapter 2: Application Requirements 9

Requirements for All Applications 9
Porting Considerations for SQL 10
Porting Considerations for DSQL . . . 10
Declaring Host Variables 10

Section Declarations 11
Using BASED ON to Declare

Variables 11
Host Variables and Host-language

Data Structures 12
Declaring and Initializing Databases . . . 13

Using SET DATABASE 14
Using CONNECT 14
Working With a Single Database. . . . 15

SQL Statements 16
Error Handling and Recovery 16
Closing Transactions 16

Accepting Changes 17
Undoing Changes 17

Closing Databases. 18
DSQL Requirements 18

Declaring an XSQLDA 19
DSQL Limitations 20

Using Database Handles 20
Using the Active Database 21
Using Transaction Names. 21

Preprocessing Programs 22

Chapter 3: Working With Databases 23

Declaring a Database 23
Declaring Multiple Databases 24

Using Handles to Differentiate
Table Names 25

Using Handles With CONNECT,
DISCONNECT, COMMIT, and
ROLLBACK. 25

Using Different Databases for
Preprocessing and Run Time 26

Using the COMPILETIME
Clause 26

Using the RUNTIME Clause 26
Controlling SET DATABASE

Scope 27
Specifying a Character Set for a Client

Connection 28
Opening a Database 28

Using Simple CONNECT
Statements 29

Using a Database Handle 29
Using Host-language Variables

or Hard-coded Strings. 30
Multiple Database

Implementation 30
Using a Hard-coded Database Name

in a Single-database Program. . . . 31
Using a Hard-coded Database Name

in a Multi-database Program 32
Additional CONNECT Syntax 32
Attaching to Multiple Databases

With a Single CONNECT 33
Handling CONNECT Errors 34
Setting Database Cache Buffers 34

Setting Buffers For Individual
Databases 35

Specifying Buffers for All
Databases 35

Accessing an Open Database 36
Using Database Handles

to Differentiate Table Names 36
Closing a Database. 37

Closing Databases With
DISCONNECT 37

ii

Closing Databases With COMMIT
and ROLLBACK 38

Chapter 4: Working With Transactions. . . 39

Starting the Default Transaction. 40
Starting the Default Transaction

Without SET TRANSACTION 40
Starting the Default Transaction

With SET TRANSACTION 41
Starting a Named Transaction 42

Naming Transactions 43
Declaring Transaction Names 44
Initializing Transaction Names . . . 45

Specifying SET TRANSACTION
Behavior 45

Access Mode 47
Isolation Level. 47

Comparing SNAPSHOT, READ
COMMITTED, and SNAPSHOT
TABLE STABILITY 49

Choosing Between SNAPSHOT
and READ COMMITTED 50

Starting a Transaction With
SNAPSHOT Isolation Level . . 51

Starting a Transaction With
READ COMMITTED Isolation
Level. 52

Starting a Transaction With
SNAPSHOT TABLE
STABILITY Isolation Level . . . 52

Isolation Level Interactions. . . . 53
Lock Resolution 54
RESERVING Clause 54
USING Clause. 56

Using Transaction Names in Data
Statements 57

Ending a Transaction 58
Using COMMIT 59

Specifying Transaction Names
for COMMIT. 60

Committing Updates Without
Freeing a Transaction 61

Using ROLLBACK 62
Working With Multiple

Transactions. 63
Multi-transaction Programs and

the Default Transaction. 64
Using Cursors in Multi-transaction

Programs 64
A Multi-transaction Example 65

Working With Multiple Transactions
in DSQL 66

Modifying Transaction Behavior
With SET TRANSACTION. 67

Chapter 5: Working With Data
Definition Statements 69

Creating Metadata 70
Creating a Database 70

Specifying a Default Character Set
for a Database 71

Creating a Domain 72
Creating a Table. 73

Creating a Computed Column 74
Declaring and Creating a Table 74
Creating a View 75

Creating a View for SELECT 76
Creating a View for Update 77

Creating an Index. 78
Preventing Duplicate Index

Entries 78
Specifying Index Sort Order 79

Creating Generators 79
Dropping Metadata 80

Dropping an Index 80
Dropping a View 80
Dropping a Table 81

Altering Metadata 82
Altering a Table 82

Adding a New Column
to a Table 83

iii

Dropping an Existing Column
From a Table 84

Modifying a Column 85
Altering a View 86
Altering an Index 87

Chapter 6: Working With Data 89

Supported Data Types 90
Understanding SQL Expressions 91

Using the String Operator
in Expressions 93

Using Arithmetic Operators
in Expressions 94

Using Logical Operators
in Expressions 94

Using Comparison Operators
in Expressions 95

Using BETWEEN 96
Using CONTAINING 97
Using IN 97
Using LIKE 98
Using IS NULL 99
Using STARTING WITH. 100
Using ALL100
Using ANY and SOME. 101
Using EXISTS 101
Using SINGULAR 102

Determining Precedence
of Operators. 103

Precedence Among Operators
of Different Types103

Precedence Among Operators
of the Same Type 103

Changing Evaluation Order
of Operators 105

Using CAST() for Data Type
 Conversions 105

Using UPPER() on Text Data. 106
Understanding Data Retrieval With

SELECT107

Listing Columns to Retrieve
With SELECT 108

Retrieving a List of Columns 108
Retrieving All Columns. 109

Eliminating Duplicate
Columns With DISTINCT . . . 109

Retrieving Aggregate Column
Information 109

Qualifying Column Names in
Multi-table SELECT Statements . 110

Specifying Transaction Names
in a SELECT 111

Specifying Host Variables
With INTO 112

Listing Tables to Search
With FROM 112

Listing a Single Table or View . . . 113
Listing Multiple Tables 113
Declaring and Using Correlation

Names 114
Restricting Row Retrieval With

WHERE 115
What is a Search Condition? 115
Structure of a Search Condition . . 116
Specifying Collation Order in

a Comparison Operation 118
Sorting Rows With ORDER BY 118

Specifying Collation Order in
an ORDER BY Clause 119

Grouping Rows With GROUP BY . . 119
Specifying Collation Order in

a GROUP BY Clause 120
Limitations of GROUP BY 120

Restricting Grouped Rows
With HAVING 121

Specifying a Query Plan
With PLAN 122

Selecting a Single Row. 123
Selecting Multiple Rows 124

Declaring a Cursor 124
Permitting Updates Through

Cursors With FOR UPDATE . . . 125

iv

Opening a Cursor 126
Fetching Rows With a Cursor 126

Retrieving Indicator Status 127
Refetching Rows With

a Cursor 128
Closing the Cursor128
A Complete Cursor Example129
Selecting Rows With NULL

Values 130
Limitations on NULL Values 131

Selecting Rows Through a View131
Selecting Multiple Rows in DSQL. 132

Declaring a DSQL Cursor132
Opening a DSQL Cursor 133
Fetching Rows With a DSQL

Cursor134
Joining Tables 134

Choosing Join Columns135
Using Inner Joins. 135

Creating Equi-joins136
Creating Joins Based on

Non-equality Comparison
Operators. 137

Creating Self-joins 137
Using Outer Joins 138

Using a Left Outer Join. 139
Using a Right Outer Join139
Using a Full Outer Join. 139

Using Nested Joins. 140
Appending Tables. 141
Using Subqueries 141

Simple Subqueries142
Correlated Subqueries143

Inserting Data 144
Inserting Columns

With VALUES 144
Inserting Columns

With SELECT145
Inserting Rows With NULL Column

Values 146
Ignoring a Column146

Assigning a NULL Value
to a Column. 146

Using Indicator Variables. 147
Inserting Data Through a View 148
Specifying Transaction Names in

an INSERT 149
Updating Data 150

Updating Multiple Rows. 150
Using a Searched Update 151
Using a Positioned Update 152

Setting Column Values to NULL
With UPDATE. 153

Updating Through a View. 153
Specifying Transaction Names

in UPDATE 154
Deleting Data 155

Deleting Multiple Rows 156
Using a Searched Delete 156
Using a Positioned Delete 157

Deleting Through a View 158
Specifying Transaction Names

in a DELETE 159

Chapter 7: Working With Dates 161

Selecting Dates 161
Inserting Dates 162
Updating Dates 163
Using CAST() to Convert Dates 164
Using Date Literals 164

Chapter 8: Working With BLOB Data . . . 167

What is a BLOB? 168
How are BLOB Data Stored? 168

BLOB Subtypes 169
BLOB Database Storage 170
BLOB Segment Length 171
Overriding Segment Length 172

Accessing BLOB Data With SQL 172
Selecting BLOB Data 172
Inserting BLOB Data 175
Updating BLOB Data. 176

v

Deleting BLOB Data177
Accessing BLOB Data With

API Calls 178
Filtering BLOB Data 178

Using the Standard InterBase
Text Filters 179

Using an External BLOB Filter 179
Declaring an External Filter

to the Database 179
Reading and Writing BLOB Data

Using a Filter 180
Invoking a Filter in

an Application180
Writing an External BLOB Filter. 181

Filter Types181
Read-only and Write-only Filters . . .181
Defining the Filter Function 181

Defining the BLOB Control
Structure183

Setting Control Structure
Information Field Values 185

Programming Filter Function
Actions186

Testing the Filter Function
Status Return Value. 188

Chapter 9: Using Arrays 189

Creating Arrays189
Multi-dimensional Arrays 190
Specifying Subscript Ranges

for Array Dimensions 190
Accessing Arrays 191

Selecting Data From an Array 192
Inserting Data Into an Array 193
Selecting From an Array Slice 193
Updating Data in an Array Slice195
Testing an Array Element Value

in a Search Condition 196
Using Host Variables in Array

Subscripts197

Using Arithmetic Expressions
With Arrays 197

Chapter 10: Working With Security 199

Overview of SQL Access Privileges . . . 199
Default Table Security and Access . . 199
Default Procedure Security

and Access 200
Privileges Available 200

Granting Access to a Table 200
Granting Multiple Privileges 201
Granting All Privileges. 202
Granting Privileges to a List

of Users. 202
Granting Privileges to a List

of Procedures 202
Granting Privileges to All Users . . . 203
Granting Users UPDATE Access

to Columns in a Table 203
Granting Users the Right to Grant

Privileges. 203
Grant Authority Restrictions 204
Grant Authority Implications . . . 204

Granting Privileges to Execute
Procedures 205

How GRANT Affects Views 206
Views That are Subsets of a Table. . . 206
Views With Joins 207

Revoking User Access 207
REVOKE Restrictions 208
Revoking Multiple Privileges 208
Revoking All Privileges 209
Revoking Privileges for a List

of Users. 209
Revoking Privileges for a List

of Procedures 209
Revoking Privileges for All Users. . . 210
Revoking Grant Authority. 210

Using Views to Restrict Data Access. . . 210
Providing Additional Security 211

vi

Chapter 11: Working With
User-defined Functions213

Creating a UDF 213
Writing and Compiling Functions 214

Writing a Function Module214
Specifying Parameters 216
Specifying a Return Value216

Writing a BLOB UDF 217
Creating a BLOB Control

Structure217
blob_get_segment 217
blob_handle 217
number_segments218
max_seglen 218
total_size. 218
blob_put_segment218

A BLOB UDF Example218
Compiling a Function Module219

Creating a UDF Library 219
Modifying a UDF Library220

Declaring a UDF to a Database 220
Declaring a BLOB UDF 222

Calling a UDF222
Using a UDF With SELECT223
Using a UDF With INSERT223
Using a UDF With UPDATE 223
Using a UDF With DELETE 224

Chapter 12: Working With Stored
Procedures 225

Using Stored Procedures225
Procedures and Transactions226
Security for Procedures 226

Using Select Procedures 226
Calling a Select Procedure 227
Using a Select Procedure

With Cursors 227
Using Executable Procedures 228

Executing a Procedure. 228
Indicator Variables 229

Executing a Procedure in
a DSQL Application. 229

Chapter 13: Working With Events 231

Understanding the Event
Mechanism 231

Signaling Event Occurrence With
POST_EVENT 232

Registering Interest in Events
With EVENT INIT 233

Registering Interest in Multiple
Events 234

Waiting for Events With EVENT
WAIT 234

Responding to Events 235

Chapter 14: Error Handling
and Recovery 237

Standard Error Handling 237
Handling Errors With WHENEVER

Statements 238
Scope of WHENEVER

Statements 239
Changing Error-handling

Routines. 239
Limitations of WHENEVER

Statements 240
Testing SQLCODE Directly 240
Combining Error-handling

Techniques 242
Guidelines for Error Handling 243

Using SQL and Host-language
Statements 243

Nesting Error-handling
Routines. 243

Handling Unexpected
and Unrecoverable Errors. 243

Portability 244
Additional InterBase Error Handling . . 244

Displaying Error Messages 245

vii

Capturing SQL Error Messages
With isc_sql_interprete() 245

Capturing InterBase Error Messages
With isc_interprete(). 246

Trapping and Handling InterBase
Error Codes248

Chapter 15: Using Dynamic SQL 251

Overview of the DSQL Programming
Process 251

DSQL Limitations251
Accessing Databases. 252
Handling Transactions 253
Creating a Database254
Processing BLOB Data. 254
Processing Array Data. 254

Writing a DSQL Application. 255
Determining if DSQL Can Process

an SQL Statement 255
Representing an SQL Statement as

a Character String 256
Specifying Parameters in SQL

Statement Strings 256
Understanding the XSQLDA 257

XSQLDA Field Descriptions 259
XSQLVAR Field Descriptions259

Input Descriptors 260
Output Descriptors 261
Using the XSQLDA_LENGTH

Macro 261
SQL Data Type Macro Constants . . .261
Handling Varying String

Data Types 263
Handling NUMERIC and DECIMAL

Data Types 264
Coercing Data Types 264

Coercing Character Data Types . . .265
Coercing Numeric Data Types . . .265
Setting a NULL Indicator 265

Aligning Numerical Data265
DSQL Programming Methods266

Method 1: Non-query Statements
Without Parameters. 267

Using EXECUTE IMMEDIATE . . 267
Using PREPARE and EXECUTE . . 267

Method 2: Non-query Statements
With Parameters. 268

Creating the Input XSQLDA 268
Preparing and Executing

a Statement String With
Parameters 269

Re-executing the Statement
String 271

Method 3: Query Statements
Without Parameters. 271

Preparing the Output XSQLDA . . 272
Preparing a Query

Statement String 272
Executing a Statement String

Within the Context of a Cursor . . 274
Re-executing a Query Statement

String Without Parameters 276
Method 4: Query Statements

With Parameters. 276
Preparing the Input XSQLDA . . . 276
Preparing the Output XSQLDA . . 277
Preparing a Query Statement

String With Parameters 278
Executing a Query Statement

String Within the Context
of a Cursor 281

Re-executing a Query Statement
String With Parameters 282

Chapter 16: Preprocessing, Compiling,
and Linking 283

Preprocessing. 283
Using gpre 283

Language Switches 284
Option Switches 284
Examples 286

viii

Using a File Extension to Specify
Language 286

Specifying the Source File. 287
Using a Language Switch and

No Input File Extension 287
Using No Language Switch and

an Input File With Extension . . .288

Using Neither a Language
Switch Nor a File Extension. . . . 288

Compiling and Linking 288
Compiling an Ada Program 289
Linking. 289

Index . 291

ix

Tables and Figures

1: InterBase Core Documentation 1
2: InterBase Client Documentation 2
3: Text Conventions 2
4: Syntax Conventions 3
1-1: Programmer’s Guide Chapters 7
3-1: CONNECT Syntax Summary 33
4-1: SQL Transaction Management

Statements 39
4-2: Default Transaction Default

Behavior 41
4-3: SET TRANSACTION Parameters . . 45
4-4: ISOLATION LEVEL Options 48
4-5: InterBase Management of Classic

Transaction Conflicts 49
4-6: Isolation Level Interaction

with Read (SELECT) and WRITE
(UPDATE) 53

4-7: Table Reservation Options for
the RESERVING Clause 55

5-1: Data Definition Statements
Supported for Embedded

Applications 69
6-1: Data Types Supported
by InterBase 90
6-2: Elements of SQL Expressions 92
6-3: Arithmetic Operators 94
6-4: InterBase Comparison Operators

Requiring Subqueries 96
6-5: Operator Precedence By

Operator Type 103
6-6: Mathematical Operator

Precedence 104
6-7: Comparison Operator

Precedence 104
6-8: Logical Operator Precedence 105
6-9: Compatible Data Types

for CAST() 106

6-10: SELECT Statement Clauses 107
6-11: Aggregate Functions in SQL 110
6-12: Elements of WHERE Clause

SEARCH Conditions 116
8-1: Relationship of a BLOB ID to

BLOB Segments in a Database 171
8-1: API BLOB Calls 178
8-2: Filtering from Lowercase

to Uppercase 180
8-3: Filtering from Uppercase

to Lowercase 180
8-4: Filter Interaction with

an Application and a Database 182
8-2: isc_blob_ctl Structure Field

Descriptions. 184
8-3: BLOB Access Operations 186
8-4: BLOB Filter Status Values 188
10-1: SQL Access Privileges 200
11-1: DECLARE EXTERNAL

FUNCTION Parameters 221
14-1: Possible SQLCODE Values 237
15-1: SQL Statements That Cannot

Be Processed By DSQL. 255
15-1: XSQLDA and XSQLVAR

Relationship. 258
15-2: XSQLDA Field Descriptions 259
15-3: XSQLVAR Field Descriptions . . . 259
15-4: SQL Data Types, Macro

Expressions, and C Data Types 262
15-5: SQL Statement Strings

and Recommended Processing
Methods 266

16-1: gpre Language Switches 284
16-2: Additional gpre Language

Switches 284
16-3: gpre Option Switches 284
16-4: Language-specific gpre Option

Switches 286
16-5: File Extensions for Language

Specification 286

x

Preface 1

0Preface

This preface describes the documentation set, the printing conventions used to
display information in text and in code examples, and the conventions a user
should employ when specifying database objects and files by name in applica-
tions.

The InterBase Documentation Set

The InterBase documentation set is an integrated package designed for all levels
of users. The InterBase server documentation consists of a five-book core set and
a platform-specific installation guide. Information on the InterBase Client for
Windows is provided in a single book.

The InterBase core documentation set consists of the following books:

Table 1: InterBase Core Documentation

Book Description

Getting Started Provides a basic introduction to InterBase and roadmap for using the
documentation and a tutorial for learning basic SQL through isql .
Introduces more advanced topics such as creating stored procedures
and triggers.

Data Definition Guide Explains how to create, alter, and delete database objects through
isql .

Language Reference Describes SQL and DSQL syntax and usage.

Programmer’s Guide Describes how to write embedded SQL and DSQL database applica-
tions in a host language, precompiled through gpre .

API Guide Explains how to write database applications using the InterBase API.

Installing and Running on . . . Platform-specific information on installing and running InterBase.

2 Programmer’s Guide

Additional documentation includes the following book:

Printing Conventions

The InterBase documentation set uses different fonts to distinguish various
kinds of text and syntax.

Text Conventions
The following table describes font conventions used in text, and provides exam-
ples of their use:

Table 2: InterBase Client Documentation

Book Description

InterBase Windows Client User’s
Guide

Installing and using the InterBase PC client. Using Windows isql and
the InterBase Server Manager.

Table 3: Text Conventions

Convention Purpose Example

UPPERCASE SQL keywords, names of all
database objects such as
tables, columns, indexes,
stored procedures, and SQL
functions.

The following SELECT statement
retrieves data from the CITY column in
the CITIES table.

italic Introduces new terms, and
emphasizes words. Also
used for file names and host-
language variables.

The isc4.gdb security database is not
accessible without a valid username and
password.

bold Utility names, user-defined
and host-language function
names. Function names are
always followed by paren-
theses to distinguish them
from utility names.

To back up and restore a database, use
gbak or the server manager.
The datediff() function can be used to
calculate the number of days between two
dates.

Preface 3

Syntax Conventions
The following table describes the conventions used in syntax statements and
sample code, and offers examples of their use:

Table 4: Syntax Conventions

Convention Purpose Example

UPPERCASE Keywords that must be
typed exactly as they appear
when used.

SET TERM !!;

italic Parameters that cannot be
broken into smaller units.
For example, a table name
cannot be subdivided.

CREATE TABLE name
(<col> [, <col> ...]);

<italic> Parameters in angle brack-
ets that can be broken into
smaller syntactic units.
For example, column defini-
tions (<col>) can be subdi-
vided into a name, data type
and constraint definition.

CREATE TABLE name
(<col> [, <col> ...]);

<col> = name <datatype>
[CONSTRAINT name <type>]

[] Square brackets enclose
optional syntax.

<col> [, <col> ...]

... Closely spaced ellipses indi-
cate that a clause within
brackets can be repeated as
many times as necessary.

 (<col> [, <col> ...]);

| The pipe symbol indicates
that either of two syntax
clauses that it separates
may be used, but not both.
Inside curly braces, the pipe
symbol separates multiple
choices, one of which must
be used.

SET TRANSACTION
{SNAPSHOT [TABLE STABILITY]
| READ COMMITTED};

{ } Curly braces indicate that
one of the enclosed options
must be included in actual
statement use.

SET TRANSACTION
{SNAPSHOT [TABLE STABILITY]
| READ COMMITTED};

4 Programmer’s Guide

Database Object-naming Conventions

InterBase database objects, such as tables, views, and column names, appear in
text and code in uppercase in the InterBase documentation set because this is the
way such information is stored in a database’s system tables.

When an applications programmer or end user creates a database object or refers
to it by name, case is unimportant. The following limitations on naming data-
base objects must be observed:

• Start each name with an alphabetic character (A-Z or a-z).

• Restrict object names to 31 characters, including dollar signs ($), under-
scores (_), 0 to 9, A to Z, and a to z. Some objects, such as constraint
names, are restricted to 27 bytes in length.

• Keep object names unique. In all cases, objects of the same type, for
example, tables and views, must be unique. In most cases, object names
must also be unique within the database.

For more information about naming database objects with CREATE or
DECLARE statements, see the Language Reference.

File-naming Conventions

InterBase is available on a wide variety of platforms. In most cases users in a het-
erogenous networking environment can access their InterBase database files
regardless of platform differences between client and server machines if they
know the target platform’s file naming conventions.

Because file-naming conventions differ widely from platform to platform, and
because the core InterBase documentation set is the same for each of these plat-
forms, all file names in text and in examples are restricted to a base name with a
maximum of eight characters, with a maximum extension length of three charac-
ters. For example, the example database on all servers is referred to as
employee.gdb.

Generally, InterBase fully supports each platform’s file-naming conventions,
including the use of node and path names. InterBase, however, recognizes two
categories of file specification in commands and statements that accept more
than one file name. The first file specification is called the primary file specification.
Subsequent file specifications are called secondary file specifications. Some com-
mands and statements place restrictions on using node names with secondary
file specifications.

Preface 5

In syntax, file specification is denoted as follows:

" <filespec> "

Primary File Specifications
InterBase syntax always supports a full file specification, including optional
node name and full path, for primary file specifications. For example, the syntax
notation for CREATE DATABASE appears as follows:

CREATE {DATABASE | SCHEMA} " <filespec> "
[USER " username " [PASSWORD " password "]]
[PAGE_SIZE [=] int]
[LENGTH [=] int [PAGE[S]]]
[DEFAULT CHARACTER SET charset]
. . .

In this syntax, the <filespec> that follows CREATE DATABASE supports a node
name and path specification, including a platform-specific drive or volume spec-
ification.

Secondary File Specifications
For InterBase syntax that supports multiple file specification, such as CREATE
DATABASE, all file specifications after the first are secondary. Secondary file
specifications generally cannot include a node name, but may specify a full path
name. For example, the syntax notation for CREATE DATABASE appears as fol-
lows:

CREATE {DATABASE | SCHEMA} " <filespec> "
[USER " username " [PASSWORD " password "]]
[PAGE_SIZE [=] int]
[LENGTH [=] int [PAGE[S]]]
[DEFAULT CHARACTER SET charset]
[<secondary_file>]

<secondary_file> = FILE " <filespec> " [<fileinfo>] [<secondary_file>]

<fileinfo> = LENGTH [=] int [PAGE[S]] | STARTING [AT [PAGE]] int
[<fileinfo>]

In the secondary file specification, <filespec> does not support specification of a
node name.

6 Programmer’s Guide

Introduction 7

CHAPTER 1

1Introduction

The InterBase Programmer’s Guide is a task-oriented explanation of how to write,
preprocess, compile, and link embedded SQL and DSQL database applications
using InterBase and a host programming language, either C or C++. This chapter
describes who should read this book, and provides a brief overview of its chap-
ters.

Who Should Use This Guide

The InterBase Programmer’s Guide is intended for database applications pro-
grammers. It assumes a general knowledge of:

• SQL.

• Relational database programming.

• C programming.

The Programmer’s Guide assumes little or no previous experience with InterBase.

For an introduction to InterBase and SQL, see Getting Started.

Topics Covered in This Guide

The following table lists the task-oriented chapters in the Programmer’s Guide,
and provides a brief description of them:

Table 1-1: Programmer’s Guide Chapters

Chapter Description

1: Introduction Introduces the structure of the book and describes its
intended audience.

8 Programmer’s Guide

Sample Database and Applications

A sample database and sample application source code can be found in the
InterBase examples subdirectory. The Programmer’s Guide makes use of the sam-
ple database and source code for its examples wherever possible.

2: Application Requirements Describes elements common to programming all SQL and
DSQL applications.

3: Working With Databases Describes using SQL statements that deal with databases.

4: Working With Transactions Explains how to use and control transactions with SQL
statements.

5: Working With Data Definition Statements Describes how to embed SQL data definition statements in
applications.

6: Working With Data Explains how to select, insert, update, and delete standard
SQL data in applications.

7: Working With Dates Describes how to select, insert, update, and delete DATE
data in applications.

8: Working With BLOB Data Describes how to select, insert, update, and delete BLOB
data in applications.

9: Using Arrays Describes how to select, insert, update, and delete array
data in applications.

10: Working With Security Explains how to grant and revoke table and procedure privi-
leges in applications.

11: Working With User-defined Functions Describes how to write UDFs, how to call UDFs in applica-
tions, how to write BLOB filters, and how to create BLOB fil-
ter libraries.

12: Working With Stored Procedures Explains how to call stored procedures in applications.

13: Working With Events Explains how triggers interact with applications. Describes
how to register interest in events, wait on them, and
respond to them in applications.

14: Error Handling and Recovery Describes how to trap and handle SQL statement errors in
applications.

15: Using Dynamic SQL Describes how to write DSQL applications.

16: Preprocessing, Compiling, and Linking Describes how to convert source code into an executable
application.

Table 1-1: Programmer’s Guide Chapters (Continued)

Chapter Description

Application Requirements 9

CHAPTER 2

2Application Requirements

This chapter describes programming requirements for InterBase SQL and
dynamic SQL (DSQL) applications. Many of these requirements may also affect
developers moving existing applications to InterBase.

Requirements for All Applications

All embedded applications must include certain declarations and statements to
ensure proper handling by the InterBase preprocessor, gpre, and to enable com-
munication between SQL and the host language in which the application is writ-
ten. Every application must:

• Declare host variables to use for data transfer between SQL and the
application.

• Declare and set the databases accessed by the program.

• Create transaction handles for each non-default transaction used in the
program.

• Include SQL (and, optionally, DSQL) statements.

• Provide error handling and recovery.

• Close all transactions and databases before ending the program.

Dynamic SQL applications, those applications that build SQL statements at run
time, or enable users to build them, have additional requirements. For more
information about DSQL requirements, see “DSQL Requirements,” in this chap-
ter.

For more information about using gpre, see Chapter 16: “Preprocessing, Com-
piling, and Linking.”

10 Programmer’s Guide

Porting Considerations for SQL
When porting existing SQL applications to InterBase, other considerations may
be necessary. For example, many SQL variants require that host variables be
declared between BEGIN DECLARE SECTION and END DECLARE SECTION
statements; InterBase has no such requirements, but gpre can correctly handle
section declarations from ported applications. For additional portability, declare
all host-language variables within sections.

Porting Considerations for DSQL
When porting existing DSQL applications to InterBase, statements that use
another vendor’s SQL descriptor area (SQLDA) must be modified to accommo-
date the extended SQLDA (XSQLDA) used by InterBase.

Declaring Host Variables
A host variable is a standard host-language variable used to hold values read
from a database, to assemble values to write to a database, or to store values
describing database search conditions. SQL uses host variables in the following
situations:

• During data retrieval, SQL moves the values in database fields into host
variables where they can be viewed and manipulated.

• When a user is prompted for information, host variables are used to hold
the data until it can be passed to InterBase in an SQL INSERT or
UPDATE statement.

• When specifying search conditions in a SELECT statement, conditions
can be entered directly, or in a host variable. For example, both of the fol-
lowing SQL statement fragments are valid WHERE clauses. The second
uses a host-language variable, country, for comparison with a column,
COUNTRY:

. . . WHERE COUNTRY = "Mexico";

. . . WHERE COUNTRY = :country;

One host variable must be declared for every column of data accessed in a data-
base. Host variables may either be declared globally like any other standard
host-language variable, or may appear within an SQL section declaration with
other global declarations. For more information about reading from and writing
to host variables in SQL programs, see Chapter 6: “Working With Data.”

Application Requirements 11

Host variables used in SQL programs are declared just like standard language
variables. They follow all standard host-language rules for declaration, initial-
ization, and manipulation. For example, in C, variables must be declared before
they can be used as host variables in SQL statements:

int empno; char fname[26], lname[26];

For compatibility with other SQL variants, host variables can also be declared
between BEGIN DECLARE SECTION and END DECLARE SECTION state-
ments.

Section Declarations

Many SQL implementations expect host variables to be declared between
BEGIN DECLARE SECTION and END DECLARE SECTION statements. For
portability and compatibility, InterBase supports section declarations using the
following syntax:

EXEC SQL
BEGIN DECLARE SECTION;

<hostvar >;
. . .

EXEC SQL
END DECLARE SECTION;

For example, the following C code fragment declares three host variables, empno,
fname, and lname, within a section declaration:

EXEC SQL
BEGIN DECLARE SECTION;

int empno;
char fname[26];
char lname[26];

EXEC SQL
END DECLARE SECTION;

Additional host-language variables not used in SQL statements can be declared
outside DECLARE SECTION statements.

Using BASED ON to Declare Variables

InterBase supports a declarative clause, BASED ON, for creating C language
character variables based on column definitions in a database. Using BASED ON
ensures that the resulting host-language variable is large enough to hold the
maximum number of characters in a CHAR or VARCHAR database column,
plus an extra byte for the null-terminating character expected by most C string
functions.

12 Programmer’s Guide

BASED ON uses the following syntax:

BASED ON <dbcolumn> hostvar ;

For example, the following statements declare two host variables, fname, and
lname, based on two column definitions, FIRSTNAME, and LASTNAME, in an
employee database:

BASED ON EMP.FIRSTNAME fname;
BASED ON EMP.LASTNAME lname;

Embedded in a C or C++ program, these statements generate the following host-
variable declarations during preprocessing:

char fname[26];
char lname[26];

To use BASED ON, follow these steps:

1. Use SET DATABASE to specify the database from which column defini-
tions are to be drawn.

2. Use CONNECT to attach to the database.

3. Declare a section with BEGIN DECLARE SECTION.

4. Use the BASED ON statement to declare a string variable of the appro-
priate type.

The following statements show the previous BASED ON declarations in context:

EXEC SQL
SET DATABASE EMP = "employee.gdb";

EXEC SQL
CONNECT EMP;

EXEC SQL
BEGIN DECLARE SECTION;

int empno;
BASED ON EMP.FIRSTNAME fname;
BASED ON EMP.LASTNAME lname;

EXEC SQL
END DECLARE SECTION;

Host Variables and Host-language Data Structures

If a host language supports data structures, data fields within a structure can
correspond to a collection of database columns. For example, the following C
declaration creates a structure, BILLING_ADDRESS, that contains six variables,
or data members, each of which corresponds to a similarly named column in a
table:

Application Requirements 13

struct
{

char fname[25];
char lname[25];
char street[30];
char city[20];
char state[3];
char zip[11];

} billing_address;

SQL recognizes data members in structures, but information read from or writ-
ten to a structure must be read from or written to individual data members in
SQL statements. For example, the following SQL statement reads data from a
table into variables in the C structure, BILLING_ADDRESS:

EXEC SQL
SELECT FNAME, LNAME, STREET, CITY, STATE, ZIP

INTO :billing_address.fname, :billing_address.lname,
:billing_address.street, :billing_address.city,
:billing_address.state, :billing_address.zip
FROM ADDRESSES WHERE CITY = "Brighton";

Declaring and Initializing Databases

An SQL program can access multiple InterBase databases at the same time. Each
database used in a multiple-database program must be declared and initialized
before it can be accessed in SQL transactions. Programs that access only a single
database need not declare the database or assign a database handle if, instead,
they specify a database on the gpre command line.

Important DSQL programs cannot connect to multiple databases.

InterBase supports the following SQL statements for handling databases:

• SET DATABASE declares the name of a database to access, and assigns it
to a database handle.

• CONNECT opens a database specified by a handle, and allocates it sys-
tem resources.

Database handles replace database names in CONNECT statements. They can
also be used to qualify table names within transactions. For a complete discus-
sion of database handling in SQL programs, see Chapter 3: “Working With Data-
bases.”

14 Programmer’s Guide

Using SET DATABASE
The SET DATABASE statement is used to:

• Declare a database handle for each database used in an SQL program.

• Associate a database handle with an actual database name. Typically, a
database handle is a mnemonic abbreviation of the actual database
name.

SET DATABASE instantiates a host variable for the database handle without
requiring an explicit host variable declaration. The database handle contains a
pointer used to reference the database in subsequent SQL statements. To include
a SET DATABASE statement in a program, use the following syntax:

EXEC SQL
SET DATABASE handle = "< dbname>";

A separate statement should be used for each database. For example, the follow-
ing statements declare a handle, DB1, for the employee.gdb database, and another
handle, DB2, for employee2.gdb:

EXEC SQL
SET DATABASE DB1 = "employee.gdb";

EXEC SQL
SET DATABASE DB2 = "employee2.gdb";

Once a database handle is created and associated with a database, the handle
can be used in subsequent SQL database and transaction statements that require
it, such as CONNECT.

Note SET DATABASE also supports user name and password options. For a
complete discussion of SET DATABASE options, see Chapter 3: “Working
With Databases.”

Using CONNECT
The CONNECT statement attaches to a database, opens the database, and allo-
cates system resources for it. A database must be opened before its tables can be
used. To include CONNECT in a program, use the following syntax:

EXEC SQL
CONNECThandle ;

A separate statement can be used for each database, or a single statement can
connect to multiple databases. For example, the following statements connect to
two databases:

Application Requirements 15

EXEC SQL
CONNECT DB1;

EXEC SQL
CONNECT DB2;

The next example uses a single CONNECT to establish both connections:

EXEC SQL
CONNECT DB1, DB2;

Once a database is connected, its tables can be accessed in subsequent transac-
tions. Its handle can qualify table names in SQL applications, but not in DSQL
applications. For a complete discussion of CONNECT options and using data-
base handles, see Chapter 3: “Working With Databases.”

Working With a Single Database
In single-database programs preprocessed without the gpre -m switch, SET
DATABASE and CONNECT are optional. The -m switch suppresses automatic
generation of transactions. Using SET DATABASE and CONNECT is strongly
recommended, however, especially as a way to make program code as self-docu-
menting as possible. If you omit these statements, take the following steps:

1. Insert a section declaration in the program code where global variables
are defined. Use an empty section declaration if no host-language vari-
ables are used in the program. For example, the following declaration
illustrates an empty section declaration:

EXEC SQL
BEGIN DECLARE SECTION;

EXEC SQL
END DECLARE SECTION;

2. Specify a database name on the gpre command line at precompile time.
A database need not be specified if a program contains a CREATE
DATABASE statement.

For more information about working with a single database in an SQL program,
see Chapter 3: “Working With Databases.”

16 Programmer’s Guide

SQL Statements

An SQL application consists of a program written in a host language, like C or
C++, into which SQL and dynamic SQL (DSQL) statements are embedded. Any
SQL or DSQL statement supported by InterBase can be embedded in a host lan-
guage. Each SQL or DSQL statement must be:

• Preceded by the keywords EXEC SQL.

• Ended with the statement terminator expected by the host language. For
example, in C and C++, the host terminator is the semicolon (;).

For a complete list of SQL and DSQL statements supported by InterBase, see the
Language Reference.

Error Handling and Recovery

Every time an SQL statement is executed, it returns an error code in the
SQLCODE variable. SQLCODE is declared automatically for SQL programs
during preprocessing with gpre. To catch run-time errors and recover from them
when possible, SQLCODE should be examined after each SQL operation.

SQL provides the WHENEVER statement to monitor SQLCODE and direct pro-
gram flow to recovery procedures. Alternatively, SQLCODE can be tested
directly after each SQL statement executes. For a complete discussion of SQL
error handling and recovery, see Chapter 14: “Error Handling and Recovery.”

Closing Transactions

Every transaction should be closed when it completes its tasks, or when an error
occurs that prevents it from completing its tasks. Failure to close a transaction
before a program ends can cause limbo transactions, where records are entered
into the database, but are neither committed or rolled back. Limbo transactions
can be cleaned up using the database administration tools provided with
InterBase.

Application Requirements 17

Accepting Changes
The COMMIT statement ends a transaction, makes the transaction’s changes
available to other users, and closes cursors. A COMMIT is used to preserve
changes when all of a transaction’s operations are successful. To end a transac-
tion with COMMIT, use the following syntax:

EXEC SQL
COMMIT TRANSACTIONname;

For example, the following statement commits a transaction named MYTRANS:

EXEC SQL
COMMIT TRANSACTION MYTRANS;

For a complete discussion of SQL transaction control, see Chapter 4: “Working
With Transactions.”

Undoing Changes
The ROLLBACK statement undoes a transaction’s changes, ends the current
transaction, and closes open cursors. Use ROLLBACK when an error occurs that
prevents all of a transaction’s operations from being successful. To end a transac-
tion with ROLLBACK, use the following syntax:

EXEC SQL
ROLLBACK TRANSACTIONname;

For example, the following statement rolls back a transaction named
MYTRANS:

EXEC SQL
ROLLBACK TRANSACTION MYTRANS;

To roll back an unnamed transaction (i.e., the default transaction), use the fol-
lowing statement:

EXEC SQL
ROLLBACK;

For a complete discussion of SQL transaction control, see Chapter 4: “Working
With Transactions.”

18 Programmer’s Guide

Closing Databases

Once a database is no longer needed, close it before the program ends, or subse-
quent attempts to use the database may fail or result in database corruption.
There are two ways to close a database:

• Use the DISCONNECT statement to detach a database and close files.

• Use the RELEASE option with COMMIT or ROLLBACK in a program.

DISCONNECT, COMMIT RELEASE, and ROLLBACK RELEASE perform the
following tasks:

• Close open database files.

• Close remote database connections.

• Release the memory that holds database descriptions and InterBase
engine-compiled requests.

Note Closing databases with DISCONNECT is preferred for compatibility with
the SQL-92 standard.

For a complete discussion of closing databases, see Chapter 3: “Working With
Databases.”

DSQL Requirements

DSQL applications must adhere to all the requirements for all SQL applications
and meet additional requirements as well. DSQL applications enable users to
enter ad hoc SQL statements for processing at run time. To handle the wide vari-
ety of statements a user might enter, DSQL applications require the following
additional programming steps:

• Declare as many extended SQL descriptor areas (XSQLDAs) as are
needed in the application; typically a program must use one or two of
these structures. Complex applications may require more.

• Declare all transaction names and database handles used in the program
at compile time; names and handles are not dynamic, so enough must be
declared to accommodate the anticipated needs of users at run time.

• Provide a mechanism to get SQL statements from a user.

• Prepare each SQL statement received from a user for processing.
PREPARE loads statement information into the XSQLDA.

Application Requirements 19

• EXECUTE each prepared statement.

EXECUTE IMMEDIATE combines PREPARE and EXECUTE in a single state-
ment. For more information, see the Language Reference.

In addition, the syntax for cursors involving BLOB data differs from that of cur-
sors for other data types. For more information about BLOB cursor statements,
see the Language Reference.

Declaring an XSQLDA
The extended SQL descriptor area (XSQLDA) is used as an intermediate staging
area for information passed between an application and the InterBase engine.
The XSQLDA is used for either of the following tasks:

• Pass input parameters from a host-language program to SQL.

• Pass output, from a SELECT statement or stored procedure, from SQL to
the host-language program.

A single XSQLDA can be used for only one of these tasks at a time. Many appli-
cations declare two XSQLDAs, one for input, and another for output.

The XSQLDA structure is defined in the InterBase header file, ibase.h, that is
automatically included in programs when they are preprocessed with gpre.

Note DSQL applications written using versions of InterBase prior to 3.3 use an
older SQL descriptor area, the SQLDA. For backward compatibility, the
SQLDA continues to be supported. You can examine its structure in ibase.h.
The new structure, XSQLDA, is used automatically when preprocessing an
application with gpre. To use the old structure, specify the gpre -sqlda old
switch. As convenient, older applications should be modified to use the
XSQLDA.

To create an XSQLDA for a program, a host-language data type of the appropri-
ate type must be set up in a section declaration. For example, the following state-
ment creates two XSQLDA structures, inxsqlda, and outxsqlda:

. . .
EXEC SQL

BEGIN DECLARE SECTION;
XSQLDA inxsqlda;
XSQLDA outxsqlda;
. . .

EXEC SQL
END DECLARE SECTION;

. . .

20 Programmer’s Guide

When an application containing XSQLDA declarations is preprocessed, gpre
automatically includes the header file, ibase.h, which defines the XSQLDA as a
host-language data type. For a complete discussion of the structure of the
XSQLDA, see Chapter 15: “Using Dynamic SQL.”

DSQL Limitations

DSQL enables programmers to create flexible applications that are capable of
handling a wide variety of user requests. Even so, not every SQL statement can
be handled in a completely dynamic fashion. For example, database handles and
transaction names must be specified when an application is written, and cannot
be changed or specified by users at run time. Similarly, while InterBase supports
multiple databases and multiple simultaneous transactions in an application,
the following limitations apply:

• Only a single database can be accessed at a time.

• Transactions can only operate on the currently active database.

• Users cannot specify transaction names in DSQL statements; instead,
transaction names must be supplied and manipulated when an applica-
tion is coded.

Using Database Handles
Database handles are always static, and can only be declared when an applica-
tion is coded. Enough handles must be declared to satisfy the expected needs of
users. Once a handle is declared, it can be assigned to a user-specified database
at run time with SET DATABASE, as in the following C code fragment:

. . .
EXEC SQL

SET DATABASE DB1 = "dummydb.gdb";
EXEC SQL

SET DATABASE DB2 = "dummydb.gdb";
. . .
printf("Specify first database to open: ");
gets(fname1);
printf("\nSpecify second database to open: ");
gets(fname2);
EXEC SQL

SET DATABASE DB1 = :fname1;
EXEC SQL

SET DATABASE DB2 = :fname2;
. . .

Application Requirements 21

For a complete discussion of SET DATABASE, see Chapter 3: “Working With
Databases.”

Using the Active Database
A DSQL application can only work with one database at a time, even if the
application attaches to multiple databases. All DSQL statements operate only on
the currently active database, the last database associated with a handle in a SET
DATABASE statement.

Embedded SQL statements within a DSQL application can operate on any open
database. For example, all DSQL statements entered by a user at run time might
operate against a single database specified by the user, but the application might
also contain non-DSQL statements that record user entries in a log database.

For a complete discussion of SET DATABASE, see Chapter 3: “Working With
Databases.”

Using Transaction Names
Many SQL statements support an optional transaction name parameter, used to
specify the controlling transaction for a specific statement. Transaction names
can be used in DSQL applications, too, but must be set up when an application is
compiled. Once a name is declared, it can be directly inserted into a user state-
ment only by the application itself.

After declaration, use a transaction name in an EXECUTE or EXECUTE
IMMEDIATE statement to specify the controlling transaction, as in the following
C code fragment:

. . .
EXEC SQL

BEGIN DECLARE SECTION:
long first, second; /* declare transaction names */

EXEC SQL
END DECLARE SECTION;

. . .
first = second = 0L; /* initialize names to zero */
. . .
EXEC SQL

SET TRANSACTION first; /* start transaction 1 */
EXEC SQL

SET TRANSACTION second; /* start transaction 2 */
printf("\nSQL> ");
gets(userstatement);
EXEC SQL

EXECUTE IMMEDIATE TRANSACTION first userstatement;

22 Programmer’s Guide

. . .

For complete information about named transactions, see Chapter 4: “Working
With Transactions.”

Preprocessing Programs

After an SQL or DSQL program is written, and before it is compiled and linked,
it must be preprocessed with gpre, the InterBase preprocessor. gpre translates
SQL statements and variables into statements and variables that the host-lan-
guage compiler accepts. For complete information about preprocessing with
gpre, see Chapter 16: “Preprocessing, Compiling, and Linking.”

Working With Databases 23

CHAPTER 3

3Working With Databases

This chapter describes how to use SQL statements in embedded applications to
control databases. There are three database statements that set up and open
databases for access:

• SET DATABASE declares a database handle, associates the handle with
an actual database file, and optionally assigns operational parameters for
the database.

• SET NAMES optionally specifies the character set a client application
uses for CHAR, VARCHAR, and text BLOB data. The server uses this
information to transliterate from a database’s default character set to the
client’s character set on SELECT operations, and to transliterate from a
client application’s character set to the database character set on INSERT
and UPDATE operations.

• CONNECT opens a database, allocates system resources for it, and
optionally assigns operational parameters for the database.

All databases must be closed before a program ends. A database can be closed
by using DISCONNECT, or by appending the RELEASE option to the final
COMMIT or ROLLBACK in a program.

Declaring a Database

Before a database can be opened and used in a program, it must first be declared
with SET DATABASE to:

• Establish a database handle.

• Associate the database handle with a database file stored on a local or
remote node.

A database handle is a unique, abbreviated alias for an actual database name.
Database handles are used in subsequent CONNECT, COMMIT RELEASE, and
ROLLBACK RELEASE statements to specify which databases they should affect.

24 Programmer’s Guide

Except in dynamic SQL (DSQL) applications, database handles can also be used
inside transaction blocks to qualify, or differentiate, table names when two or
more open databases contain identically named tables.

Each database handle must be unique among all variables used in a program.
Database handles cannot duplicate host-language reserved words, and cannot
be InterBase reserved words.

The following statement illustrates a simple database declaration:

EXEC SQL
SET DATABASE DB1 = "employee.gdb";

This database declaration identifies the database file, employee.gdb, as a database
the program uses, and assigns the database a handle, or alias, DB1.

If a program runs in a directory different from the directory that contains the
database file, then the file name specification in SET DATABASE must include a
full path name, too. For example, the following SET DATABASE declaration
specifies the full path to employee.gdb:

EXEC SQL
SET DATABASE DB1 = "/usr/interbase/examples/employee.gdb";

If a program and a database file it uses reside on different hosts, then the file
name specification must also include a host name. The following declaration
illustrates how a Unix host name is included as part of the database file specifi-
cation:

EXEC SQL
SET DATABASE DB1 = "vega:usr/interbase/examples/employee.gdb";

Note Host syntax is specific to each server platform on which InterBase runs. For
the correct host syntax for a particular server, see the server’s documenta-
tion.

Declaring Multiple Databases
An SQL program, but not a DSQL program, can access multiple databases at the
same time. In multi-database programs, database handles are required. A han-
dle is used to:

• Reference individual databases in a multi-database transaction.

• Qualify table names.

• Specify databases to open in CONNECT statements.

Working With Databases 25

• Indicate databases to close with DISCONNECT, COMMIT RELEASE,
and ROLLBACK RELEASE.

DSQL programs can access only a single database at a time, so database handle
use is restricted to connecting to and disconnecting from a database.

In multi-database programs, each database must be declared in a separate SET
DATABASE statement. For example, the following code contains two SET
DATABASE statements:

. . .
EXEC SQL

SET DATABASE DB2 = "employee2.gdb";
EXEC SQL

SET DATABASE DB1 = "employee.gdb";
. . .

Using Handles to Differentiate Table Names

When the same table name occurs in more than one simultaneously accessed
database, a database handle must be used to differentiate one table name from
another. The database handle is used as a prefix to table names, and takes the
form <handle>.<table>.

For example, in the following code, the database handles, TEST and EMP, are
used to distinguish between two tables, each named EMPLOYEE:

. . .
EXEC SQL

DECLARE IDMATCH CURSOR FOR
SELECT TESTNO INTO :matchid FROM TEST.EMPLOYEE

WHERE TESTNO > 100;
EXEC SQL

DECLARE EIDMATCH CURSOR FOR
SELECT EMPNO INTO :empid FROM EMP.EMPLOYEE
WHERE EMPNO = :matchid;

. . .

Important This use of database handles applies only to embedded SQL applications.
DSQL applications cannot access multiple databases simultaneously.

Using Handles With CONNECT, DISCONNECT, COMMIT, and ROLLBACK

In multi-database programs, database handles must be specified in CONNECT
statements to identify which databases among several to open and prepare for
use in subsequent transactions.

26 Programmer’s Guide

Database handles can also be used with DISCONNECT, COMMIT RELEASE,
and ROLLBACK RELEASE to specify a subset of open databases to close.

To open and prepare a database with CONNECT, see “Opening a Database,” in
this chapter. To close a database with DISCONNECT, COMMIT RELEASE, or
ROLLBACK RELEASE, see “Closing a Database,” in this chapter. To learn more
about using database handles in transactions, see “Accessing an Open Data-
base,” in this chapter.

Using Different Databases for Preprocessing and Run Time
Normally, each SET DATABASE statement specifies a single database file to
associate with a handle. When a program is preprocessed, gpre uses the speci-
fied file to validate the program’s table and column references. Later, when a
user runs the program, the same database file is accessed. Different databases
can be specified for preprocessing and run time when necessary.

Using the COMPILETIME Clause

Sometimes a program may be designed to run against any one of several identi-
cally structured databases, or the actual database that a program will use at run
time is not available when a program is preprocessed and compiled. In these
cases, SET DATABASE can include a COMPILETIME clause to specify a data-
base for gpre to test against during preprocessing. For example, the following
SET DATABASE statement declares that employee.gdb is to be used by gpre dur-
ing preprocessing:

EXEC SQL
SET DATABASE EMP = COMPILETIME "employee.gdb";

Important The file specification that follows the COMPILETIME keyword must
always be a hard-coded, quoted string.

When SET DATABASE uses the COMPILETIME clause, but no RUNTIME
clause, and does not specify a different database file specification in a subse-
quent CONNECT statement, the same database file is used both for preprocess-
ing and run time. To specify different preprocessing and run-time databases
with SET DATABASE, use both the COMPILETIME and RUNTIME clauses.

Using the RUNTIME Clause

When a database file is specified for use during preprocessing, SET DATABASE
can specify a different database to use at run time by including the RUNTIME
keyword and a run-time file specification:

Working With Databases 27

EXEC SQL
SET DATABASE EMP = COMPILETIME "employee.gdb"

RUNTIME "employee2.gdb";

The file specification that follows the RUNTIME keyword can be either a hard-
coded, quoted string, or a host-language variable. For example, the following C
code fragment prompts the user for a database name, and stores the name in a
variable that is used later in SET DATABASE:

. . .
char db_name[125];
. . .
printf("Enter the desired database name, including node and path):\n");
gets(db_name);
EXEC SQL

SET DATABASE EMP = COMPILETIME "employee.gdb" RUNTIME :db_name;
. . .

Note Host-language variables in SET DATABASE must be preceded, as always,
by a colon.

Controlling SET DATABASE Scope
By default, SET DATABASE creates a handle that is global to all modules in an
application. A global handle is one that may be referenced in all host-language
modules comprising the program. SET DATABASE provides two optional key-
words to change the scope of a declaration:

• STATIC limits declaration scope to the module containing the SET
DATABASE statement. No other program modules can see or use a data-
base handle declared STATIC.

• EXTERN notifies gpre that a SET DATABASE statement in a module
duplicates a globally-declared database in another module. If the
EXTERN keyword is used, then another module must contain the actual
SET DATABASE statement, or an error occurs during compilation.

The STATIC keyword is used in a multi-module program to restrict database
handle access to the single module where it is declared. The following example
illustrates the use of the STATIC keyword:

EXEC SQL
SET DATABASE EMP = STATIC "employee.gdb";

The EXTERN keyword is used in a multi-module program to signal that SET
DATABASE in one module is not an actual declaration, but refers to a declara-
tion made in a different module. gpre uses this information during preprocess-
ing. The following example illustrates the use of the EXTERN keyword:

28 Programmer’s Guide

EXEC SQL
SET DATABASE EMP = EXTERN "employee.gdb";

If an application contains an EXTERN reference, then when it is used at run
time, the actual SET DATABASE declaration must be processed first, and the
database connected before other modules can access it.

A single SET DATABASE statement can contain either the STATIC or EXTERN
keyword, but not both. A scope declaration in SET DATABASE applies to both
COMPILETIME and RUNTIME databases.

Specifying a Character Set for a Client Connection

When a client application connects to a database, it may have its own character
set requirements. The server providing database access to the client does not
know about these requirements unless the client specifies them. The client appli-
cation specifies its character set requirement using the SET NAMES statement
before it connects to the database.

SET NAMES specifies the character set the server should use when translating
data from the database to the client application. Similarly, when the client sends
data to the database, the server translates the data from the client’s character set
to the database’s default character set (or the character set for an individual col-
umn if it differs from the database’s default character set).

For example, the following statements specify that the client is using the
DOS437 character set, then connect to the database:

EXEC SQL
SET NAMES DOS437;

EXEC SQL
CONNECT "europe.gdb" USER "JAMES" PASSWORD "U4EEAH";

For more information about character sets, see the Data Definition Guide. For the
complete syntax of SET NAMES and CONNECT, see the Language Reference.

Opening a Database

After a database is declared, it must be attached with a CONNECT statement
before it can be used. CONNECT:

• Allocates system resources for the database.

Working With Databases 29

• Determines if the database file is local, residing on the same host where
the application itself is running, or remote, residing on a different host.

• Opens the database and examines it to make sure it is valid.

InterBase provides transparent access to all databases, whether local or remote.
If the database structure is invalid, the on-disk structure (ODS) number does not
correspond to the one required by InterBase, or if the database is corrupt,
InterBase reports an error, and permits no further access.

Optionally, CONNECT can be used to specify:

• A user name and password combination that is checked against the serv-
er’s security database before allowing the connect to succeed. User
names can be up to 31 characters. Passwords are restricted to 8 charac-
ters.

• The size of the database buffer cache to allocate to the application when
the default cache size is inappropriate.

Using Simple CONNECT Statements
In its simplest form, CONNECT requires one or more database parameters, each
specifying the name of a database to open. The name of the database can be a:

• Database handle declared in a previous SET DATABASE statement.

• Host-language variable.

• Hard-coded file name.

Using a Database Handle

If a program uses SET DATABASE to provide database handles, those handles
should be used in subsequent CONNECT statements instead of hard-coded
names. For example,

. . .
EXEC SQL

SET DATABASE DB1 = "employee.gdb";
EXEC SQL

SET DATABASE DB2 = "employee2.gdb";
EXEC SQL

CONNECT DB1;
EXEC SQL

CONNECT DB2;
. . .

30 Programmer’s Guide

There are several advantages to using a database handle with CONNECT:

• Long file specifications can be replaced by shorter, mnemonic handles.

• Handles can be used to qualify table names in multi-database transac-
tions. DSQL applications do not support multi-database transactions.

• Handles can be reassigned to other databases as needed.

• The number of database cache buffers can be specified as an additional
CONNECT parameter.

For more information about setting the number of database cache buffers, see
“Setting Database Cache Buffers,” in this chapter.

Using Host-language Variables or Hard-coded Strings

Instead of using a database handle, CONNECT can use a database name sup-
plied at run time. The database name can be supplied as either a host-language
variable or a hard-coded, quoted string.

The following C code demonstrates how a program accessing only a single data-
base might implement CONNECT using a file name solicited from a user at run
time:

. . .
char fname[125];
. . .
printf("Enter the desired database name, including node and path):\n");
gets(fname);
. . .
EXEC SQL

CONNECT :fname;
. . .

Tip This technique is especially useful for programs that are designed to work
with many identically structured databases, one at a time, such as CAD/
CAM or architectural databases.

Multiple Database Implementation

To use a database specified by the user as a host-language variable in a
CONNECT statement in multi-database programs, follow these steps:

1. Declare a database handle using the following SET DATABASE syntax:

EXEC SQL
SET DATABASE handle = COMPILETIME " dbname";

Working With Databases 31

Here, handle is a hard-coded database handle supplied by the program-
mer, dbname is a quoted, hard-coded database name used by gpre during
preprocessing.

2. Prompt the user for a database to open.

3. Store the database name entered by the user in a host-language variable.

4. Use the handle to open the database, associating the host-language vari-
able with the handle using the following CONNECT syntax:

EXEC SQL
CONNECT :variable AS handle ;

The following C code illustrates these steps:

. . .
char fname[125];
. . .
EXEC SQL

SET DATABASE DB1 = "employee.gdb";
printf("Enter the desired database name, including node and path):\n");
gets(fname);
EXEC SQL

CONNECT :fname AS DB1;
. . .

In this example, SET DATABASE provides a hard-coded database file name for
preprocessing with gpre. When a user runs the program, the database specified
in the variable, fname, is used instead.

Using a Hard-coded Database Name in a Single-database Program

In a single-database program that omits SET DATABASE, CONNECT must con-
tain a hard-coded, quoted file name in the following format:

EXEC SQL
CONNECT "[host [path]] filename ";

host is only required if a program and a database file it uses reside on different
nodes. Similarly, path is only required if the database file does not reside in the
current working directory. For example, the following CONNECT statement
contains a hard-coded file name that includes both a Unix host name and a path
name:

EXEC SQL
CONNECT "valdez:usr/interbase/examples/employee.gdb";

32 Programmer’s Guide

Note Host syntax is specific to each server platform on which InterBase runs. For
the correct host syntax for a particular server, see the server’s documenta-
tion.

Important A program that accesses multiple databases cannot use this form of
CONNECT.

Using a Hard-coded Database Name in a Multi-database Program

A program that accesses multiple databases must declare handles for each of
them in separate SET DATABASE statements. These handles must be used in
subsequent CONNECT statements to identify specific databases to open:

. . .
EXEC SQL

SET DATABASE DB1 = "employee.gdb";
EXEC SQL

SET DATABASE DB2 = "employee2.gdb";
EXEC SQL

CONNECT DB1;
EXEC SQL

CONNECT DB2;
. . .

Later, when the program closes these databases, the database handles are no
longer in use. These handles can be reassigned to other databases by hard-cod-
ing a file name in a subsequent CONNECT statement. For example,

. . .
EXEC SQL

DISCONNECT DB1, DB2;
EXEC SQL

CONNECT "project.gdb" AS DB1;
. . .

Additional CONNECT Syntax
CONNECT supports several formats for opening databases to provide program-
ming flexibility. The following table outlines each possible syntax, provides

Working With Databases 33

descriptions and examples, and indicates whether CONNECT can be used in
programs that access single or multiple databases:

For a complete discussion of CONNECT syntax and its uses, see the Language
Reference.

Attaching to Multiple Databases With a Single CONNECT
CONNECT can attach to multiple databases. To open all databases specified in
previous SET DATABASE statements, use either of the following CONNECT
syntax options:

EXEC SQL
CONNECT ALL;

EXEC SQL
CONNECT DEFAULT;

CONNECT can also attach to a specified list of databases. Separate each data-
base request from others with commas. For example, the following statement
opens two databases specified by their handles:

EXEC SQL
CONNECT DB1, DB2;

Table 3-1: CONNECT Syntax Summary

Syntax Description Example
Single
Access

Multiple
Access

CONNECT
"<dbfile>";

Open a single, hard-coded
database file, <dbfile>.

EXEC SQL
CONNECT
"employee.gdb";

Yes No

CONNECT
handle;

Open the database file associated
with a previously declared data-
base handle. This is the preferred
CONNECT syntax.

EXEC SQL
CONNECT EMP;

Yes Yes

CONNECT "<dbfile>"
AS handle;

Open a hard-coded database file,
<dbfile>, and assign a previously
declared database handle to it.

EXEC SQL
CONNECT
"employee.gdb"
AS EMP;

Yes Yes

CONNECT
:varname AS
handle;

Open the database file stored in
the host-language variable,
<varname>, and assign a previ-
ously declared database handle
to it.

EXEC SQL
CONNECT :fname
AS EMP;

Yes Yes

34 Programmer’s Guide

The next statement opens two hard-coded database files and also assigns them
to previously declared handles:

EXEC SQL
CONNECT "employee.gdb" AS DB1, "employee2.gdb" AS DB2;

Tip Opening multiple databases with a single CONNECT is most effective
when a program’s database access is simple and clear. In complex pro-
grams that open and close several databases, that substitute database
names with host-language variables, or that assign multiple handles to the
same database, use separate CONNECT statements to make program code
easier to read, debug, and modify.

Handling CONNECT Errors
The WHENEVER statement should be used to trap and handle run-time errors
that occur during database declaration. The following C code fragment illus-
trates an error-handling routine that displays error messages and ends the pro-
gram in an orderly fashion:

. . .
EXEC SQL

WHENEVER SQLERROR
GOTO error_exit;

. . .
:error_exit

isc_print_sqlerr(sqlcode, status_vector);
EXEC SQL

DISCONNECT ALL;
exit(1);

. . .

For a complete discussion of SQL error handling, see Chapter 14: “Error Han-
dling and Recovery.”

Setting Database Cache Buffers
Besides opening a database, CONNECT can set the number of cache buffers
assigned to a database. When a program establishes a connection to a database,
InterBase allocates system memory to use as a private buffer. The buffers are
used to store accessed database pages to speed performance. The number of
buffers assigned for a program determine how many simultaneous database
pages it can have access to in the memory pool. Buffers remain assigned until a
program finishes with a database.

Working With Databases 35

The default number of database cache buffers assigned to a database is 75. Use
the CACHE n parameter with CONNECT to change the number of buffers
assigned to a database.

For programs that use many databases, but access or change only a few tables in
them, a smaller number of buffers can be used. The minimum number of buffers
allowed is 43.

For programs that access or change many rows in many databases, performance
may be improved by increasing the number of buffers. The maximum number of
buffers allowed is system-dependent.

Setting Buffers For Individual Databases

The CONNECT statement’s optional CACHE n parameter sets the number of
buffers for a database, where n is the number of buffers to reserve. To set the
number of buffers for an individual database, place CACHE n after the database
name. The following CONNECT specifies 50 buffers for the database pointed to
by the EMP handle:

EXEC SQL
CONNECT EMP CACHE 50;

The next statement opens two databases, TEST and EMP. Because CACHE is not
specified for TEST, its buffers default to 75. EMP is opened with the CACHE
clause specifying 100 buffers:

EXEC SQL
CONNECT TEST, EMP CACHE 100;

Specifying Buffers for All Databases

To specify the same number of buffers for all databases, use CONNECT ALL
with the CACHE n parameter. For example, the following statements connect to
two databases, EMP, and EMP2, and set the number of buffers allotted to each of
them to 90:

. . .
EXEC SQL

SET DATABASE EMP = "employee.gdb";
EXEC SQL

SET DATABASE EMP2 = "test.gdb";
EXEC SQL

CONNECT ALL CACHE 90;
. . .

36 Programmer’s Guide

The same effect can be achieved by specifying the same amount of cache for
individual databases:

. . .
EXEC SQL

CONNECT EMP CACHE 90, TEST CACHE 90;
. . .

Accessing an Open Database

Once a database is connected, its tables can be accessed as follows:

• One database can be accessed in a single transaction.

• One database can be accessed in multiple transactions.

• Multiple databases can be accessed in a single transaction.

• Multiple databases can be accessed in multiple transactions.

For general information about using transactions, see Chapter 4: “Working With
Transactions.”

Using Database Handles to Differentiate Table Names
In SQL, using multiple databases in transactions may require extra precautions
to ensure intended behavior. When two or more databases have tables that share
the same name, a database handle must be prefixed to those table names to dif-
ferentiate them from one another in transactions.

A table name differentiated by a database handle takes the form:

handle.table

For example, the following cursor declaration accesses an EMPLOYEE table in
TEST, and another EMPLOYEE table in EMP. TEST and EMP are used as pre-
fixes to indicate which EMPLOYEE table should be referenced:

. . .
EXEC SQL

DECLARE IDMATCH CURSOR FOR
SELECT TESTNO INTO :matchid FROM TEST.EMPLOYEE

WHERE (SELECT EMPNO FROM EMP.EMPLOYEE WHERE EMPNO = TESTNO);
. . .

Note DSQL does not support access to multiple databases in a single statement.

Working With Databases 37

Closing a Database

When a program is finished with a database, the database should be closed. In
SQL, a database can be closed in either of the following ways:

• Issue a DISCONNECT to detach a database and close files.

• Append a RELEASE option to a COMMIT or ROLLBACK to disconnect
from a database and close files.

DISCONNECT, COMMIT RELEASE, and ROLLBACK RELEASE perform the
following tasks:

• Close open database files.

• Disconnect from remote database connections.

• Release the memory that holds database metadata descriptions and
InterBase engine-compiled requests.

Note Closing databases with DISCONNECT is preferred for compatibility with
the SQL-92 standard. Do not close a database until it is no longer needed.
Once closed, a database must be reopened, and its resources reallocated,
before it can be used again.

Closing Databases With DISCONNECT
To close all open databases, use the following DISCONNECT syntax:

EXEC SQL
DISCONNECT {ALL | DEFAULT};

For example, each of the following statements closes all open databases in a
program:

EXEC SQL
DISCONNECT ALL;

EXEC SQL
DISCONNECT DEFAULT;

To close specific databases, specify their handles as comma-delimited parame-
ters, using the following syntax:

EXEC SQL
DISCONNECThandle [, handle ...];

38 Programmer’s Guide

For example, the following statement disconnects from two databases:

EXEC SQL
DISCONNECT DB1, DB2;

Note A database should not be closed until all transactions are finished with it,
or it must be reopened and its resources reallocated.

Closing Databases With COMMIT and ROLLBACK
To close all open databases with COMMIT or ROLLBACK use the following
syntax:

EXEC SQL
{COMMIT | ROLLBACK} RELEASE;

For example, the following COMMIT closes all open databases:

EXEC SQL
COMMIT RELEASE;

To close specific databases, provide their handles as parameters following the
RELEASE option with COMMIT or ROLLBACK, using the following syntax:

EXEC SQL
COMMIT | ROLLBACK RELEASE handle [, handle ...];

For example, the next ROLLBACK statement closes two databases:

EXEC SQL
ROLLBACK RELEASE DB1, DB2;

Working With Transactions 39

CHAPTER 4

4Working With Transactions

All SQL data definition and data manipulation statements take place within the
context of a transaction, a set of SQL statements that works to carry out a single
task. This chapter explains how to open, control, and close transactions using the
following SQL transaction management statements:

Transaction management statements define the beginning and end of a transaction.
They also control its behavior and interaction with other simultaneously run-
ning transactions that share access to the same data within and across applica-
tions.

There are two types of transactions in InterBase:

Table 4-1: SQL Transaction Management Statements

Statement Purpose

SET TRANSACTION Starts a transaction, assigns it a name, and specifies its behav-
ior. The following behaviors can be specified:
• Access mode describes the actions a transaction’s statements

can perform.
• Lock resolution describes how a transaction should react if a

lock conflict occurs.
• Isolation level describes the view of the database given a

transaction as it relates to actions performed by other simulta-
neously occurring transactions.

• Table reservation, an optional list of tables to lock for access at
the start of the transaction rather than at the time of explicit
reads or writes.

• Database specification, an optional list limiting the open data-
bases to which a transaction may have access.

COMMIT Saves a transaction’s changes to the database and ends the
transaction.

ROLLBACK Undoes a transaction’s changes before they have been commit-
ted to the database, and ends the transaction.

40 Programmer’s Guide

• The default transaction, gds__trans, is used by InterBase if it encounters
any statement that requires a transaction without first finding a SET
TRANSACTION statement. A default behavior is defined for
gds__trans, but can be changed by starting the default transaction with
SET TRANSACTION and specifying alternative behavior as parameters.

Important When using the default transaction without explicitly starting it with SET
TRANSACTION, applications must be preprocessed without the -m gpre
switch.

• Named transactions are always started with SET TRANSACTION state-
ments. These statements provide unique names for each transaction, and
usually include parameters that specify a transaction’s behavior.

Except for naming conventions, and use in multi-transaction programs, both the
default and named transactions offer the same control over transactions.
Optional parameters to SET TRANSACTION can be used to specify its behavior
(access mode, lock resolution, and isolation level).

For more information about gpre, see Chapter 16: “Preprocessing, Compiling,
and Linking.” For more information about transaction behavior, see “Specifying
SET TRANSACTION Behavior,” in this chapter.

Starting the Default Transaction

If a transaction is started without a specified behavior, the following default
behavior is used:

READ WRITE WAIT ISOLATION LEVEL SNAPSHOT

The default transaction is especially useful for programs that use only a single
transaction. It is automatically started in programs that require a transaction
context where none is explicitly provided. It can also be explicitly started in a
program with SET TRANSACTION.

To learn more about transaction behavior, see “Starting the Default Transaction,”
in this chapter.

Starting the Default Transaction Without SET TRANSACTION
Simple, single transaction programs can omit SET TRANSACTION. The follow-
ing program fragment issues a SELECT statement without starting a transaction:

. . .
EXEC SQL

Working With Transactions 41

SELECT * FROM CITIES
WHERE POPULATION > 4000000

ORDER BY POPULATION, CITY;
. . .

A programmer need only start the default transaction explicitly in a single trans-
action program to modify its operating characteristics or when writing a DSQL
application that is preprocessed with the gpre -m switch.

During preprocessing, when gpre encounters a statement, such as SELECT, that
requires a transaction context without first finding a SET TRANSACTION state-
ment, it automatically generates a default transaction as long as the -m switch is
not specified. A default transaction started by gpre uses a predefined, or default,
behavior that dictates how the transaction interacts with other simultaneous
transactions attempting to access the same data.

Important DSQL programs should be preprocessed with the gpre -m switch if they
start a transaction through DSQL. In this mode, gpre does not generate the
default transaction as needed, but instead reports an error if there is no
transaction.

 For more information about transaction behaviors that can be modified, see
“Specifying SET TRANSACTION Behavior,” in this chapter. For more informa-
tion about using the gpre -m switch, see Chapter 16: “Preprocessing, Compiling,
and Linking.”

Starting the Default Transaction With SET TRANSACTION
SET TRANSACTION issued without parameters starts the default transaction,
gds__trans, with the following default behavior:

READ WRITE WAIT ISOLATION LEVEL SNAPSHOT

The following table summarizes these settings:

Table 4-2: Default Transaction Default Behavior

Parameter Setting Purpose

Access Mode READ WRITE Access mode. This transaction can select, insert, update,
and delete data.

Lock Resolution WAIT Lock resolution. This transaction waits for locked tables and
rows to be released to see if it can then update them before
reporting a lock conflict.

Isolation Level ISOLATION LEVEL
SNAPSHOT

This transaction receives a stable, unchanging view of the
database as it is at the moment the transaction starts; it
never sees changes made to the database by other active
transactions.

42 Programmer’s Guide

Note Explicitly starting the default transaction is good programming practice. It
makes a program’s source code easier to understand.

The following statements are equivalent. They both start the default transaction
with the default behavior.

EXEC SQL
SET TRANSACTION;

EXEC SQL
SET TRANSACTION NAME gds__trans READ WRITE WAIT ISOLATION LEVEL

SNAPSHOT;

To start the default transaction, but change its characteristics, SET
TRANSACTION must be used to specify those characteristics that differ from
the default. Characteristics that do not differ from the default can be omitted.
For example, the following statement starts the default transaction for READ
ONLY access, WAIT lock resolution, and ISOLATION LEVEL SNAPSHOT:

EXEC SQL
SET TRANSACTION READ ONLY;

As this example illustrates, the NAME clause can be omitted when starting the
default transaction.

Important In DSQL, changing the characteristics of the default transaction is accom-
plished as with PREPARE and EXECUTE in a manner similar to the one
described, but the program must be preprocessed using the gpre -m
switch.

For more information about preprocessing programs with the -m switch, see
Chapter 16: “Preprocessing, Compiling, and Linking.” For more information
about transaction behavior and modification, see “Specifying SET TRANSAC-
TION Behavior,” in this chapter.

Starting a Named Transaction

A single application can start simultaneous transactions. InterBase extends
transaction management and data manipulation statements to support transac-
tion names, unique identifiers that specify which transaction controls a given
statement among those transactions that are active.

Transaction names must be used to distinguish one transaction from another in
programs that use two or more transactions at a time. Each transaction started
while other transactions are active requires a unique name and its own SET
TRANSACTION statement. SET TRANSACTION can include optional parame-
ters that modify a transaction’s behavior.

Working With Transactions 43

There are four steps for using transaction names in a program:

1. Declare a unique host-language variable for each transaction name. In C
and C++, transaction names should be declared as long pointers.

2. Initialize each transaction name to zero.

3. Use SET TRANSACTION to start each transaction using an available
transaction name.

4. Include the transaction name in subsequent transaction management
and data manipulation statements that should be controlled by a speci-
fied transaction.

Important Using named transactions in dynamic SQL statements is somewhat differ-
ent. For information about named transactions in DSQL, see “Working
With Multiple Transactions in DSQL,” in this chapter.

For additional information about creating multiple transaction programs, see
“Working With Multiple Transactions,” in this chapter.

Naming Transactions
A transaction name is a programmer-supplied variable that distinguishes one
transaction from another in SQL statements. If transaction names are not used in
SQL statements that control transactions and manipulate data, then those state-
ments operate only on the default transaction, gds__trans.

The following C code declares and initializes two transaction names. It also
starts those transactions in SET TRANSACTION statements.

. . .
EXEC SQL

BEGIN DECLARE SECTION;
long *t1, *t2; /* declare transaction names */

EXEC SQL
END DECLARE SECTION;

. . .
t1 = t2 = 0L; /* initialize names to zero */
. . .
EXEC SQL

SET TRANSACTION NAME t1; /* start trans. w. default behavior */
EXEC SQL

SET TRANSACTION NAME t2; /* start trans2. w. default behavior */
. . .

Each of these steps is fully described in the following sections.

A transaction name can be included as an optional parameter in any data
manipulation and transaction management statement. In multi-transaction

44 Programmer’s Guide

programs, omitting a transaction name causes a statement to be executed for the
default transaction, gds__trans.

For more information about using transaction names with data manipulation
statements, see Chapter 6: “Working With Data.”

Declaring Transaction Names

Transaction names must be declared before they can be used. A name is declared
as a host-language pointer. In C and C++, transaction names should be declared
as long pointers.

The following code illustrates how to declare two transaction names:

EXEC SQL
BEGIN DECLARE SECTION;

long *t1;
long *t2;

EXEC SQL
END DECLARE SECTION;

Note In this example, the transaction declaration occurs within an SQL section
declaration. While InterBase does not require that host-language variables
occur within a section declaration, putting them there guarantees compati-
bility with other SQL implementations that do require section declarations.

Transaction names are usually declared globally at the module level. If a transac-
tion name is declared locally, ensure that:

• The transaction using the name is completely contained within the func-
tion where the name is declared. Include an error-handling routine to roll
back transactions when errors occur. ROLLBACK releases a transaction
name, and sets its value to NULL.

• The transaction name is not used outside the function where it is
declared.

To reference a transaction name declared in another module, provide an external
declaration for it. For example, in C, the external declaration for t1 and t2 might
be as follows:

EXEC SQL
BEGIN DECLARE SECTION;

extern long *t1, *t2;
EXEC SQL

END DECLARE SECTION;

Working With Transactions 45

Initializing Transaction Names

Once transaction names are declared, they should be initialized to zero before
being used for the first time. The following C code illustrates how to set a start-
ing value for two declared transaction names:

t1 = t2 = 0L; /* initialize transaction names to zero */

Once a transaction name is declared and initialized, it can be used to:

• Start and name a transaction. Using a transaction name for all transac-
tions except for the default transaction is required if a program runs mul-
tiple, simultaneous transactions.

• Specify which transactions control data manipulation statements. Trans-
action names are required in multi-transaction programs, unless a state-
ment affects only the default transaction.

• Commit or roll back specific transactions in a multi-transaction program.

Specifying SET TRANSACTION Behavior
Use SET TRANSACTION to start a named transaction, and optionally specify its
behavior. The syntax for starting a named transaction using default behavior is:

SET TRANSACTION NAMEname;

For a summary of the default behavior for a transaction started without specify-
ing behavior parameters, see Table 4-2. The following statements are equivalent.
They both start the transaction named t1, using default transaction behavior.

EXEC SQL
SET TRANSACTION NAME t1;

EXEC SQL
SET TRANSACTION NAME t1 READ WRITE WAIT ISOLATION LEVEL SNAPSHOT;

The following table lists the optional SET TRANSACTION parameters for speci-
fying the behavior of the default transaction:

Table 4-3: SET TRANSACTION Parameters

Parameter Setting Purpose

Access Mode READ ONLY or
READ WRITE

Describes the type of access this transaction is
permitted for a table. For more information about
access mode, see “Access Mode,” in this chap-
ter.

46 Programmer’s Guide

The complete syntax of SET TRANSACTION is:

EXEC SQL
SET TRANSACTION [NAME name]

[READ WRITE| READ ONLY]
[WAIT | NO WAIT]
[[ISOLATION LEVEL] {SNAPSHOT [TABLE STABILITY]

| READ COMMITTED [[NO] RECORD_VERSION]}]

Lock Resolution WAIT or
NO WAIT

Specifies what happens when this transaction
encounters a locked row during an update or
delete. It either waits for the lock to be released
so it can attempt to complete its actions, or it
returns an immediate lock conflict error mes-
sage. For more information about lock resolution,
see “Lock Resolution,” in this chapter.

Isolation Level • SNAPSHOT provides a view of
the database at the moment this
transaction starts, but prevents
viewing changes made by other
active transactions.

• SNAPSHOT TABLE STABILITY
prevents other transactions from
making changes to tables that
this transaction is reading and
updating, but permits them to
read rows in the table.

• READ COMMITTED reads the
most recently committed version
of a row during updates and
deletions, and allows this trans-
action to make changes if there
is no update conflict with other
transactions.

Determines this transaction’s interaction with
other simultaneous transactions attempting to
access the same tables.
READ COMMITTED isolation level also enables
a user to specify which version of a row it can
read. There are two options:
• RECORD_VERSION specifies that the trans-

action immediately read the latest committed
version of a row, even if a more recent uncom-
mitted version also resides on disk.

• NO RECORD_VERSION specifies that the
transaction can only read the latest version of
a row. If WAIT lock resolution is also specified,
then the transaction waits until the latest ver-
sion of a row is committed or rolled back, and
retries its read.

Table Reservation RESERVING RESERVING specifies a subset of available
tables to lock immediately for this transaction to
access.

Database
Specification

USING USING specifies a subset of available databases
that this transaction can access; it cannot access
any other databases. The purpose of this option
is to reduce the amount of system resources
used by this transaction.
Note: USING is not available in DSQL.

Table 4-3: SET TRANSACTION Parameters (Continued)

Parameter Setting Purpose

Working With Transactions 47

[RESERVING <reserving_clause>
| USING dbhandle [, dbhandle ...]];

<reserving_clause> = table [, table ...]
[FOR [SHARED | PROTECTED] {READ | WRITE}] [, <reserving_clause>]

Transaction options are fully described in the following sections.

Access Mode

The access mode parameter specifies the type of access a transaction has for the
tables it uses. There are two possible settings:

• READ ONLY specifies that a transaction can select data from a table, but
cannot insert, update, or delete table data.

• READ WRITE specifies that a transaction can select, insert, update, and
delete table data. This is the default setting if none is specified.

InterBase assumes that most transactions both read and write data. When start-
ing a transaction for reading and writing, READ WRITE can be omitted from
SET TRANSACTION statement. For example, the following statements start a
transaction, t1, for READ WRITE access:

EXEC SQL
SET TRANSACTION NAME t1;

EXEC SQL
SET TRANSACTION NAME t1 READ WRITE;

Tip It is good programming practice to specify a transaction’s access mode,
even when it is READ WRITE. It makes an application’s source code easier
to read and debug because the program’s intentions are clearly spelled out.

Start a transaction for READ ONLY access when you only need to read data.
READ ONLY must be specified. For example, the following statement starts a
transaction, t1, for read-only access:

EXEC SQL
SET TRANSACTION NAME t1 READ ONLY;

Isolation Level

The isolation level parameter specifies the control a transaction exercises over
table access. It determines the:

• View of a database the transaction can see.

• Table access allowed to this and other simultaneous transactions.

48 Programmer’s Guide

The following table describes the three isolation levels supported by InterBase:

The isolation level for most transactions should be either SNAPSHOT or READ
COMMITTED. These levels enable simultaneous transactions to select, insert,
update, and delete data in shared databases, and they minimize the chance for
lock conflicts. Lock conflicts occur in two situations:

• When a transaction attempts to update a row already updated or deleted
by another transaction. A row updated by a transaction is effectively
locked for update to all other transactions until the controlling transac-
tion commits or rolls back. READ COMMITTED transactions can read
and update rows updated by simultaneous transactions after they
commit.

• When a transaction attempts to insert, update, or delete a row in a table
locked by another transaction with an isolation level of SNAPSHOT
TABLE STABILITY. SNAPSHOT TABLE STABILITY locks entire tables
for write access, although concurrent reads by other SNAPSHOT and
READ COMMITTED transactions are permitted.

Using SNAPSHOT TABLE STABILITY guarantees that only a single transaction
can make changes to tables, but increases the chance of lock conflicts where
there are simultaneous transactions attempting to access the same tables. For
more information about the likelihood of lock conflicts, see “Isolation Level
Interactions,” in this chapter.

Table 4-4: ISOLATION LEVEL Options

Isolation Level Purpose

SNAPSHOT The default isolation level, provides a stable, committed view
of the database at the time the transaction starts. Other simul-
taneous transactions can UPDATE and INSERT rows, but this
transaction cannot see those changes. For updated rows, this
transaction sees versions of those rows as they existed at the
start of the transaction. If this transaction attempts to update or
delete rows changed by another transaction, an update conflict
is reported.

SNAPSHOT TABLE
STABILITY

Provides a transaction sole insert, update, and delete access
to the tables it uses. Other simultaneous transactions may still
be able to select rows from those tables.

READ COMMITTED Enables the transaction to see all committed data in the data-
base, and to update rows updated and committed by other
simultaneous transactions without causing lost update prob-
lems.

Working With Transactions 49

Comparing SNAPSHOT, READ COMMITTED, and SNAPSHOT TABLE STABILITY

There are five classic problems all transaction management statements must
address:

• Lost updates, which can occur if an update is overwritten by a simulta-
neous transaction unaware of the last updates made by another transac-
tion.

• Dirty reads, which can occur if the system allows one transaction to select
uncommitted changes made by another transaction.

• Non-reproducible reads, which can occur if one transaction is allowed to
update or delete rows that are repeatedly selected by another transac-
tion. READ COMMITTED transactions permit non-reproducible reads
by design, since they can see committed deletes made by other transac-
tions.

• Phantom rows, which can occur if one transaction is allowed to select
some, but not all, new rows written by another transaction. READ
COMMITTED transactions do not prevent phantom rows.

• Update side effects, which can occur when row values are interdependent,
and their dependencies are not adequately protected or enforced by lock-
ing, triggers, or integrity constraints. These conflicts occur when two or
more simultaneous transactions randomly and repeatedly access and
update the same data; such transactions are called interleaved transactions.

Except as noted, all three InterBase isolation levels control these problems. The
following table summarizes how a transaction with a particular isolation level
controls access to its data for other simultaneous transactions:

Table 4-5: InterBase Management of Classic Transaction Conflicts

Problem SNAPSHOT, READ COMMITTED SNAPSHOT TABLE STABILITY

Lost updates Other transactions cannot update rows
already updated by this transaction.

Other transactions cannot update tables
controlled by this transaction.

Dirty reads Other SNAPSHOT transactions can only
read a previous version of a row updated
by this transaction.
Other READ COMMITTED transactions
can only read a previous version, or com-
mitted updates.

Other transactions cannot access tables
updated by this transaction.

50 Programmer’s Guide

Choosing Between SNAPSHOT and READ COMMITTED

The choice between SNAPSHOT and READ COMMITTED isolation levels
depends on an application’s needs. SNAPSHOT is the default InterBase isola-
tion level. READ COMMITTED duplicates SNAPSHOT behavior, but can read
subsequent changes committed by other transactions. In many cases, using
READ COMMITTED reduces data contention.

SNAPSHOT transactions receive a stable view of a database as it exists the
moment the transactions start. READ COMMITTED transactions can see the
latest committed versions of rows. Both types of transactions can use SELECT
statements unless they encounter the following conditions:

• Table locked by SNAPSHOT TABLE STABILITY transaction for
UPDATE.

• Uncommitted inserts made by other simultaneous transactions. In this
case, a SELECT is allowed, but changes cannot be seen.

READ COMMITTED transactions can read the latest committed version of rows.
A SNAPSHOT transaction can read only a prior version of the row as it existed
before the update occurred.

SNAPHOT and READ COMMITTED transactions with READ WRITE access
can use INSERT, UPDATE, and DELETE unless they encounter tables locked by
SNAPSHOT TABLE STABILITY transactions.

Non-reproducible
reads

SNAPSHOT and SNAPSHOT TABLE
STABILITY transactions can only read
versions of rows committed when they
started.
READ COMMITTED transactions must
expect that reads cannot be reproduced.

SNAPSHOT and SNAPSHOT TABLE
STABILITY transactions can only read-
versions of rows committed when they
started.
Other transactions cannot access tables
updated by this transaction.

Phantom rows READ COMMITTED transactions may
encounter phantom rows.

Other transactions cannot access tables
controlled by this transaction.

Update side effects Other SNAPSHOT transactions can only
read a previous version of a row updated
by this transaction.
Other READ COMMITTED transactions
can only read a previous version, or com-
mitted updates.
Use triggers and integrity constraints to
try to avoid any problems with interleaved
transactions.

Other transactions cannot update tables
controlled by this transaction.
Use triggers and integrity constraints to
avoid any problems with interleaved
transactions.

Table 4-5: InterBase Management of Classic Transaction Conflicts (Continued)

Problem SNAPSHOT, READ COMMITTED SNAPSHOT TABLE STABILITY

Working With Transactions 51

SNAPSHOT transactions cannot update or delete rows previously updated or
deleted and then committed by other simultaneous transactions. Attempting to
update a row previously updated or deleted by another transaction results in an
update conflict error.

A READ COMMITTED READ WRITE transaction can read changes committed
by other transactions, and subsequently update those changed rows.

Occasional update conflicts may occur when simultaneous SNAPSHOT and
READ COMMITTED transactions attempt to update the same row at the same
time. When update conflicts occur, expect the following behavior:

• For mass or searched updates, updates where a single UPDATE modifies
multiple rows in a table, all updates are undone on conflict. The
UPDATE can be retried. For READ COMMITTED transactions, the NO
RECORD_VERSION option can be used to narrow the window between
reads and updates or deletes. For more information, see “Starting a
Transaction With READ COMMITTED Isolation Level,” in this chapter.

• For cursor or positioned updates, where rows are retrieved and updated
from an active set one row at a time, only a single update is undone. To
retry the update, the cursor must be closed, then reopened, and updates
resumed at the point of previous conflict.

For more information about UPDATE through cursors, see Chapter 6: “Working
With Data.”

Starting a Transaction With SNAPSHOT Isolation Level

InterBase assumes that the default isolation level for transactions is SNAPSHOT.
Therefore, SNAPSHOT need not be specified in SET TRANSACTION to set the
isolation level. For example, the following statements are equivalent. They both
start a transaction, t1, for READ WRITE access and set isolation level to
SNAPSHOT.

EXEC SQL
SET TRANSACTION NAME t1;

EXEC SQL
SET TRANSACTION NAME t1 READ WRITE SNAPSHOT;

When an isolation level is specified, it must follow the access and lock resolution
modes.

Tip It is good programming practice to specify a transaction’s isolation level,
even when it is SNAPSHOT. It makes an application’s source code easier to
read and debug because the program’s intentions are clearly spelled out.

52 Programmer’s Guide

Starting a Transaction With READ COMMITTED Isolation Level

To start a READ COMMITTED transaction, the isolation level must be specified.
For example, the following statement starts a named transaction, t1, for READ
WRITE access and sets isolation level to READ COMMITTED:

EXEC SQL
SET TRANSACTION NAME t1 READ WRITE READ COMMITTED;

Isolation level always follows access mode. If the access mode is omitted, isola-
tion level is the first parameter to follow the transaction name.

READ COMMITTED supports mutually exclusive optional parameters,
RECORD_VERSION and NO RECORD_VERSION. They determine READ
COMMITTED behavior when it encounters a row where the latest version of
that row is uncommitted:

• RECORD_VERSION, specifies that the transaction immediately read the
latest committed version of a row, even if a more recent uncommitted
version also resides on disk.

• NO RECORD_VERSION, the default, specifies that the transaction can
only read the latest version of a row. If the WAIT lock resolution option is
also specified, then the transaction waits until the latest version of a row
is committed or rolled back, and retries its read.

Because NO RECORD_VERSION is the default behavior, it need not be specified
with READ COMITTED. For example, the following statements are equivalent.
They start a named transaction, t1, for READ WRITE access and set isolation
level to READ COMMITTED NO RECORD_VERSION.

EXEC SQL
SET TRANSACTION NAME t1 READ WRITE READ COMMITTED;

EXEC SQL
SET TRANSACTION NAME t1 READ WRITE READ COMMITTED

NO RECORD_VERSION;

RECORD_VERSION must always be specified when it is used. For example, the
following statement starts a named transaction, t1, for READ WRITE access and
sets isolation level to READ COMMITTED RECORD_VERSION:

EXEC SQL
SET TRANSACTION NAME t1 READ WRITE READ COMMITTED

RECORD_VERSION;

Starting a Transaction With SNAPSHOT TABLE STABILITY Isolation Level

To start a SNAPSHOT TABLE STABILITY transaction, the isolation level must be
specified. For example, the following statement starts a named transaction, t1,

Working With Transactions 53

for READ WRITE access and sets isolation level to SNAPSHOT TABLE
STABILITY:

EXEC SQL
SET TRANSACTION NAME t1 READ WRITE SNAPSHOT TABLE STABILITY;

Isolation level always follows the optional access mode and lock resolution
parameters, if they are present.

Important Use SNAPSHOT TABLE STABILITY with care. In an environment where
multiple transactions share database access, SNAPSHOT TABLE
STABILITY greatly increases the likelihood of lock conflicts.

Isolation Level Interactions

To determine the possibility for lock conflicts between two transactions access-
ing the same database, each transaction’s isolation level and access mode must
be considered. The following table summarizes possible combinations.

As this table illustrates, SNAPSHOT and READ COMMITTED transactions offer
the least chance for conflicts. For example, if t1 is a SNAPSHOT transaction with
READ WRITE access, and t2 is a READ COMMITTED transaction with READ
WRITE access, t1 and t2 only conflict when they attempt to update the same
rows. If t1 and t2 have READ ONLY access, they never conflict with any other
transaction.

A SNAPSHOT TABLE STABILITY transaction with READ WRITE access is
guaranteed that it alone can update tables, but it conflicts with all other simulta-
neous transactions except for SNAPSHOT and READ COMMITTED transac-
tions running in READ ONLY mode. A SNAPSHOT TABLE STABILITY
transaction with READ ONLY access is compatible with any other read-only
transaction, but conflicts with any transaction that attempts to insert, update, or
delete data.

Table 4-6: Isolation Level Interaction with Read (SELECT) and WRITE (UPDATE)

SNAPSHOT or READ COMMITTED SNAPSHOT TABLE STABILITY

UPDATE SELECT UPDATE SELECT

SNAPSHOT or
READ
COMMITTED

UPDATE Some simulta-
neous updates
may conflict.

— Always conflicts. Always conflicts.

SELECT — — — —

SNAPSHOT
TABLE
STABILITY

UPDATE Always conflicts. — Always conflicts. Always conflicts.

SELECT Always conflicts. — Always conflicts. —

54 Programmer’s Guide

Lock Resolution

The lock resolution parameter determines what happens when a transaction
encounters a lock conflict. There are two options:

• WAIT, the default, causes the transaction to wait until locked resources
are released. Once the locks are released, the transaction retries its opera-
tion.

• NO WAIT immediately returns a lock conflict error without waiting for
locks to be released.

Because WAIT is the default lock resolution, it need not be specified in a SET
TRANSACTION statement. For example, the following statements are equiva-
lent. They both start a transaction, t1, for READ WRITE access, WAIT lock reso-
lution, and READ COMMITTED isolation level:

EXEC SQL
SET TRANSACTION NAME t1 READ WRITE READ COMMITTED;

EXEC SQL
SET TRANSACTION NAME t1 READ WRITE WAIT READ COMMITTED;

To use NO WAIT, the lock resolution parameter must be specified. For example,
the following statement starts the named transaction, t1, for READ WRITE
access, NO WAIT lock resolution, and SNAPSHOT isolation level:

EXEC SQL
SET TRANSACTION NAME t1 READ WRITE NO WAIT READ SNAPSHOT;

When lock resolution is specified, it follows the optional access mode, and pre-
cedes the optional isolation level parameter.

Tip It is good programming practice to specify a transaction’s lock resolution,
even when it is WAIT. It makes an application’s source code easier to read
and debug because the program’s intentions are clearly spelled out.

RESERVING Clause

The optional RESERVING clause enables transactions to guarantee themselves
specific levels of access to a subset of available tables at the expense of other
simultaneous transactions. Reservation takes place at the start of the transaction
instead of only when data manipulation statements require a particular level of
access. RESERVING is only useful in an environment where simultaneous trans-
actions share database access. It has three main purposes:

Working With Transactions 55

• To prevent possible deadlocks and update conflicts that can occur if locks
are taken only when actually needed (the default behavior).

• To provide for dependency locking, the locking of tables that may be
affected by triggers and integrity constraints. While explicit dependency
locking is not required, it can assure that update conflicts do not occur
because of indirect table conflicts.

• To change the level of shared access for one or more individual tables in
a transaction. For example, a READ WRITE SNAPSHOT transaction may
need exclusive update rights for a single table, and could use the
RESERVING clause to guarantee itself sole write access to the table.

Important A single SET TRANSACTION statement can contain either a RESERVING
or a USING clause, but not both.

To reserve tables for a transaction, use the following SET TRANSACTION
syntax:

EXEC SQL
SET TRANSACTION [NAME name]

[READ WRITE| READ ONLY]
[WAIT | NO WAIT]
[[ISOLATION LEVEL] {SNAPSHOT [TABLE STABILITY]

| READ COMMITTED [[NO] RECORD_VERSION]}]
RESERVING<reserving_clause> ;

<reserving_clause> = table [, table ...]
[FOR [SHARED | PROTECTED] {READ | WRITE}] [, <reserving_clause>]

Each table should only appear once in the RESERVING clause. Each table, or a
list of tables separated by commas, must be followed by a clause describing the
type of reservation requested. The following table lists these reservation options:

Table 4-7: Table Reservation Options for the RESERVING Clause

Reservation Option Purpose

PROTECTED READ Prevents other transactions from updating rows. All trans-
actions can select from the table.

PROTECTED WRITE Prevents other transactions from updating rows.
SNAPSHOT and READ COMMITTED transactions can
select from the table, but only this transaction can update
rows.

SHARED READ Any transaction can select from this table. Any READ
WRITE transaction can update this table. This is the most
liberal reservation mode.

56 Programmer’s Guide

The following statement starts a SNAPSHOT transaction, t1, for READ WRITE
access, and reserves a single table for PROTECTED WRITE access:

EXEC SQL
SET TRANSACTION NAME t1 READ WRITE WAIT SNAPSHOT

RESERVING EMPLOYEE FOR PROTECTED WRITE;

The next statement starts a READ COMMITTED transaction, t1, for READ
WRITE access, and reserves two tables, one for SHARED WRITE, and another
for PROTECTED READ:

EXEC SQL
SET TRANSACTION NAME t1 READ WRITE WAIT READ COMMITTED

RESERVING EMPLOYEES FOR SHARED WRITE, EMP_PROJ
FOR PROTECTED READ;

SNAPSHOT and READ COMMITTED transactions use RESERVING to imple-
ment more restrictive access to tables for other simultaneous transactions.
SNAPSHOT TABLE STABILITY transactions use RESERVING to reduce the
likelihood of deadlock in critical situations.

USING Clause

Every time a transaction is started, InterBase reserves system resources for each
database currently attached for program access. In a multi-transaction, multi-
database program, the USING clause can be used to preserve system resources
by restricting the number of open databases to which a transaction has access.
USING restricts a transaction’s access to tables to a listed subset of all open data-
bases using the following syntax:

EXEC SQL
SET TRANSACTION [NAME name]

[READ WRITE | READ ONLY]
[WAIT | NO WAIT]
[[ISOLATION LEVEL] {SNAPSHOT [TABLE STABILITY]

| READ COMMITTED [[NO] RECORD_VERSION]}]
USING dbhandle > [, dbhandle ...];

Important A single SET TRANSACTION statement can contain either a USING or a
RESERVING clause, but not both.

SHARED WRITE Any SNAPSHOT or READ COMMITTED READ WRITE
transaction can update this table. Other SNAPSHOT and
READ COMMITTED transactions can also select from this
table.

Table 4-7: Table Reservation Options for the RESERVING Clause (Continued)

Reservation Option Purpose

Working With Transactions 57

The following C program fragment opens three databases, test.gdb, research.gdb,
and employee.gdb, assigning them to the database handles TEST, RESEARCH,
and EMP, respectively. Then it starts the default transaction, and restricts its
access to TEST and EMP:

. . .
EXEC SQL

SET DATABASE ATLAS = "test.gdb";
EXEC SQL

SET DATABASE RESEARCH = "research.gdb";
EXEC SQL

SET DATABASE EMP = "employee.gdb";
EXEC SQL

CONNECT TEST, RESEARCH, EMP; /* Open all databases */
EXEC SQL

SET TRANSACTION USING TEST, EMP;
. . .

Using Transaction Names in Data Statements

Once named transactions are started, use their names in INSERT, UPDATE,
DELETE, and OPEN statements to specify which transaction controls the state-
ment. For example, the following C code fragment declares two transaction han-
dles, mytrans1, and mytrans2, initializes them to zero, starts the transactions, and
then uses the transaction names to qualify the data manipulation statements that
follow:

. . .
EXEC SQL

BEGIN DECLARE SECTION;
long *mytrans1, *mytrans2;
char city[26];

EXEC SQL
END DECLARE SECTION;

mytrans1 = 0L;
mytrans2 = 0L;
. . .
EXEC SQL

SET DATABASE ATLAS = "atlas.gdb";
EXEC SQL

CONNECT;
EXEC SQL

DECLARE CITYLIST CURSOR FOR
SELECT CITY FROM CITIES

WHERE COUNTRY = "Mexico";
EXEC SQL

SET TRANSACTION NAME mytrans1;
EXEC SQL

58 Programmer’s Guide

SET TRANSACTION mytrans2 READ ONLY READ COMMITTED;
. . .
printf("Mexican city to add to database: ");
gets(city);
EXEC SQL

INSERT TRANSACTION mytrans1 INTO CITIES (CITY, COUNTRY)
VALUES :city, "Mexico";

EXEC SQL
COMMIT mytrans1;

EXEC SQL
OPEN TRANSACTION mytrans2 CITYLIST;

EXEC SQL
FETCH CITYLIST INTO :city;

while (!SQLCODE)
{

printf("%s\n", city);
EXEC SQL

FETCH CITYLIST INTO :city;
}
EXEC SQL

CLOSE CITYLIST;
EXEC SQL

COMMIT;
EXEC SQL

DISCONNECT;
. . .

As this example illustrates, a transaction name cannot appear in a DECLARE
CURSOR statement. To use a name with a cursor declaration, include the trans-
action name in the cursor’s OPEN statement. The transaction name is not
required in subsequent FETCH and CLOSE statements for that cursor.

Note The DSQL EXECUTE and EXECUTE IMMEDIATE statements also support
transaction names.

For more information about using transaction names with data manipulation
statements, see Chapter 6: “Working With Data.” For more information about
transaction names and the COMMIT statement, see “Using COMMIT,” in this
chapter. For more information about using transaction names with DSQL state-
ments, see “Working With Multiple Transactions in DSQL,” in this chapter.

Ending a Transaction

When a transaction’s tasks are complete, or an error prevents a transaction from
completing, the transaction must be ended to set the database to a consistent
state. There are two statements that end transactions:

Working With Transactions 59

• COMMIT makes a transaction’s changes permanent in the database. It
signals that a transaction completed all its actions successfully.

• ROLLBACK undoes a transaction’s changes, returning the database to its
previous state, before the transaction started. ROLLBACK is typically
used when one or more errors occur that prevent a transaction from com-
pleting successfully.

Both COMMIT and ROLLBACK close the record streams associated with the
transaction, reinitialize the transaction name to zero, and release system
resources allocated for the transaction. Freed system resources are available for
subsequent use by any application or program.

COMMIT and ROLLBACK have additional benefits. They clearly indicate pro-
gram logic and intention, make a program easier to understand, and most
importantly, assure that a transaction’s changes are handled as intended by the
programmer.

ROLLBACK is frequently used inside error-handling routines to clean up trans-
actions when errors occur. It can also be used to roll back a partially completed
transaction prior to retrying it, and it can be used to restore a database to its
prior state if a program encounters an unrecoverable error.

Important If the program ends before a transaction ends, a transaction is automati-
cally rolled back, but databases are not closed. If a program ends without
closing the database, data loss or corruption is possible. Therefore, open
databases should always be closed by issuing explicit DISCONNECT,
COMMIT RELEASE, or ROLLBACK RELEASE statements.

For more information about DISCONNECT, COMMIT RELEASE, and
ROLLBACK RELEASE, see Chapter 3: “Working With Databases.”

Using COMMIT
Use COMMIT to write transaction changes permanently to a database.
COMMIT closes the record streams associated with the transaction, resets the
transaction name to zero, and frees system resources assigned to the transaction
for other uses. The complete syntax for COMMIT is:

EXEC SQL
COMMIT [TRANSACTION name] [RETAIN [SNAPSHOT] | RELEASE dbhandle

[, dbhandle ...]]

For example, the following C code fragment contains a complete transaction. It
gives all employees who have worked since December 31, 1992, a 4.3% cost-of-
living salary increase. If all qualified employee records are successfully updated,

60 Programmer’s Guide

the transaction is committed, and the changes are actually applied to the data-
base.

. . .
EXEC SQL

SET TRANSACTION SNAPSHOT TABLE STABILITY;
EXEC SQL

UPDATE EMPLOYEE
SET SALARY = SALARY * 1.043
WHERE HIRE_DATE < "1-JAN-1993";

EXEC SQL
COMMIT;

. . .

By default, COMMIT affects only the default transaction, gds__trans. To commit
another transaction, use its transaction name as a parameter to COMMIT.

Tip Even READ ONLY transactions that do not change a database should be
ended with a COMMIT rather than ROLLBACK. The database is not
changed, but the overhead required to start subsequent transactions is
greatly reduced.

Specifying Transaction Names for COMMIT

To commit changes for transactions other than the default transaction, specify a
transaction name as a COMMIT parameter. For example, the following C code
fragment starts two transactions using names, and commits them:

. . .
EXEC SQL

BEGIN DECLARE SECTION;
long *TR1, *TR2;

EXEC SQL
END DECLARE SECTION;

TR1 = 0L;
TR2 = 0L;
. . .
EXEC SQL

SET TRANSACTION NAME TR1;
EXEC SQL

SET TRANSACTION NAME TR2;
. . .
/* do actual processsing here */
. . .
EXEC SQL

COMMIT TRANSACTION TR1;
EXEC SQL

COMMIT TRANSACTION TR2;
. . .

Working With Transactions 61

Important In multi-transaction programs, transaction names must always be specified
for COMMIT except when committing the default transaction.

Committing Updates Without Freeing a Transaction

To write transaction changes to the database without establishing a new transac-
tion context—the names, system resources, and current state of cursors used in a
transaction—use the RETAIN option with COMMIT. In a busy, multi-user envi-
ronment, maintaining the transaction context for each user speeds up processing
and uses fewer system resources than closing and starting a new transaction for
each action. The syntax for the RETAIN option is:

EXEC SQL
COMMIT [TRANSACTION name] RETAIN [SNAPSHOT];

COMMIT RETAIN writes all pending changes to the database, ends the current
transaction without closing its record stream and cursors and without freeing its
system resources, then starts a new transaction and assigns the existing record
streams and system resources to the new transaction.

For example, the following C code fragment updates the POPULATION column
by user-specified amounts for cities in the CITIES table that are in a country also
specified by the user. Each time a qualified row is updated, a COMMIT with the
RETAIN option is issued, preserving the current cursor status and system
resources.

. . .
EXEC SQL

BEGIN DECLARE SECTION;
char country[26], city[26], asciimult[10];
int multiplier;
long pop;

EXEC SQL
END DECLARE SECTION;

. . .
main ()
{

EXEC SQL
DECLARE CHANGEPOP CURSOR FOR

SELECT CITY, POPULATION
FROM CITIES
WHERE COUNTRY = :country;

printf("Enter country with city populations needing adjustment: ");
gets(country);
EXEC SQL

SET TRANSACTION;
EXEC SQL

OPEN CHANGEPOP;
EXEC SQL

62 Programmer’s Guide

FETCH CHANGEPOP INTO :city, :pop;
while(!SQLCODE)
{

printf("City: %s Population: %ld\n", city, pop);
printf("\nPercent change (100%% to -100%%:");
gets(asciimult);
multiplier = atoi(asciimult);
EXEC SQL

UPDATE CITIES
SET POPULATION = POPULATION * (1 + :multiplier / 100)
WHERE CURRENT OF CHANGEPOP;

EXEC SQL
COMMIT RETAIN; /* commit changes, save current state */

EXEC SQL
FETCH CHANGEPOP INTO :city, :pop;

if (SQLCODE && (SQLCODE != 100))
{

isc_print_sqlerror(SQLCODE, isc_$status);
EXEC SQL

ROLLBACK;
EXEC SQL

DISCONNECT;
exit(1);

}
}
EXEC SQL

COMMIT;
EXEC SQL

DISCONNECT;
}

A ROLLBACK executed after a COMMIT RETAIN can only roll back updates
and writes occurring after the COMMIT RETAIN.

Important In multi-transaction programs, a transaction name must always be speci-
fied for COMMIT RETAIN except when retaining the state of the default
transaction. For more information about transaction names, see “Naming
Transactions,” in this chapter.

Using ROLLBACK
Use ROLLBACK to restore the database to its condition prior to the start of the
transaction. ROLLBACK also closes the record streams associated with the
transaction, resets the transaction name to zero, and frees system resources
assigned to the transaction for other uses. ROLLBACK typically appears in
error-handling routines. The syntax for ROLLBACK is:

EXEC SQL
ROLLBACK [TRANSACTION name] [RELEASE [dbhandle [, dbhandle ...]]];

Working With Transactions 63

For example, the following C code fragment contains a complete transaction. It
gives all employees who have worked since December 31, 1992, a 4.3% cost-of-
living salary adjustment. If all qualified employee records are successfully
updated, the transaction is committed, and the changes are actually applied to
the database. If an error occurs, all changes made by the transaction are undone,
and the database is restored to its condition prior to the start of the transaction.

. . .
EXEC SQL

SET TRANSACTION SNAPSHOT TABLE STABILITY;
EXEC SQL

UPDATE EMPLOYEES
SET SALARY = SALARY * 1.043
WHERE HIRE_DATE < "1-JAN-1993";

if (SQLCODE && (SQLCODE != 100))
{

isc_print_sqlerror(SQLCODE, isc_$status);
EXEC SQL

ROLLBACK;
EXEC SQL

DISCONNECT;
exit(1);

}
EXEC SQL

COMMIT;
EXEC SQL

DISCONNECT;
. . .

By default, ROLLBACK affects only the default transaction, gds__trans. To roll
back other transactions, use their transaction names as parameters to
ROLLBACK.

Working With Multiple Transactions

Because InterBase provides support for transaction names, a program can use as
many transactions at once as necessary to carry out its work. Each simultaneous
transaction in a program requires its own name. A transaction’s name distin-
guishes it from other active transactions. The name can also be used in data
manipulation and transaction management statements to specify which transac-
tion controls the statement. For more information about declaring and using
transaction names, see “Starting a Named Transaction,” in this chapter.

There are four steps for using named transactions in a program:

1. Declare a unique host-language variable for each transaction name.

64 Programmer’s Guide

2. Initialize each transaction variable to zero.

3. Use SET TRANSACTION to start each transaction using an available
transaction name.

4. Use the transaction names as parameters in subsequent transaction man-
agement and data manipulation statements that should be controlled by
a specified transaction.

Multi-transaction Programs and the Default Transaction
In multi-transaction programs, it is good programming practice to supply a
transaction name for every transaction a program defines. One transaction in a
multi-transaction program can be the default transaction, gds__trans. When the
default transaction is used in multi-transaction programs, it, too, should be
started explicitly and referenced by name in data manipulation statements.

If the transaction name is omitted from a transaction management or data
manipulation statement, InterBase assumes the statement affects the default
transaction. If the default transaction has not been explicitly started with a SET
TRANSACTION statement, then during preprocessing, gpre inserts a statement
to start it.

Important DSQL programs must be preprocessed with the gpre -m switch. In this
mode, gpre does not generate the default transaction automatically, but
instead reports an error. DSQL programs require that all transactions be
explicitly started.

Using Cursors in Multi-transaction Programs
DECLARE CURSOR does not support transaction names. Instead, to associate a
named transaction with a cursor, include the transaction name as an optional
parameter in the cursor’s OPEN statement. A cursor can only be associated with
a single transaction. For example, the following statements declare a cursor, and
open it, associating it with the transaction, t1:

. . .
EXEC SQL

DECLARE S CURSOR FOR
SELECT COUNTRY, CUST_NO, SUM(QTY_ORDERED)
FROM SALES
GROUP BY CUST_NO

WHERE COUNTRY = "Mexico";
EXEC SQL

SET TRANSACTION t1 READ ONLY READ COMMITTED;
. . .
EXEC SQL

Working With Transactions 65

OPEN TRANSACTION t1 S;
. . .

An OPEN statement without the optional transaction name parameter operates
under control of the default transaction, gds__trans.

Once a named transaction is associated with a cursor, subsequent cursor state-
ments automatically operate under control of that transaction. Therefore, it does
not support a transaction name parameter. For example, the following state-
ments illustrate a FETCH and CLOSE for the S cursor after it is associated with
the named transaction, t2:

. . .
EXEC SQL

OPEN TRANSACTION t2 S;
EXEC SQL

FETCH S INTO :country, :cust_no, :qty;
while (!SQLCODE)
{

printf("%s %d %d\n", country, cust_no, qty);
EXEC SQL

FETCH S INTO :country, :cust_no, :qty;
}
EXEC SQL

CLOSE S;
. . .

Multiple cursors can be controlled by a single transaction, or each transaction
can control a single cursor according to a program’s needs.

A Multi-transaction Example
The following C code illustrates the steps required to create a simple multi-
transaction program. It declares two transaction handles, mytrans1, and
mytrans2, initializes them to zero, starts the transactions, and then uses the trans-
action names to qualify the data manipulation statements that follow. It also
illustrates the use of a cursor with a named transaction.

. . .
EXEC SQL

BEGIN DECLARE SECTION;
long *mytrans1 = 0L, *mytrans2 = 0L;
char city[26];

EXEC SQL
END DECLARE SECTION;

. . .
EXEC SQL

DECLARE CITYLIST CURSOR FOR
SELECT CITY FROM CITIES

WHERE COUNTRY = "Mexico";

66 Programmer’s Guide

EXEC SQL
SET TRANSACTION NAME mytrans1;

EXEC SQL
SET TRANSACTION mytrans2 READ ONLY READ COMMITTED;

. . .
printf("Mexican city to add to database: ");
gets(city);
EXEC SQL

INSERT TRANSACTION mytrans1 INTO CITIES
VALUES :city, "Mexico", NULL, NULL, NULL, NULL;

EXEC SQL
COMMIT mytrans1;

EXEC SQL
OPEN TRANSACTION mytrans2 CITYLIST;

EXEC SQL
FETCH CITYLIST INTO :city;

while (!SQLCODE)
{

printf("%s\n", city);
EXEC SQL

FETCH CITYLIST INTO :city;
}
EXEC SQL

CLOSE CITYLIST;
EXEC SQL

COMMIT;
EXEC SQL

DISCONNECT
. . .

Working With Multiple Transactions in DSQL

In InterBase, DSQL applications can also use multiple transactions, but with the
following limitations:

• Programs must be preprocessed with the gpre -m switch.

• Transaction names must be declared statically. They cannot be defined
through user-modified host variables at run time.

• Transaction names must be initialized to zero before appearing in DSQL
statements.

• All transactions must be started with explicit SET TRANSACTION
statements.

• No data definition language (DDL) can be used in the context of a named
transaction in an embedded program; DDL must always occur in the
context of the default transaction, gds__trans.

Working With Transactions 67

• As long as a transaction name parameter is not specified with a SET
TRANSACTION statement, it can follow a PREPARE statement to mod-
ify the behavior of a subsequently named transaction in an EXECUTE or
EXECUTE IMMEDIATE statement. This enables a user to modify trans-
action behaviors at run time.

Transaction names are fixed for all InterBase programs during preprocessing,
and cannot be dynamically assigned. A user can still modify DSQL transaction
behavior at run time. It is up to the programmer to anticipate possible transac-
tion behavior modification and plan for it. The following section describes how
users can modify transaction behavior.

Modifying Transaction Behavior With SET TRANSACTION
The number and name of transactions available to a DSQL program is fixed
when the program is preprocessed with gpre, the InterBase preprocessor. The
programmer determines both the named transactions that control each DSQL
statement in a program, and the default behavior of those transactions. A user
can change a named transaction’s behavior at run time.

In DSQL programs, a user enters an SQL statement into a host-language string
variable, then the host variable is processed in a PREPARE statement or
EXECUTE IMMEDIATE statement. PREPARE:

• Checks the statement in the variable for errors.

• Loads the statement into an XSQLDA for a subsequent EXECUTE
statement.

EXECUTE IMMEDIATE:

• Checks the statement for errors.

• Loads the statement into the XSQLDA.

• Executes the statement.

Both EXECUTE and EXECUTE IMMEDIATE operate within the context of a pro-
grammer-specified transaction, which can be a named transaction. If the transac-
tion name is omitted, these statements are controlled by the default transaction,
gds__trans.

The transaction behavior for an EXECUTE or EXECUTE IMMEDIATE can be
modified by:

• Enabling a user to enter a SET TRANSACTION statement into a host
variable.

68 Programmer’s Guide

• Executing the SET TRANSACTION statement before the EXECUTE or
EXECUTE IMMEDIATE whose transaction context should be modified.

In this context, a SET TRANSACTION statement changes the behavior of the
next transaction, named or default, until another SET TRANSACTION occurs.

For example, the following C code fragment provides the user the option of
specifying a new transaction behavior, applies the behavior change, executes the
next user statement in the context of that changed transaction, then restores the
transaction’s original behavior.

. . .
EXEC SQL

BEGIN DECLARE SECTION;
char usertrans[512], query[1024];
char deftrans[] = {"SET TRANSACTION READ WRITE WAIT SNAPSHOT"};

EXEC SQL
END DECLARE SECTION;

. . .
printf("\nEnter SQL statement: ");
gets(query);
printf("\nChange transaction behavior (Y/N)? ");
gets(usertrans);
if (usertrans[0] == "Y" || usertrans[0] == "y")
{

printf("\nEnter \"SET TRANSACTION\" and desired behavior: ");
gets(usertrans);
EXEC SQL

COMMIT usertrans;
EXEC SQL

EXECUTE IMMEDIATE usertrans;
}
else
{

EXEC SQL
EXECUTE IMMEDIATE deftrans;

}
EXEC SQL

EXECUTE IMMEDIATE query;
EXEC SQL

EXECUTE IMMEDIATE deftrans;
. . .

Important As this example illustrates, you must commit or roll back any previous
transactions before you can execute SET TRANSACTION.

Working With Data Definition Statements 69

CHAPTER 5

5Working With Data Definition
Statements

This chapter discusses how to create, modify, and delete databases, tables,
views, and indexes in SQL applications. A database’s tables, views, and indexes
make up most of its underlying structure, or metadata.

Important The discussion in this chapter applies equally to dynamic SQL (DSQL)
applications, except that users enter DSQL data definition statements at
run time, and do not preface those statements with EXEC SQL.

The preferred method for creating, modifying, and deleting metadata is through
the InterBase interactive SQL tool, isql, but in some instances, it may be neces-
sary or desirable to embed some data definition capabilities in an SQL applica-
tion. Both SQL and DSQL applications can use the following subset of data
definition statements:

DSQL also supports creating, altering, and dropping stored procedures, triggers,
and exceptions. DSQL is especially powerful for data definition because it
enables users to enter any supported data definition statement at run time. For
example, isql itself is a DSQL application. For more information about using

Table 5-1: Data Definition Statements Supported for Embedded Applications

CREATE Statement ALTER Statement DROP Statement

CREATE DATABASE ALTER DATABASE —

CREATE DOMAIN ALTER DOMAIN DROP DOMAIN

CREATE GENERATOR SET GENERATOR —

CREATE INDEX ALTER INDEX DROP INDEX

CREATE SHADOW ALTER SHADOW DROP SHADOW

CREATE TABLE ALTER TABLE DROP TABLE

CREATE VIEW — DROP VIEW

DECLARE EXTERNAL — DROP EXTERNAL

DECLARE FILTER — DROP FILTER

70 Programmer’s Guide

isql to define stored procedures, triggers, and exceptions, see the Data Definition
Guide. For a complete discussion of DSQL programming, see Chapter 15:
“Using Dynamic SQL.”

Creating Metadata

SQL data definition statements are used in applications the sole purpose of
which is to create or modify databases or tables. Typically the expectation is that
these applications will be used only once by any given user, then discarded, or
saved for later modification by a database designer who can read the program
code as a record of a database’s structure. If data definition changes must be
made, editing a copy of existing code is easier than starting over.

Note Use the InterBase interactive SQL tool, isql, to create and alter data defini-
tions whenever possible. For more information about isql, see the Windows
Client User’s Guide.

The SQL CREATE statement is used to make new databases, domains, tables,
views, or indexes. A COMMIT statement must follow every CREATE so that
subsequent CREATE statements can use previously defined metadata upon
which they may rely. For example, domain definitions must be committed
before the domain can be referenced in subsequent table definitions.

Important Applications that mix data definition and data manipulation must be pre-
processed using the gpre -m switch. Such applications must explicitly start
every transaction with SET TRANSACTION.

Creating a Database
CREATE DATABASE establishes a new database and its system tables, tables that
describe the internal structure of the database. InterBase uses the system tables
whenever an application accesses a database. SQL programs can read the data in
most of these tables just like any user-created table.

 In its most elementary form, the syntax for CREATE DATABASE is:

EXEC SQL
CREATE DATABASE "<filespec> ";

CREATE DATABASE must appear before any other CREATE statements. It
requires one parameter, the name of a database to create. For example, the fol-
lowing statement creates a database named employee.gdb:

EXEC SQL
CREATE DATABASE "employee.gdb";

Working With Data Definition Statements 71

Note The database name can include a full file specification, including both host
or node names, and a directory path to the location where the database file
should be created. For information about file specifications for a particular
operating system, see the operating system manuals.

Important Although InterBase enables access to remote databases, when a database is
created, it should only be created directly on the machine where it is to
reside.

There are optional parameters for CREATE DATABASE. For example, when an
application running on a client attempts to connect to an InterBase server in
order to create a database, it may be expected to provide USER and PASSWORD
parameters before the connection is established. Other parameters specify the
database page size, the number and size of multi-file databases, and the default
character set for the database.

For more information about specifying a default character set for a database, see
“Specifying a Default Character Set for a Database,” in this chapter. For a com-
plete discussion of all CREATE DATABASE parameters, see the Data Definition
Guide. For the complete syntax of CREATE DATABASE, see the Language Refer-
ence.

Important An application that creates a database must be preprocessed with the gpre
-m switch. It must also create at least one table. If a database is created
without a table, it cannot be successfully opened by another program.
Applications that perform both data definition and data manipulation
must declare tables with DECLARE TABLE before creating and populating
them. For more information about table creation, see “Creating a Table,” in
this chapter.

Specifying a Default Character Set for a Database

A database’s default character set designation specifies the character set the
server uses to transliterate and store CHAR, VARCHAR, and text BLOB data in
the database when no other character set information is provided. A default
character set should always be specified for a database when it is created with
CREATE DATABASE.

To specify a default character set, use the DEFAULT CHARACTER SET clause of
CREATE DATABASE. For example, the following statement creates a database
that uses the ISO8859_1 character set:

EXEC SQL
CREATE DATABASE "europe.gdb" DEFAULT CHARACTER SET ISO8859_1;

Important If you do not specify a character set, the character set defaults to NONE.
Using character set NONE means that there is no character set assumption

72 Programmer’s Guide

for columns; data is stored and retrieved just as you originally entered it.
You can load any character set into a column defined with NONE, but you
cannot later move that data into another column that has been defined
with a different character set. In this case, no transliteration is performed
between the source and destination character sets, and errors may occur
during assignment.

For a complete description of the DEFAULT CHARACTER SET clause and a list
of the character sets supported by InterBase, see the Data Definition Guide.

Creating a Domain
CREATE DOMAIN creates a column definition that is global to the database,
and that can be used to define columns in subsequent CREATE TABLE state-
ments. CREATE DOMAIN is especially useful when many tables in a database
contain identical column definitions. For example, in an employee database, sev-
eral tables might define columns for employees’ first and last names.

At its simplest, the syntax for CREATE DOMAIN is:

EXEC SQL
CREATE DOMAINname AS < datatype >;

The following statements create two domains, FIRSTNAME, and LASTNAME.

EXEC SQL
CREATE DOMAIN FIRSTNAME AS VARCHAR(15);

EXEC SQL
CREATE DOMAIN LASTNAME AS VARCHAR(20);

EXEC SQL
COMMIT;

Once a domain is defined and committed, it can be used in CREATE TABLE
statements to define columns. For example, the following CREATE TABLE frag-
ment illustrates how the FIRSTNAME and LASTNAME domains can be used in
place of column definitions in the EMPLOYEE table definition.

EXEC SQL
CREATE TABLE EMPLOYEE
(

. . .
FIRST_NAME FIRSTNAME NOT NULL,
LAST_NAME LASTNAME NOT NULL;
. . .

);

A domain definition can also specify a default value, a NOT NULL attribute, a
CHECK constraint that limits inserts and updates to a range of values, a charac-
ter set, and a collation order.

Working With Data Definition Statements 73

For more information about creating domains and using them during table cre-
ation, see the Data Definition Guide. For the complete syntax of CREATE
DOMAIN, see the Language Reference.

Creating a Table
The CREATE TABLE statement defines a new database table and the columns
and integrity constraints within that table. Each column can include a character
set specification and a collation order specification. CREATE TABLE also auto-
matically imposes a default SQL security scheme on the table. The person who
creates a table becomes its owner. A table’s owner is assigned all privileges for it,
including the right to grant privileges to other users.

A table can only be created for a database that already exists. At its simplest, the
syntax for CREATE TABLE is as follows:

EXEC SQL
CREATE TABLE name (<col_def> | <table_constraint>

[, <col_def> | <table_constraint> ...]);

<col_def> defines a column using the following syntax:

col { <datatype> | COMPUTED [BY] (<expr>) | domain } < col_constraint >
COLLATE collation

col must be a column name unique within the table definition.

<datatype> specifies the SQL data type to use for column entries. COMPUTED
BY can be used to define a column whose value is computed from an expression
when the column is accessed at run time.

Note <col_constraint> is an optional integrity constraint to apply to a column.
<tableconstraint> is an optional integrity constraint to apply to an entire
table. Integrity constraints are used to ensure data entered in a table meets
specific requirements, to specify that data entered in a table or column is
unique, or to enforce referential integrity with other tables in the database.

The following code fragment contains SQL statements that create a database,
employee.gdb, and create a table, EMPLOYEE_PROJECT, with three columns,
EMP_NO, PROJ_ID, and DUTIES:

EXEC SQL
CREATE DATABASE "employee.gdb";

EXEC SQL
CREATE TABLE EMPLOYEE_PROJECT
(

EMP_NO SMALLINT NOT NULL,
PROJ_ID CHAR(5) NOT NULL,
DUTIES BLOB SUBTYPE 1 SEGMENT SIZE 240

74 Programmer’s Guide

);
EXEC SQL

COMMIT;

An application can create multiple tables, but duplicating an existing table name
is not permitted.

For more information about SQL data types and integrity constraints, see the
Data Definition Guide. For more information about CREATE TABLE syntax, see
the Language Reference. For more information about changing or assigning table
privileges, see Chapter 10: “Working With Security.”

Creating a Computed Column

A computed column is one whose value is calculated when the column is accessed
at run time. The value can be derived from any valid SQL expression that results
in a single, non-array value.

To create a computed column, use the following column declaration syntax in
CREATE TABLE:

col COMPUTED [BY] (<expr>)

The expression can reference previously defined columns in the table. For exam-
ple, the following statement creates a computed column, FULL_NAME, by con-
catenating two other columns, LAST_NAME, and FIRST_NAME:

EXEC SQL
CREATE TABLE EMPLOYEE
(

. . .
FIRST_NAME VARCHAR(10) NOT NULL,
LAST_NAME VARCHAR(15) NOT NULL,
. . .
FULL_NAME COMPUTED BY (LAST_NAME || ", " || FIRST_NAME)

);

For more information about COMPUTED BY, see the Data Definition Guide.

Declaring and Creating a Table
In programs that mix data definition and data manipulation, the DECLARE
TABLE statement must be used to describe a table’s structure to the InterBase
preprocessor, gpre, before that table can be created. During preprocessing, if
gpre encounters a DECLARE TABLE statement, it stores the table’s description
for later reference. When gpre encounters a CREATE TABLE statement for the
previously declared table, it verifies that the column descriptions in the CREATE

Working With Data Definition Statements 75

statement match those in the DECLARE statement. If they do not match, gpre
reports the errors and cancels preprocessing so that the error can be fixed.

When used, DECLARE TABLE must come before the CREATE TABLE statement
it describes. For example, the following code fragment declares a table,
EMPLOYEE_PROJ, then creates it:

EXEC SQL
DECLARE EMPLOYEE_PROJECT TABLE
(

EMP_NO SMALLINT,
PROJ_ID CHAR(5),
DUTIES BLOB(240, 1)

);
EXEC SQL

CREATE TABLE EMPLOYEE_PROJECT
(

EMP_NO SMALLINT,
PROJ_ID CHAR(5),
DUTIES BLOB(240, 1)

);
EXEC SQL

COMMIT;

For more information about DECLARE TABLE, see the Language Reference.

Creating a View
A view is a virtual table that is based on a subset of one or more actual tables in a
database. Views are used to:

• Restrict user access to data by presenting only a subset of available data.

• Rearrange and present data from two or more tables in a manner espe-
cially useful to the program.

Unlike a table, a view is not stored in the database as raw data. Instead, when a
view is created, the definition of the view is stored in the database. When a pro-
gram uses the view, InterBase reads the view definition and quickly generates
the output as if it were a table.

To make a view, use the following CREATE VIEW syntax:

EXEC SQL
CREATE VIEW name [(view_col [, view_col ...)] AS

<select> [WITH CHECK OPTION];

The name of the view, name, must be unique within the database.

76 Programmer’s Guide

To give each column displayed in the view its own name, independent of its col-
umn name in an underlying table, enclose a list of view_col parameters in paren-
theses. Each column of data returned by the view’s SELECT statement is
assigned sequentially to a corresponding view column name. If a list of view col-
umn names is omitted, column names are assigned directly from the underlying
table.

Listing independent names for columns in a view ensures that the appearance of
a view does not change if its underlying table structures are modified.

Note A view column name must be provided for each column of data returned
by the view’s SELECT statement, or else no view column names should be
specified.

The <select> is a standard SELECT statement that specifies the selection criteria
for rows to include in the view. A SELECT in a view may not include an ORDER
BY clause. In DSQL, the UNION clause is also forbidden.

The optional WITH CHECK OPTION is used to restrict inserts, updates, and
deletes in a view that can be updated. For more information about views allow-
ing update, and the WITH CHECK OPTION, see “Creating a View for Update,”
in this chapter.

To create a read-only view, a view’s creator must have SELECT privilege for the
table or tables underlying the view. To create a view for update requires ALL
privilege for the table or tables underlying the view. For more information about
SQL privileges, see Chapter 10: “Working With Security.”

Creating a View for SELECT

Many views combine data from multiple tables or other views. A view based on
multiple tables or other views can be read, but not updated. For example, the
following statement creates a read-only view, PHONE_LIST, because it joins two
tables, EMPLOYEE, and DEPARTMENT:

EXEC SQL
CREATE VIEW PHONE_LIST AS

SELECT EMP_NO, FIRST_NAME, LAST_NAME, LOCATION, PHONE_NO
FROM EMPLOYEE, DEPARTMENT
WHERE EMPLOYEE.DEPT_NO = DEPARTMENT.DEPT_NO;

EXEC SQL
COMMIT;

Important Only a view’s creator initially has access to it. To assign read access to
others, use GRANT. For more information about GRANT, see Chapter 10:
“Working With Security.”

Working With Data Definition Statements 77

Creating a View for Update

An updatable view is one that enables privileged users to insert, update, and
delete information in the view’s base table. To be updatable, a view must meet
the following conditions:

• It derives its columns from a single table or updatable view.

• It does not define a self-join of the base table.

• It does not reference columns derived from arithmetic expressions.

• The view’s SELECT statement does not contain:

• A WHERE clause that uses the DISTINCT predicate.

• A HAVING clause.

• Functions.

• Nested queries.

• Stored procedures.

For example, the following view, HIGH_CITIES, is an updatable view. It selects
all cities in the CITIES table with altitudes greater than or equal to a half mile.

EXEC SQL
CREATE VIEW HIGH_CITIES AS

SELECT CITY, COUNTRY_NAME, ALTITUDE FROM CITIES
WHERE ALTITUDE >= 2640;

EXEC SQL
COMMIT;

Users who have INSERT and UPDATE privileges for this view can change rows
in or add new rows to the view’s underlying table, CITIES. They can even insert
or update rows that cannot be displayed by the HIGH_CITIES view. The follow-
ing INSERT adds a record for Santa Cruz, California, altitude 23 feet, to the
CITIES table:

EXEC SQL
INSERT INTO HIGH_CITIES (CITY, COUNTRY_NAME, ALTITUDE)
VALUES ("Santa Cruz", "United States", "23");

To restrict inserts and updates through a view to only those rows that can be
selected by the view, use the WITH CHECK OPTION in the view definition. For
example, the following statement defines the view, HIGH_CITIES, to use the
WITH CHECK OPTION. Users with INSERT and UPDATE privileges will only
be able to enter rows for cities with altitudes greater than or equal to a half mile.

78 Programmer’s Guide

EXEC SQL
CREATE VIEW HIGH_CITIES AS

SELECT CITY, COUNTRY_NAME, ALTITUDE FROM CITIES
WHERE ALTITUDE > 2640 WITH CHECK OPTION;

Creating an Index
SQL provides CREATE INDEX for establishing user-defined database indexes.
An index, based on one or more columns in a table, is used to speed data
retrieval for queries that access those columns. The syntax for CREATE INDEX
is:

EXEC SQL
CREATE [UNIQUE] [ASC[ENDING] | DESC[ENDING]] INDEX <index> ON

table (col [, col ...]);

For example, the following statement defines an index, NAMEX, for the
LAST_NAME and FIRST_NAME columns in the EMPLOYEE table:

EXEC SQL
CREATE INDEX NAMEX ON EMPLOYEE (LAST_NAME, FIRST_NAME);

Note InterBase automatically generates system-level indexes when tables are
defined using UNIQUE and PRIMARY KEY constraints. For more infor-
mation about constraints, see the Data Definition Guide.

For more information about CREATE INDEX syntax, see the Language Reference.

Preventing Duplicate Index Entries

To define an index that eliminates duplicate entries, include the UNIQUE
keyword in CREATE INDEX. The following statement creates a unique index,
PRODTYPEX, on the PROJECT table:

EXEC SQL
CREATE UNIQUE INDEX PRODTYPEX ON PROJECT (PRODUCT, PROJ_NAME);

Important After a unique index is defined, users cannot insert or update values in
indexed columns if those values already exist there. For unique indexes
defined on multiple columns, like PRODTYPEX in the previous example,
the same value can be entered within individual columns, but the combi-
nation of values entered in all columns defined for the index must be
unique.

Working With Data Definition Statements 79

Specifying Index Sort Order

By default, SQL stores an index in ascending order. To make a descending sort
on a column or group of columns more efficient, use the DESCENDING key-
word to define the index. For example, the following statement creates an index,
CHANGEX, based on the CHANGE_DATE column in the SALARY_HISTORY
table:

EXEC SQL
CREATE DESCENDING INDEX CHANGEX ON SALARY_HISTORY (CHANGE_DATE);

Note To retrieve indexed data in descending order, use ORDER BY in the
SELECT statement to specify retrieval order.

Creating Generators
A generator is a monotonically increasing or decreasing numeric value that is
inserted in a field either directly by an SQL statement in an application or
through a trigger. Generators are often used to produce unique values to insert
into a column used as a primary key.

To create a generator for use in an application, use the following CREATE
GENERATOR syntax:

EXEC SQL
CREATE GENERATORname;

The following statement creates a generator, EMP_NO_GEN, to specify a unique
employee number:

EXEC SQL
CREATE GENERATOR EMP_NO_GEN;

EXEC SQL
COMMIT;

Once a generator is created, the starting value for a generated number can be
specified with SET GENERATOR. To insert a generated number in a field, use
the InterBase library GEN_ID() function in an assignment statement. For more
information about GEN_ID(), CREATE GENERATOR, and SET GENERATOR,
see the Data Definition Guide.

80 Programmer’s Guide

Dropping Metadata

SQL supports several statements for deleting existing metadata:

• DROP TABLE, to delete a table from a database

• DROP VIEW, to delete a view definition from a database

• DROP INDEX, to delete a database index

• ALTER TABLE, to delete columns from a table

For more information about deleting columns with ALTER TABLE, see “Alter-
ing a Table,” in this chapter.

Dropping an Index
To delete an index, use DROP INDEX. An index can only be dropped by its
creator, the SYSDBA, or a user with root privileges. If an index is in use when the
drop is attempted, the drop is postponed until the index is no longer in use. The
syntax of DROP INDEX is:

EXEC SQL
DROP INDEX name;

name is the name of the index to delete. For example, the following statement
drops the index, NEEDX:

EXEC SQL
DROP INDEX NEEDX;

EXEC SQL
COMMIT;

Deletion fails if the index is on a UNIQUE, PRIMARY KEY, or FOREIGN KEY
integrity constraint. To drop an index on a UNIQUE, PRIMARY KEY, or
FOREIGN KEY integrity constraint, first drop the constraints, the constrained
columns, or the table.

For more information about DROP INDEX and dropping integrity constraints,
see the Data Definition Guide.

Dropping a View
To delete a view, use DROP VIEW. A view can only be dropped by its owner, the
SYSDBA, or a user with root privileges. If a view is in use when a drop is

Working With Data Definition Statements 81

attempted, the drop is postponed until the view is no longer in use. The syntax
of DROP VIEW is:

EXEC SQL
DROP VIEW name;

name is the name of the view to delete. For example, the following statement
drops the EMPLOYEE_SALARY view:

EXEC SQL
DROP VIEW EMPLOYEE_SALARY;

EXEC SQL
COMMIT;

Deleting a view fails if a view is used in another view, a trigger, or a computed
column. To delete a view that meets any of these conditions:

1. Delete the other view, trigger, or computed column.

2. Delete the view.

For more information about DROP VIEW, see the Data Definition Guide.

Dropping a Table
To remove a table from a database, use DROP TABLE. A table can only be
dropped by its owner, the SYSDBA, or a user with root privileges. If a table is in
use when a drop is attempted, the drop is postponed until the table is no longer
in use. The syntax of DROP TABLE is:

EXEC SQL
DROP TABLE name;

name is the name of the table to drop. For example, the following statement
drops the EMPLOYEE table:

EXEC SQL
DROP TABLE EMPLOYEE;

EXEC SQL
COMMIT;

Deleting a table fails if a table is used in a view, a trigger, or a computed column.
A table cannot be deleted if a UNIQUE or PRIMARY KEY integrity constraint is
defined for it, and the constraint is also referenced by a FOREIGN KEY in
another table. To drop the table, first drop the FOREIGN KEY constraints in the
other table, then drop the table.

82 Programmer’s Guide

Note Columns within a table can be dropped without dropping the rest of the
table. For more information, see “Dropping an Existing Column From a
Table,” in this chapter.

For more information about DROP TABLE, see the Data Definition Guide.

Altering Metadata

Most changes to data definitions are made at the table level, and involve adding
new columns to a table, or dropping obsolete columns from it. SQL provides
ALTER TABLE to add new columns to a table and to drop existing columns. A
single ALTER TABLE can carry out a single operation, or both operations.

Making changes to views and indexes always requires two separate statements:

1. Drop the existing definition.

2. Create a new definition.

If current metadata cannot be dropped, replacement definitions cannot be
added. Dropping metadata can fail for the following reasons:

• The person attempting to drop metadata is not the metadata’s creator.

• SQL integrity constraints are defined for the metadata and referenced in
other metadata.

• The metadata is used in another view, trigger, or computed column.

For more information about dropping metadata, see “Dropping Metadata,” in
this chapter.

Altering a Table
ALTER TABLE enables the following changes to an existing table:

• Adding new column definitions

• Adding new table constraints

• Dropping existing column definitions

• Dropping existing table constraints

• Changing column definitions by dropping existing definitions, and add-
ing new ones

Working With Data Definition Statements 83

• Changing existing table constraints by dropping existing definitions, and
adding new ones

The simple syntax of ALTER TABLE is as follows:

EXEC SQL
ALTER TABLE name {ADD colname <datatype > [NOT NULL]
| DROP colname | ADD CONSTRAINT constraintname tableconstraint
| DROP CONSTRAINT constraintname };

Note For information about adding, dropping, and modifying constraints at the
table level, see the Data Definition Guide.

For the complete syntax of ALTER TABLE, see the Language Reference.

Adding a New Column to a Table

To add another column to an existing table, use ALTER TABLE. A table can only
be modified by its creator. The syntax for adding a column with ALTER TABLE
is:

EXEC SQL
ALTER TABLE name ADD colname <datatype > colconstraint

[, ADD colname datatype colconstraint ...];

For example, the following statement adds a column, EMP_NO, to the
EMPLOYEE table:

EXEC SQL
ALTER TABLE EMPLOYEE ADD EMP_NO EMPNO NOT NULL;

EXEC SQL
COMMIT;

Note This example makes use of a domain, EMPNO, to define a column. For
more information about domains, see the Data Definition Guide.

Multiple columns can be added to a table at the same time. Separate column def-
initions with commas. For example, the following statement adds two columns,
EMP_NO, and FULL_NAME, to the EMPLOYEE table. FULL_NAME is a com-
puted column, a column that derives it values from calculations based on other
columns:

EXEC SQL
ALTER TABLE EMPLOYEE

ADD EMP_NO EMPNO NOT NULL,
ADD FULL_NAME COMPUTED BY (LAST_NAME || ', ' || FIRST_NAME);

EXEC SQL
COMMIT;

84 Programmer’s Guide

Note This example creates a column using a value computed from two other col-
umns already defined for the EMPLOYEE table. For more information
about creating computed columns, see the Data Definition Guide.

New columns added to a table may be defined with integrity constraints. For
more information about adding columns with integrity constraints to a table, see
the Data Definition Guide.

Dropping an Existing Column From a Table

To delete a column definition and its data from a table, use ALTER TABLE. A
column can only be dropped by the owner of the table, the SYSDBA, or a user
with root privileges. If a table is in use when a column is dropped, the drop is
postponed until the table is no longer in use. The syntax for dropping a column
with ALTER TABLE is:

EXEC SQL
ALTER TABLE name DROP colname [, colname ...];

For example, the following statement drops the EMP_NO column from the
EMPLOYEE table:

EXEC SQL
ALTER TABLE EMPLOYEE DROP EMP_NO;

EXEC SQL
COMMIT;

Multiple columns can be dropped with a single ALTER TABLE. The following
statement drops the EMP_NO and FULL_NAME columns from the EMPLOYEE
table:

EXEC SQL
ALTER TABLE EMPLOYEE

DROP EMP_NO,
DROP FULL_NAME;

EXEC SQL
COMMIT;

Deleting a column fails if the column is part of a UNIQUE, PRIMARY KEY, or
FOREIGN KEY constraint. To drop the column, first drop the constraint, then
the column.

Deleting a column also fails if the column is used by a CHECK constraint for
another column. To drop the column, first drop the CHECK constraint, then
drop the column.

For more information about integrity constraints, see the Data Definition Guide.

Working With Data Definition Statements 85

Modifying a Column

An existing column definition can be modified using ALTER TABLE, but if data
already stored in that column is not preserved before making changes, it will be
lost.

Preserving data entered in a column and modifying the definition for a column,
is a six-step process:

1. Adding a new, temporary column to the table that mirrors the current
metadata of the column to be changed.

2. Copying the data from the column to be changed to the newly created
temporary column.

3. Dropping the column to change.

4. Adding a new column definition, giving it the same name that the previ-
ously dropped column had.

5. Copying data from the temporary column to the redefined column.

6. Dropping the temporary column.

For example, suppose the EMPLOYEE table contains a column, OFFICE_NO,
defined to hold a data type of CHAR(3), and suppose that the size of the column
needs to be increased by one. The following numbered sequence describes each
step and provides sample code:

1. First, create a temporary column to hold the data in OFFICE_NO during
the modification process:

EXEC SQL
ALTER TABLE EMPLOYEE ADD TEMP_NO CHAR(3);

EXEC SQL
COMMIT;

2. Move existing data from OFFICE_NO to TEMP_NO to preserve it:

EXEC SQL
UPDATE EMPLOYEE

SET TEMP_NO = OFFICE_NO;

3. After the data is moved, drop the OFFICE_NO column:

EXEC SQL
ALTER TABLE DROP OFFICE_NO;

EXEC SQL
COMMIT;

86 Programmer’s Guide

4. Add a new column definition for OFFICE_NO, specifying the data type
and new size:

EXEC SQL
ALTER TABLE ADD OFFICE_NO CHAR (4);

EXEC SQL
COMMIT;

5. Move the data from TEMP_NO to OFFICE_NO:

EXEC SQL
UPDATE EMPLOYEE

SET OFFICE_NO = TEMP_NO;

6. Finally, drop the TEMP_NO column:

EXEC SQL
ALTER TABLE DROP TEMP_NO;

EXEC SQL
COMMIT;

For more information about dropping column definitions, see “Dropping an
Existing Column From a Table,” in this chapter. For more information about
adding column definitions, see “Adding a New Column to a Table,” in this
chapter.

Altering a View
To change the information provided by a view, follow these steps:

1. Drop the current view definition.

2. Create a new view definition and give it the same name as the dropped
view.

For example, the following view is defined to select employee salary informa-
tion:

EXEC SQL
CREATE VIEW EMPLOYEE_SALARY AS

SELECT EMP_NO, LAST_NAME, CURRENCY, SALARY
FROM EMPLOYEE, COUNTRY
WHERE EMPLOYEE.COUNTRY_CODE = COUNTRY.CODE;

Suppose the full name of each employee should be displayed instead of the last
name. First, drop the current view definition:

EXEC SQL
DROP EMPLOYEE_SALARY;

EXEC SQL
COMMIT;

Working With Data Definition Statements 87

Then create a new view definition that displays each employee’s full name:

EXEC SQL
CREATE VIEW EMPLOYEE_SALARY AS

SELECT EMP_NO, FULL_NAME, CURRENCY, SALARY
FROM EMPLOYEE, COUNTRY
WHERE EMPLOYEE.COUNTRY_CODE = COUNTRY.CODE;

EXEC SQL
COMMIT;

For more information about dropping a view, see “Dropping a View,” in this
chapter. For more information about creating a view, see “Creating a View,” in
this chapter.

Altering an Index
To change the definition of an index, follow these steps:

1. Use ALTER INDEX to make the current index inactive.

2. Drop the current index.

3. Create a new index and give it the same name as the dropped index.

An index is usually modified to change the combination of columns that are
indexed, to prevent or allow insertion of duplicate entries, or to specify index
sort order. For example, given the following definition of the NAMEX index:

EXEC SQL
CREATE INDEX NAMEX ON EMPLOYEE (LAST_NAME, FIRST_NAME);

Suppose there is an additional need to prevent duplicate entries with the
UNIQUE keyword. First, make the current index inactive, then drop it:

EXEC SQL
ALTER INDEX NAMEX INACTIVE;

EXEC SQL
DROP INDEX NAMEX;

EXEC SQL
COMMIT;

Then create a new index, NAMEX, based on the previous definition, that also
includes the UNIQUE keyword:

EXEC SQL
CREATE UNIQUE INDEX NAMEX ON EMPLOYEE (LAST_NAME, FIRST_NAME);

EXEC SQL
COMMIT

88 Programmer’s Guide

ALTER INDEX can be used directly to change an index’s sort order, or to add the
ability to handle unique or duplicate entries. For example, the following state-
ment changes the NAMEX index to permit duplicate entries:

EXEC SQL
ALTER INDEX NAMEX DUPLICATE;

Important Be careful when altering an index directly. For example, changing an index
from supporting duplicate entries to one that requires unique entries with-
out disabling the index and recreating it can reduce index performance.

For more information about dropping an index, see “Dropping an Index,” in this
chapter. For more information about creating an index, see “Creating an Index,”
in this chapter.

Working With Data 89

CHAPTER 6

6Working With Data

The majority of SQL statements in an embedded program are devoted to read-
ing or modifying existing data, or adding new data to a database. This chapter
describes the types of data recognized by InterBase, and how to retrieve, modify,
add, or delete data in a database using SQL expressions and the following state-
ments.

• SELECT statements query a database, that is, read or retrieve existing
data from a database. Variations of the SELECT statement make it possi-
ble to retrieve:

• A single row, or part of a row, from a table. This operation is referred
to as a singleton select.

• Multiple rows, or parts of rows, from a table using a SELECT within a
DECLARE CURSOR statement.

• Related rows, or parts of rows, from two or more tables into a virtual
table, or results table. This operation is referred to as a join.

• All rows, or parts of rows, from two or more tables into a virtual
table. This operation is referred to as a union.

• INSERT statements write new rows of data to a table.

• UPDATE statements modify existing rows of data in a table.

• DELETE statements remove existing rows of data from a table.

To learn how to use the SELECT statement to retrieve data, see “Understanding
Data Retrieval With SELECT,” in this chapter. For information about retrieving a
single row with SELECT, see “Selecting a Single Row,” in this chapter. For infor-
mation about retrieving multiple rows, see “Selecting Multiple Rows,” in this
chapter.

For information about using INSERT to write new data to a table, see “Inserting
Data,” in this chapter. To modify data with UPDATE, see “Updating Data,” in
this chapter. To remove data from a table with DELETE, see “Deleting Data,” in
this chapter.

90 Programmer’s Guide

Supported Data Types

To query or write to a table, it is necessary to know the structure of the table,
what columns it contains, and what data types are defined for those columns.
InterBase supports ten fundamental data types, described in the following table:

Table 6-1: Data Types Supported by InterBase

Name Size Range/Precision Description

BLOB Variable None. BLOB segment size
is limited to 64K.

Binary large object. Stores large data, such
as graphics, text, and digitized voice. Basic
structural unit: segment. BLOB subtype
describes BLOB contents.

CHAR(n) n characters 1 to 32,767 bytes.
Character set character
size determines the maxi-
mum number of characters
that can fit in 32K.

Fixed length CHAR or text string type.
Alternate keyword: CHARACTER.

DATE 64 bits 1 Jan 100 to 11 Dec 5941. Also includes time information.

DECIMAL
(precision, scale)

Variable precision = 1 to 15. Speci-
fies at least precision digits
of precision to store.
scale = 1 to 15. Specifies
number of decimal places
for storage. Must be less
than or equal to precision.

Number with a decimal point scale digits from
the right. For example, DECIMAL(10, 3)
holds numbers accurately in the following
format:

ppppppp.sss

DOUBLE
PRECISION

64 bits‡ 1.7 X 10-308 to 1.7 X 10308. Scientific: 15 digits of precision.

FLOAT 32 bits 3.4 X 10-38 to 3.4 X 1038. Single precision: 7 digits of precision.

INTEGER 32 bits -2,147,483,648 to
2,147,483,647.

Signed long (longword).

NUMERIC
(precision, scale)

Variable precision = 1 to 15. Speci-
fies exactly precision dig-
its of precision to store.
scale = 1 to 15. Specifies
number of decimal places
for storage. Must be less
than or equal to precision.

Number with a decimal point scale digits from
the right. For example, NUMERIC(10,3)
holds numbers accurately in the following
format:

ppppppp.sss

SMALLINT 16 bits -32,768 to 32,767. Signed short (word).

Working With Data 91

A BLOB is used to store very large data objects of indeterminate and variable
size, such as bitmapped graphics images, vector drawings, sound files, chapter
or book-length documents, or any other kind of multimedia information.
Because a BLOB can hold different kinds of information, it requires special pro-
cessing for reading and writing. For more information about BLOB handling, see
Chapter 8: “Working With BLOB Data.”

The DATE data type may require conversion to and from InterBase when
entered or manipulated in a host-language program. For more information
about retrieving and writing dates, see Chapter 7: “Working With Dates.”

InterBase also supports arrays of most data types. An array is a matrix of indi-
vidual items, all of any single InterBase data type, except BLOB, that can be han-
dled either as a single entity, or manipulated item by item. To learn more about
the flexible data access provided by arrays, see Chapter 9: “Using Arrays.”

For a complete discussion of InterBase data types, see the Data Definition Guide.

Understanding SQL Expressions

All SQL data manipulation statements support SQL expressions, SQL syntax for
comparing and evaluating columns, constants, and host-language variables to
produce a single value.

In the SELECT statement, for example, the WHERE clause is used to specify a
search condition that determines if a row qualifies for retrieval. That search condi-
tion is an SQL expression. DELETE and UPDATE also support search condition
expressions. Typically, when an expression is used as a search condition, the
expression evaluates to a Boolean value that is True, False, or Unknown.

SQL expressions can also appear in the INSERT statement VALUE clause and
the UPDATE statement SET clause to specify or calculate values to insert into a
column. When inserting or updating a numeric value via an expression, the
expression is usually arithmetic, such as multiplying one number by another to
produce a new number which is then inserted or updated in a column. When

VARCHAR (n) n characters 1 to 32,765 bytes.
Character set character
size determines the maxi-
mum number of characters
that can fit in 32K.

Variable length CHAR or text string type.
Alternate keywords: CHAR VARYING,
CHARACTER VARYING.

‡ Actual size of DOUBLE is platform-dependent. Most platforms support the 64 bit size.

Table 6-1: Data Types Supported by InterBase (Continued)

Name Size Range/Precision Description

92 Programmer’s Guide

inserting or updating a string value, the expression may concatenate, or combine,
two strings to produce a single string for insertion or updating.

The following table describes the elements that can be used in expressions:

Table 6-2: Elements of SQL Expressions

Element Description

Column names Columns from specified tables, against which to search or
compare values, or from which to calculate values.

Host-language variables Program variables containing changeable values. Host-
language variables must be preceded by a colon (:).

Constants Hard-coded numbers or quoted strings, like 507 or “Tokyo”.

Concatenation operator ||, used to combine character strings.

Arithmetic operators +, -, *, and /, used to calculate and evaluate values.

Logical operators Keywords, NOT, AND, and OR, used within simple search con-
ditions, or to combine simple search conditions to make com-
plex searches. A logical operation evaluates to true or false.
Usually used only in search conditions.

Comparison operators <, >, <=, >=, =, and <>, used to compare a value on the left
side of the operator to another on the right. A comparative
operation evaluates to true or false.
Other, more specialized comparison operators include ALL,
ANY, BETWEEN, CONTAINING, EXISTS, IN, IS, LIKE, NULL,
SINGULAR, SOME, and STARTING WITH. These operators
can evaluate to True, False, or Unknown.
Usually used only in search conditions.

COLLATE clause Comparisons of CHAR and VARCHAR values can sometimes
take advantage of a COLLATE clause to force the way text val-
ues are compared.

Stored procedures Reusable SQL statement blocks that can receive and return
parameters, and that are stored as part of a database’s meta-
data. For more information about stored procedures in queries,
see Chapter 12: “Working With Stored Procedures.”

Subqueries A SELECT statement, usually nested within the WHERE
clause to return or calculate values against which rows
searched by the main SELECT statement are compared. For
more information about subqueries, see “Using Subqueries,” in
this chapter.

Parentheses Group related parts of expressions that should be processed
separately to produce a single value which is then used within
the expression. Parenthetical expressions can be nested.

Working With Data 93

Complex expressions can be constructed by combining simple expressions in
different ways. For example the following WHERE clause uses a column name,
three constants, three comparison operators, and a set of grouping parentheses
to retrieve only those rows for employees with salaries between $60,000 and
$120,000:

WHERE DEPARTMENT = "Publications" AND
(SALARY > 60000 AND SALRAY < 120000)

As another example, search conditions in WHERE clauses often contain nested
SELECT statements, or subqueries. In the following query, the WHERE clause
contains a subquery that uses the aggregate function, AVG(), to retrieve a list of
all departments with bigger than average salaries:

EXEC SQL
DECLARE WELL_PAID CURSOR FOR

SELECT DEPT_NO
INTO :wellpaid
FROM DEPARTMENT

WHERE SALARY > (SELECT AVG(SALARY) FROM DEPARTMENT);

For more information about using subqueries to specify search conditions, see
“Using Subqueries,” in this chapter. For more information about aggregate func-
tions, see “Retrieving Aggregate Column Information,” in this chapter.

Using the String Operator in Expressions
The string operator, ||, also referred to as a concatenation operator, enables a sin-
gle character string to be built from two or more character strings. Character
strings can be constants or values retrieved from a column. For example,

char strbuf[80];
. . .
EXEC SQL

SELECT LAST_NAME || " is the manager of publications."
INTO :strbuf
FROM DEPARTMENT, EMPLOYEE
WHERE DEPT_NO = 5900 AND MNGR_NO = EMP_NO;

The string operator can also be used in INSERT or UPDATE statements:

EXEC SQL
INSERT INTO DEPARTMENT (MANAGER_NAME)

VALUES(:fname || :lname);

94 Programmer’s Guide

Using Arithmetic Operators in Expressions
To calculate numeric values in expressions, InterBase recognizes four arithmetic
operators listed in the following table:

Arithmetic operators are evaluated from left to right, except when ambiguities
arise. In these cases, InterBase evaluates operations according to the precedence
specified in the table (for example, multiplications are performed before divi-
sions, and divisions are performed before subtractions).

Arithmetic operations are always calculated before comparison and logical
operations. To change or force the order of evaluation, group operations in
parentheses. InterBase calculates operations within parentheses first. If paren-
theses are nested, the equation in the innermost set is the first evaluated, and the
outermost set is evaluated last. For more information about precedence and
using parentheses for grouping, see “Determining Precedence of Operators,” in
this chapter.

The following example illustrates a WHERE clause search condition that uses an
arithmetic operator to combine the values from two columns, then uses a com-
parison operator to determine if that value is greater than 10:

DECLARE RAINCITIES CURSOR FOR
SELECT CITYNAME, COUNTRYNAME

INTO :cityname, :countryname
FROM CITIES
WHERE JANUARY_RAIN + FEBRUARY_RAIN > 10;

Using Logical Operators in Expressions
Logical operators calculate a Boolean value, True, False, or Unknown, based on
comparing previously calculated simple search conditions immediately to the
left and right of the operator. InterBase recognizes three logical operators, NOT,
AND, and OR.

NOT reverses the search condition in which it appears, while AND and OR are
used to combine simple search conditions. For example, the following query
returns any employee whose last name is not “Smith”:

DECLARE NOSMITH CURSOR FOR

Table 6-3: Arithmetic Operators

Operator Purpose Precedence Operator Purpose Precedence

* Multiplication 1 + Addition 3

/ Division 2 - Subtraction 4

Working With Data 95

SELECT LAST_NAME
INTO :lname
FROM EMPLOYEE
WHERE NOT LNAME = "Smith";

When AND appears between search conditions, both search conditions must be
true if a row is to be retrieved. The following query returns any employee whose
last name is neither “Smith” nor “Jones”:

DECLARE NO_SMITH_OR_JONES CURSOR FOR
SELECT LAST_NAME

INTO :lname
FROM EMPLOYEE
WHERE NOT LNAME = "Smith" AND NOT LNAME = "Jones";

OR stipulates that one search condition or the other must be true. For example,
the following query returns any employee named “Smith” or “Jones”:

DECLARE ALL_SMITH_JONES CURSOR FOR
SELECT LAST_NAME, FIRST_NAME

INTO :lname, :fname
FROM EMPLOYEE
WHERE LNAME = "Smith" OR LNAME = "Jones";

The order in which combined search conditions are evaluated is dictated by the
precedence of the operators that connect them. A NOT condition is evaluated
before AND, and AND is evaluated before OR. Parentheses can be used to
change the order of evaluation. For more information about precedence and
using parentheses for grouping, see “Determining Precedence of Operators,” in
this chapter.

Using Comparison Operators in Expressions
Comparison operators evaluate to a Boolean value: True, False, or Unknown,
based on a test for a specific relationship between a value to the left of the opera-
tor, and a value or range of values to the right of the operator. Values compared
must evaluate to the same data type, unless the CAST() function is used to trans-
late one data type to a different one for comparison. Values can be columns, con-
stants, or calculated values.

The following table lists operators that can be used in statements, describes how
they are used, and provides samples of their use:

Note Comparisons evaluate to Unknown if a NULL value is encountered.

For more information about CAST(), see “Using CAST() for Data Type Conver-
sions,” in this chapter.

96 Programmer’s Guide

InterBase also supports comparison operators that compare a value on the left of
the operator to the results of a subquery to the right of the operator. The follow-
ing table lists these operators, and describes how they are used:

For more information about using subqueries, see “Using Subqueries,” in this
chapter.

Using BETWEEN

BETWEEN tests whether a value falls within a range of values. The complete
syntax for the BETWEEN operator is:

<value > [NOT] BETWEEN < value > AND < value >

For example, the following cursor declaration retrieves LAST_NAME and
FIRST_NAME columns for employees with salaries between $100,000 and
$250,000, inclusive:

EXEC SQL
DECLARE LARGE_SALARIES CURSOR FOR

SELECT LAST_NAME, FIRST_NAME
FROM EMPLOYEE
WHERE SALARY BETWEEN 100000 AND 250000;

Use NOT BETWEEN to test whether a value falls outside a range of values. For
example, the following cursor declaration retrieves the names of employees with
salaries less than $30,000 and greater than $150,000:

EXEC SQL
DECLARE EXTREME_SALARIES CURSOR FOR

SELECT LAST_NAME, FIRST_NAME
FROM EMPLOYEE
WHERE SALARY NOT BETWEEN 30000 AND 150000;

Table 6-4: InterBase Comparison Operators Requiring Subqueries

Operator Purpose

ALL Determines if a value is equal to all values returned by a subquery.

ANY and SOME Determines if a value is equal to any values returned by a subquery.

EXISTS Determines if a value exists in at least one value returned by a sub-
query.

SINGULAR Determines if a value exists in exactly one value returned by a sub-
query.

Working With Data 97

Using CONTAINING

CONTAINING tests to see if an ASCII string value contains a quoted ASCII
string supplied by the program. String comparisons are case-insensitive;
“String”, “STRING”, and “string” are equivalent values for CONTAINING. The
complete syntax for CONTAINING is:

<value > [NOT] CONTAINING " <string> "

For example, the following cursor declaration retrieves the names of all employ-
ees whose last names contain the three-letter combination, “las” (and “LAS” or
“Las”):

EXEC SQL
DECLARE LAS_EMP CURSOR FOR

SELECT LAST_NAME, FIRST_NAME
FROM EMPLOYEE
WHERE LAST_NAME CONTAINING "las";

Use NOT CONTAINING to test for strings that exclude a specified value. For
example, the following cursor declaration retrieves the names of all employees
whose last names do not contain “las” (also “LAS” or “Las”):

EXEC SQL
DECLARE NOT_LAS_EMP CURSOR FOR

SELECT LAST_NAME, FIRST_NAME
FROM EMPLOYEE
WHERE LAST_NAME NOT CONTAINING "las";

Tip CONTAINING can be used to search a BLOB segment by segment for an
occurrence of a quoted string.

Using IN

IN tests that a known value equals at least one value in a list of values. A list is a
set of values separated by commas and enclosed by parentheses. The values in
the list must be parenthesized and separated by commas. If the value being com-
pared to a list of values is NULL, IN returns Unknown.

The syntax for IN is:

<value > [NOT] IN (< value > [, < value > ...])

For example, the following cursor declaration retrieves the names of all employ-
ees in the accounting, payroll, and human resources departments:

EXEC SQL
DECLARE ACCT_PAY_HR CURSOR FOR

SELECT DEPARTMENT, LAST_NAME, FIRST_NAME, EMP_NO

98 Programmer’s Guide

FROM EMPLOYEE EMP, DEPTARTMENT DEP
WHERE EMP.DEPT_NO = DEP.DEPT_NO AND

DEPARTMENT IN ("Accounting", "Payroll", "Human Resources")
GROUP BY DEPARTMENT;

Use NOT IN to test that a value does not occur in a set of specified values. For
example, the following cursor declaration retrieves the names of all employees
not in the accounting, payroll, and human resources departments:

EXEC SQL
DECLARE NOT_ACCT_PAY_HR CURSOR FOR

SELECT DEPARTMENT, LAST_NAME, FIRST_NAME, EMP_NO
FROM EMPLOYEE EMP, DEPTARTMENT DEP
WHERE EMP.DEPT_NO = DEP.DEPT_NO AND

DEPARTMENT NOT IN ("Accounting", "Payroll",
 "Human Resources")

GROUP BY DEPARTMENT;

IN can also be used to compare a value against the results of a subquery. For
example, the following cursor declaration retrieves all cities in Europe:

EXEC SQL
DECLARE NON_JFG_CITIES CURSOR FOR

SELECT C.COUNTRY, C.CITY, C.POPULATION
FROM CITIES C
WHERE C.COUNTRY NOT IN (SELECT O.COUNTRY FROM COUNTRIES O

WHERE O.CONTINENT <> "Europe")
GROUP BY C.COUNTRY;

For more information about subqueries, see “Using Subqueries,” in this chapter.

Using LIKE

LIKE is a case-sensitive operator that tests a string value against a string contain-
ing wildcards, symbols that substitute for a single, variable character, or a string
of variable characters. LIKE recognizes two wildcard symbols:

• % (percent) substitutes for a string of zero or more characters.

• _ (underscore) substitutes for a single character.

The syntax for LIKE is:

<value > [NOT] LIKE < value > [ESCAPE " symbol "]

For example, this cursor retrieves information about any employee whose last
names contain the three letter combination “ton” (but not “Ton”):

EXEC SQL
DECLARE TON_EMP CURSOR FOR

SELECT LAST_NAME, FIRST_NAME, EMP_NO

Working With Data 99

FROM EMPLOYEE
WHERE LAST_NAME LIKE "%ton%";

To test for a string that contains a percent or underscore character:

1. Precede the % or _ with another symbol (for example, @), in the quoted
comparison string.

2. Use the ESCAPE clause to identify the symbol (@, in this case) preceding
% or _ as a literal symbol. A literal symbol tells InterBase that the next
character should be included as is in the search string.

For example, this cursor retrieves all table names in RDB$RELATIONS that have
underscores in their names:

EXEC SQL
DECLARE UNDER_TABLE CURSOR FOR

SELECT RDB$RELATION_NAME
FROM RDB$RELATIONS
WHERE RDB$RELATION_NAME LIKE "%@_%" ESCAPE "@";

Use NOT LIKE to retrieve rows that do not contain strings matching those
described. For example, the following cursor retrieves all table names in
RDB$RELATIONS that do not have underscores in their names:

EXEC SQL
DECLARE NOT_UNDER_TABLE CURSOR FOR

SELECT RDB$RELATION_NAME
FROM RDB$RELATIONS
WHERE RDB$RELATION_NAME NOT LIKE "%@_%" ESCAPE "@";

Using IS NULL

IS NULL tests for the absence of a value in a column. The complete syntax of the
IS NULL clause is:

<value > IS [NOT] NULL

For example, the following cursor retrieves the names of employees who do not
have phone extensions:

EXEC SQL
DECLARE MISSING_PHONE CURSOR FOR

SELECT LAST_NAME, FIRST_NAME
FROM EMPLOYEE
WHERE PHONE_EXT IS NULL;

Use IS NOT NULL to test that a column contains a value. For example, the fol-
lowing cursor retrieves the phone numbers of all employees that have phone
extensions:

100 Programmer’s Guide

EXEC SQL
DECLARE PHONE_LIST CURSOR FOR

SELECT LAST_NAME, FIRST_NAME, PHONE_EXT
FROM EMPLOYEE
WHERE PHONE_EXT IS NOT NULL
ORDER BY LAST_NAME, FIRST_NAME;

Using STARTING WITH

STARTING WITH is a case-sensitive operator that tests a string value to see if it
begins with a stipulated string of characters. To support international character
set conversions, STARTING WITH follows byte-matching rules for the specified
collation order. The complete syntax for STARTING WITH is:

<value > [NOT] STARTING WITH < value >

For example, the following cursor retrieves employee last names that start with
“To”:

EXEC SQL
DECLARE TO_EMP CURSOR FOR

SELECT LAST_NAME, FIRST_NAME
FROM EMPLOYEE
WHERE LAST_NAME STARTING WITH "To";

Use NOT STARTING WITH to retrieve information for columns that do not
begin with the stipulated string. For example, the following cursor retrieves all
employees except those whose last names start with “To”:

EXEC SQL
DECLARE NOT_TO_EMP CURSOR FOR

SELECT LAST_NAME, FIRST_NAME
FROM EMPLOYEE
WHERE LAST_NAME NOT STARTING WITH "To";

For more information about collation order and byte-matching rules, see the
Data Definition Guide.

Using ALL

ALL tests that a value is true when compared to every value in a list returned by
a subquery. The complete syntax for ALL is:

<value > < comparison_operator > ALL (< subquery >)

For example, the following cursor retrieves information about employees whose
salaries are larger than that of the vice president of channel marketing:

Working With Data 101

EXEC SQL
DECLARE MORE_THAN_VP CURSOR FOR

SELECT LAST_NAME, FIRST_NAME, SALARY
FROM EMPLOYEE
WHERE SALARY > ALL (SELECT SALARY FROM EMPLOYEE

WHERE DEPT_NO = 7734);

 ALL returns Unknown if the subquery returns a NULL value. It can also return
Unknown if the value to be compared is NULL and the subquery returns any
non-NULL data. If the value is NULL and the subquery returns an empty set,
ALL evaluates to True.

For more information about subqueries, see “Using Subqueries,” in this chapter.

Using ANY and SOME

ANY and SOME test that a value is true if it matches any value in a list returned
by a subquery. The complete syntax for ANY is:

<value > < comparison_operator > ANY | SOME (<subquery>)

For example, the following cursor retrieves information about salaries that are
larger than at least one salary in the channel marketing department:

EXEC SQL
DECLARE MORE_CHANNEL CURSOR FOR

SELECT LAST_NAME, FIRST_NAME, SALARY
FROM EMPLOYEE
WHERE SALARY > ANY (SELECT SALARY FROM EMPLOYEE

WHERE DEPT_NO = 7734);

ANY and SOME return Unknown if the subquery returns a NULL value. They
can also return Unknown if the value to be compared is NULL and the subquery
returns any non-NULL data. If the value is NULL and the subquery returns an
empty set, ANY and SOME evaluate to False.

For more information about subqueries, see “Using Subqueries,” in this chapter.

Using EXISTS

EXISTS tests that for a given value there is at least one qualifying row meeting the
search condition specified in a subquery. The SELECT clause in the subquery
must use the * (asterisk) to select all columns. The complete syntax for EXISTS is:

[NOT] EXISTS (SELECT * FROM < tablelist > WHERE <search_condition >)

For example, the following cursor retrieves all countries with rivers:

102 Programmer’s Guide

EXEC SQL
DECLARE RIVER_COUNTRIES CURSOR FOR

SELECT COUNTRY
FROM COUNTRIES C
WHERE EXISTS (SELECT * FROM RIVERS R

WHERE R.COUNTRY = C.COUNTRY);

Use NOT EXISTS to retrieve rows that do not meet the qualifying condition
specified in the subquery. For example, the following cursor retrieves all coun-
tries without rivers:

EXEC SQL
DECLARE NON_RIVER_COUNTRIES COUNTRIES FOR

SELECT COUNTRY
FROM COUNTRIES C
WHERE NOT EXISTS (SELECT * FROM RIVERS R

WHERE R.COUNTRY = C.COUNTRY);

EXISTS always returns either True or False, even when handling NULL values.

For more information about subqueries, see “Using Subqueries,” in this chapter.

Using SINGULAR

SINGULAR tests that for a given value there is exactly one qualifying row meet-
ing the search condition specified in a subquery. The SELECT clause in the sub-
query must use the * (asterisk) to select all columns. The complete syntax for
SINGULAR is:

[NOT] SINGULAR (SELECT * FROM < tablelist > WHERE <search_condition >)

For example, the following cursor retrieves all countries with a single capital:

EXEC SQL
DECLARE SINGLE_CAPITAL CURSOR FOR

SELECT COUNTRY
FROM COUNTRIES COU
WHERE SINGULAR (SELECT * FROM CITIES CIT

WHERE CIT.CITY = COU.CAPITAL);

Use NOT SINGULAR to retrieve rows that do not meet the qualifying condition
specified in the subquery. For example, the following cursor retrieves all coun-
tries with more than one capital:

EXEC SQL
DECLARE MULTI_CAPITAL CURSOR FOR

SELECT COUNTRY
FROM COUNTRIES COU
WHERE NOT SINGULAR (SELECT * FROM CITIES CIT

WHERE CIT.CITY = COU.CAPITAL);

Working With Data 103

For more information about subqueries, see “Using Subqueries,” in this chapter.

Determining Precedence of Operators
The order in which operators and the values they affect are evaluated in a state-
ment is called precedence. There are two levels of precedence for SQL operators:

• Precedence among operators of different types.

• Precedence among operators of the same type.

Precedence Among Operators of Different Types

The following table lists the evaluation order of different InterBase operator
types, from first evaluated (highest precedence) to last evaluated (lowest prece-
dence):

Precedence Among Operators of the Same Type

When an expression contains several operators of the same type, those operators
are evaluated from left to right unless there is a conflict where two operators of
the same type affect the same values.

For example, in the mathematical equation, 3 + 2 * 6, both the addition and mul-
tiplication operators work with the same value, 2. Evaluated from left to right,
the equation evaluates to 30: 3+ 2 = 5; 5 * 6 = 30. InterBase follows standard
mathematical rules for evaluating mathematical expressions, that stipulate mul-
tiplication is performed before addition: 2 *6 = 12; 3 + 12 = 15.

Table 6-5: Operator Precedence By Operator Type

Operator Type Precedence Explanation

String Highest Strings are always concatenated before all other
operations take place.

Mathematical ⇓ Math is performed after string concatenation, but
before comparison and logical operations.

Comparison ⇓ Comparison operations are evaluated after string
concatenation and math, but before logical opera-
tions.

Logical Lowest Logical operations are evaluated after all other opera-
tions.

104 Programmer’s Guide

The following table lists the evaluation order for all mathematical operators,
from highest to lowest:

InterBase also follows rules for determining the order in which comparison
operators are evaluated when conflicts arise during normal left to right evalua-
tion. The next table describes the evaluation order for comparison operators,
from highest to lowest:

ALL, ANY, BETWEEN, CONTAINING, EXISTS, IN, LIKE, NULL, SINGULAR,
SOME, and STARTING WITH are evaluated after all listed comparison opera-
tors when they conflict with other comparison operators during normal left to
right evaluation. When they conflict with one another they are evaluated strictly
from left to right.

Table 6-6: Mathematical Operator Precedence

Operator Precedence Explanation

* Highest Multiplication is performed before all other
mathematical operations.

/ ⇓ Division is performed before addition and subtraction.

+ ⇓ Addition is performed before subtraction.

- Lowest Subtraction is performed after all other mathematical
operations.

Table 6-7: Comparison Operator Precedence

Operator Precedence Explanation

=, == Highest Equality operations are evaluated before all other
comparison operations.

<>, !=, ~=, ^= ⇓

> ⇓

< ⇓

>= ⇓

<= ⇓

!>, ~>, ^> ⇓

!<, ~<, ^< Lowest Not less than operations are evaluated after all other
comparison operations.

Working With Data 105

When logical operators conflict during normal left to right processing, they, too,
are evaluated according to a hierarchy, detailed in the following table:

Changing Evaluation Order of Operators

To change the evaluation order of operations in an expression, use parentheses
to group operations that should be evaluated as a unit, or that should derive a
single value for use in other operations. For example, without parenthetical
grouping, 3 + 2 * 6 evaluates to 15. To cause the addition to be performed before
the multiplication, use parentheses:

(3 + 2) * 6 = 30

Tip Always use parentheses to group operations in complex expressions, even
when default order of evaluation is desired. Explicitly grouped expressions
are easier to understand and debug.

Using CAST() for Data Type Conversions
Normally, only similar data types can be compared or evaluated in expressions.
The CAST() function can be used in expressions to translate one data type into
another for comparison purposes. The syntax for CAST() is:

CAST (<value> | NULL AS datatype)

For example, in the following WHERE clause, CAST() is used to translate a
CHAR data type, INTERVIEW_DATE, to a DATE data type to compare against a
DATE data type, HIRE_DATE:

. . . WHERE HIRE_DATE = CAST(INTERVIEW_DATE AS DATE);

Table 6-8: Logical Operator Precedence

Operator Precedence Explanation

NOT Highest NOT operations are evaluated before all other logical
operations.

AND ⇓ AND operations are evaluated after NOT operations,
and before OR operations.

OR Lowest OR operations are evaluated after all other logical
operations.

106 Programmer’s Guide

CAST() can be used to compare columns with different data types in the same
table, or across tables. You can convert one data type to another as shown in the
following table:

An error results if a given data type cannot be converted into the data type spec-
ified in CAST().

Using UPPER() on Text Data
The UPPER() function can be used in SELECT, INSERT, UPDATE, or DELETE
operations to force character and BLOB text data to uppercase. For example, an
application that prompts a user for a department name might want to ensure
that all department names are stored in uppercase to simplify data retrieval
later. The following code illustrates how UPPER() would be used in the INSERT
statement to guarantee a user’s entry is uppercase:

EXEC SQL
BEGIN DECLARE SECTION;

char response[26];
EXEC SQL

END DECLARE SECTION;
. . .
printf("Enter new department name: ");
response[0] = '\0';
gets(response);
if (response)

EXEC SQL
INSERT INTO DEPARTMENT(DEPT_NO, DEPARTMENT)

VALUES(GEN_ID(GDEPT_NO, 1), UPPER(:response));
. . .

The next statement illustrates how UPPER() can be used in a SELECT statement
to affect both the appearance of values retrieved, and to affect its search condi-
tion:

EXEC SQL
SELECT DEPT_NO, UPPER(DEPARTMENT)

FROM DEPARTMENT
WHERE UPPER(DEPARTMENT) STARTING WITH 'A';

Table 6-9: Compatible Data Types for CAST()

From Data Type To Data Type

NUMERIC CHARACTER, DATE

CHARACTER NUMERIC, DATE

DATE CHARACTER, NUMERIC

Working With Data 107

Understanding Data Retrieval With SELECT

The SELECT statement handles all queries in SQL. SELECT can retrieve one or
more rows from a table, and can return entire rows, or a subset of columns from
each row, often referred to as a projection. Optional SELECT syntax can be used
to specify search criteria that restrict the number of rows returned, to select rows
with unknown values, to select rows through a view, and to combine rows from
two or more tables.

At a minimum, every SELECT statement must:

• List which columns to retrieve from a table. The column list immediately
follows the SELECT keyword.

• Name the table to search in a FROM clause.

Singleton selects must also include both an INTO clause to specify the host vari-
ables into which retrieved values should be stored, and a WHERE clause to
specify the search conditions that cause only a single row to be returned.

The following SELECT retrieves three columns from a table and stores the val-
ues in three host-language variables:

EXEC SQL
SELECT EMP_NO, FIRSTNAME, LASTNAME

INTO :emp_no, :fname, :lname
FROM EMPLOYEE WHERE EMP_NO = 1888;

Important Host variables must be declared in a program before they can be used in
SQL statements. For more information about declaring host variables, see
Chapter 2: “Application Requirements.”

The following table lists all SELECT statement clauses, in the order that they are
used, and prescribes their use in singleton and multi-row selects:

Table 6-10: SELECT Statement Clauses

Clause Purpose
Singleton
SELECT

Multi-row
SELECT

SELECT Lists columns to retrieve. Required Required

INTO Lists host variables for storing retrieved columns. Required Not allowed

FROM Identifies the tables to search for values. Required Required

WHERE Specifies the search conditions used to restrict
retrieved rows to a subset of all available rows. A
WHERE clause can contain its own SELECT state-
ment, referred to as a subquery.

Optional Optional

108 Programmer’s Guide

Using each of these clauses with SELECT is described in the following sections,
after which using SELECT directly to return a single row, and using SELECT
within a DECLARE CURSOR statement to return multiple rows are described in
detail. For a complete overview of SELECT syntax, see the Language Reference.

Listing Columns to Retrieve With SELECT
A list of columns to retrieve must always follow the SELECT keyword in a
SELECT statement. The SELECT keyword and its column list is called a SELECT
clause.

Retrieving a List of Columns

To retrieve a subset of columns for a row of data, list each column by name, in
the order of desired retrieval, and separate each column name from the next by a
comma. Operations that retrieve a subset of columns are often called projections.

For example, the following SELECT retrieves three columns:

EXEC SQL
SELECT EMP_NO, FIRSTNAME, LASTNAME

INTO :emp_no, :fname, :lname
FROM EMPLOYEE WHERE EMP_NO = 2220;

GROUP BY Groups related rows based on common column val-
ues. Used in conjunction with HAVING.

Optional Optional

HAVING Restricts rows generated by GROUP BY to a subset
of those rows.

Optional Optional

UNION Combines the results of two or more SELECT state-
ments to produce a single, dynamic table without
duplicate rows.

Optional Optional

PLAN Specifies the query plan that should be used by the
query optimizer instead of one it would normally
choose.

Optional Optional

ORDER BY Specifies the sort order of rows returned by a
SELECT, either ascending (ASC), the default, or
descending (DESC).

Optional Optional

FOR UPDATE Specifies columns listed after the SELECT clause of
a DECLARE CURSOR statement that can be
updated using a WHERE CURRENT OF clause.

Not allowed Optional

Table 6-10: SELECT Statement Clauses (Continued)

Clause Purpose
Singleton
SELECT

Multi-row
SELECT

Working With Data 109

Retrieving All Columns

To retrieve all columns of data, use an asterisk (*) instead of listing any columns
by name. For example, the following SELECT retrieves every column of data for
a single row in the EMPLOYEE table:

EXEC SQL
SELECT *

INTO :emp_no, :fname, :lname, :phone_ext, :hire, :dept_no,
:job_code, :job_grade, :job_country, :salary, :full_name

FROM EMPLOEE WHERE EMP_NO = 1888;

Important One host variable must be provided for each column returned by a query.

Eliminating Duplicate Columns With DISTINCT

In a query returning multiple rows, it may be desirable to eliminate duplicate
columns. For example, the following query, meant to determine if the
EMPLOYEE table contains employees with the last name, SMITH, might locate
many such rows:

EXEC SQL
DECLARE SMITH CURSOR FOR

SELECT LAST_NAME
FROM EMPLOYEE
WHERE LAST_NAME = "Smith";

To eliminate duplicate columns in such a query, use the DISTINCT keyword
with SELECT. For example, the following SELECT yields only a single instance
of “Smith”:

EXEC SQL
DECLARE SMITH CURSOR FOR

SELECT DISTINCT LAST_NAME
FROM EMPLOYEE
WHERE LAST_NAME = "Smith";

DISTINCT affects all columns listed in a SELECT statement.

Retrieving Aggregate Column Information

SELECT can include aggregate functions, functions that calculate or retrieve a sin-
gle, collective numeric value for a column or expression based on each qualify-

110 Programmer’s Guide

ing row in a query rather than retrieving each value separately. The following
table lists the aggregate functions supported by InterBase:

For example, the following query returns the average salary for all employees in
the EMPLOYEE table:

EXEC SQL
SELECT AVG(SALARY)

INTO :avg_sal
FROM EMPLOYEE;

The following SELECT returns the number of qualifying rows it encounters in
the EMPLOYEE table, both the maximum and minimum employee number of
employees in the table, and the total salary of all employees in the table:

EXEC SQL
SELECT COUNT(*), MAX(EMP_NO), MIN(EMP_NO), SUM(SALARY)

INTO :counter, :maxno, :minno, :total_salary
FROM EMPLOYEE;

If a field value involved in an aggregate calculation is NULL or unknown, the
entire row is automatically excluded from the calculation. Automatic exclusion
prevents averages from being skewed by meaningless data.

Note Aggregate functions can also be used to calculate values for groups of
rows. The resulting value is called a group aggregate. For more information
about using group aggregates, see “Grouping Rows With GROUP BY,” in
this chapter.

Qualifying Column Names in Multi-table SELECT Statements

When data is retrieved from multiple tables, views, and select procedures, the
same column name may appear in more than one table. In these cases, the
SELECT statement must contain enough information to distinguish like-named
columns from one another.

Table 6-11: Aggregate Functions in SQL

Function Purpose

AVG() Calculates the average numeric value for a set of values.

MIN() Retrieves the minimum value in a set of values.

MAX() Retrieves the maximum value in a set of values.

SUM() Calculates the total of numeric values in a set of values.

COUNT() Calculates the number of rows that satisfy the query’s search condition
(specified in the WHERE clause).

Working With Data 111

To distinguish column names in multiple tables, precede those columns with
one of the following qualifiers in the SELECT clause:

• The name of the table, followed by a period. For example,
EMPLOYEE.EMP_NO identifies a column named EMP_NO in the
EMPLOYEE table.

• A table correlation name (alias) followed by a period. For example, if the
correlation name for the EMPLOYEE table is EMP, then EMP.EMP_NO
identifies a column named EMP_NO in the EMPLOYEES table.

Correlation names can be declared for tables, views, and select procedures in the
FROM clause of the SELECT statement. For more information about declaring
correlation names, and for examples of their use, see “Declaring and Using Cor-
relation Names,” in this chapter.

Specifying Transaction Names in a SELECT

InterBase enables an SQL application to run many simultaneous transactions if:

• Each transaction is first named with a SET TRANSACTION statement.

• Each data manipulation statement (SELECT, INSERT, UPDATE,
DELETE) specifies a TRANSACTION clause that identifies the name of
the transaction under which it operates.

• SQL statements are not dynamic.

In SELECT, the TRANSACTION clause intervenes between the SELECT key-
word and the column list, as in the following syntax fragment:

SELECT TRANSACTIONname < col > [, < col > ...]

The TRANSACTION clause is optional in single-transaction programs or in pro-
grams where only one transaction is open at a time. It must be used in a multi-
transaction program. For example, the following SELECT is controlled by the
transaction, T1:

EXEC SQL
SELECT TRANSACTION T1:

COUNT(*), MAX(EMP_NO), MIN(EMP_NO), SUM(SALARY)
INTO :counter, :maxno, :minno, :total_salary
FROM EMPLOYEE;

For a complete discussion of transaction handling and naming, see Chapter 4:
“Working With Transactions.”

112 Programmer’s Guide

Specifying Host Variables With INTO
A singleton select returns data to a list of host-language variables specified by an
INTO clause in the SELECT statement. The INTO clause immediately follows
the list of table columns from which data is to be extracted. Each host variable in
the list must be preceded by a colon (:) and separated from the next by a comma.

The host-language variables in the INTO clause must already have been
declared before they can be used. The number, order, and data type of host-
language variables must correspond to the number, order, and data type of the
columns retrieved. Otherwise, overflow or data conversion errors may occur.

For example, the following C program fragment declares three host variables,
lname, fname, and salary. Two, lname, and fname, are declared as character arrays;
salary is declared as a long integer. The SELECT statement specifies that three
columns of data are to be retrieved, while the INTO clause specifies the host
variables into which the data should be read.

. . .
EXEC SQL

BEGIN DECLARE SECTION;
long salary;
char lname[20], fname[15];
EXEC SQL

END DECLARE SECTION;
. . .

EXEC SQL
SELECT LAST_NAME, FIRST_NAME, SALARY

INTO :lanem, :fname, :salary
FROM EMPLOYEE
WHERE LNAME = "Smith";

. . .

Note In a multi-row select, the INTO clause is part of the FETCH statement, not
the SELECT statement. For more information about the INTO clause in
FETCH, see “Fetching Rows With a Cursor,” in this chapter.

Listing Tables to Search With FROM
The FROM clause is required in a SELECT statement. It identifies the tables,
views, or select procedures from which data is to be retrieved. The complete syn-
tax of the FROM clause is:

FROMtable | view | procedure [alias] [, table | view | procedure
[alias] ...]

Working With Data 113

There must be at least one table, view, or select procedure name following the
FROM keyword. When retrieving data from multiple sources, each source must
be listed, assigned an alias, and separated from the next with a comma. For more
information about select procedures, see Chapter 12: “Working With Stored Pro-
cedures.”

Listing a Single Table or View

The FROM clause in the following SELECT specifies a single table, EMPLOYEE,
from which to retrieve data:

EXEC SQL
SELECT LAST_NAME, FIRST_NAME, SALARY

INTO :lanem, :fname, :salary
FROM EMPLOYEE
WHERE LNAME = "Smith";

Use the same INTO clause syntax to specify a view or select procedure as the
source for data retrieval instead of a table. For example, the following SELECT
specifies a select procedure, MVIEW, from which to retrieve data. MVIEW
returns information for all managers whose last names begin with the letter
“M,” and the WHERE clause narrows the rows returned to a single row where
the DEPT_NO column is 430:

EXEC SQL
SELECT DEPT_NO, LAST_NAME, FIRST_NAME, SALARY

INTO :lname, :fname, :salary
FROM MVIEW
WHERE DEPT_NO = 430;

For more information about select procedures, see Chapter 12: “Working With
Stored Procedures.”

Listing Multiple Tables

To retrieve data from multiple tables, views, or select procedures, include all
sources in the FROM clause, separating sources from one another by commas.

There are two different possibilities to consider when working with multiple
data sources:

1. The name of each referenced column is unique across all tables.

2. The names of one or more referenced columns exist in two or more
tables.

114 Programmer’s Guide

In the first case, just use the column names themselves to reference the columns.
For example, the following query returns data from two tables, DEPARTMENT,
and EMPLOYEE:

EXEC SQL
SELECT DEPARTMENT, DEPT_NO, LAST_NAME, FIRST_NAME, EMP_NO

INTO :dept_name, :dept_no, :lname, :fname, :empno
FROM DEPARTMENT, EMPLOYEE
WHERE DEPT_NO = "Publications" AND MNGR_NO = EMP_NO;

In the second case, column names that occur in two or more tables must be dis-
tinguished from one another by preceding each column name with its table
name and a period in the SELECT clause. For example, if an EMP_NO column
exists in both the DEPARTMENT and EMPLOYEE then the previous query must
be recast as follows:

EXEC SQL
SELECT DEPARTMENT, DEPT_NO, LAST_NAME, FIRST_NAME,

EMLOYEE.EMP_NO
INTO :dept_name, :dept_no, :lname, :fname, :empno
FROM DEPARTMENT, EMPLOYEE
WHERE DEPT_NO = "Publications" AND

DEPARTMENT.EMP_NO = EMPLOYEE.EMP_NO;

For more information about the SELECT clause, see “Listing Columns to
Retrieve With SELECT,” in this chapter.

Important For queries involving joins, column names can be qualified by correlation
names, brief alternate names, or aliases, that are assigned to each table in a
FROM clause and substituted for them in other SELECT statement clauses
when qualifying column names. Even when joins are not involved, assign-
ing and using correlation names can reduce the length of complex queries.

Declaring and Using Correlation Names

A correlation name, or alias, is a temporary variable that represents a table name.
It can contain up to 31 alphanumeric characters, dollar signs ($), and under-
scores (_), but must always start with an alphabetic character. Using brief corre-
lation names reduces typing of long queries. Correlation names must be
substituted for actual table names in joins, and can be substituted for them in
complex queries.

A correlation name is associated with a table in the FROM clause; it replaces
table names to qualify column names everywhere else in the statement. For
example, to associate the correlation name, DEPT with the DEPARTMENT table,
and EMP, with the EMPLOYEES table, a FROM clause might appear as:

FROM DEPARTMENT DEPT, EMPLOYEE EMP

Working With Data 115

Like an actual table name, a correlation name is used to qualify column names
wherever they appear in a SELECT statement. For example, the following query
employs the correlation names, DEPT, and EMP, previously described:

EXEC SQL
SELECT DEPARTMENT, DEPT_NO, LAST_NAME, FIRST_NAME,

EMLOYEE.EMP_NO
INTO :dept_name, :dept_no, :lname, :fname, :empno
FROM DEPARTMENT DEPT, EMPLOYEE EMP
WHERE DEPT_NO = "Publications" AND DEPT.EMP_NO = EMP.EMP_NO;

For more information about the SELECT clause, see “Listing Columns to
Retrieve With SELECT,” in this chapter.

Restricting Row Retrieval With WHERE
In a query, the WHERE clause specifies the data a row must (or must not) con-
tain to be retrieved.

In singleton selects, where a query must only return one row, WHERE is manda-
tory unless a select procedure specified in the FROM clause returns only one
row itself.

In SELECT statements within DECLARE CURSOR statements, the WHERE
clause is optional. If the WHERE clause is omitted, a query returns all rows in
the table. To retrieve a subset of rows in a table, a cursor declaration must
include a WHERE clause.

The simple syntax for WHERE is:

WHERE<search_condition>

For example, the following simple WHERE clause tests a row to see if the
DEPARTMENT column is “Publications”:

WHERE DEPARTMENT = "Publications"

What is a Search Condition?

Because the WHERE clause specifies the type of data a query is searching for it is
often called a search condition. A query examines each row in a table to see if it
meets the criteria specified in the search condition. If it does, the row qualifies
for retrieval.

When a row is compared to a search condition, one of three values is returned:

• True: A row meets the conditions specified in the WHERE clause.

116 Programmer’s Guide

• False: A row fails to meet the conditions specified in the WHERE clause.

• Unknown: A column tested in the WHERE clause contains an unknown
value that could not be evaluated because of a NULL comparison.

Most search conditions, no matter how complex, evaluate to True or False. An
expression that evaluates to True or False—like the search condition in the
WHERE clause—is called a Boolean expression.

Structure of a Search Condition

A typical simple search condition compares a value in one column against a con-
stant or a value in another column. For example, the following WHERE clause
tests a row to see if a field equals a hard-coded constant:

WHERE DEPARTMENT = "Publications"

This search condition has three elements: a column name, a comparison operator
(the equal sign), and a constant. Most search conditions are more complex than
this. They involve additional elements and combinations of simple search condi-
tions. The following table describes expression elements that can be used in
search conditions:

Table 6-12: Elements of WHERE Clause SEARCH Conditions

Element Description

Column names Columns from tables listed in the FROM clause, against which
to search or compare values.

Host-language
variables

Program variables containing changeable values. When used
in a SELECT, host-language variables must be preceded by a
colon (:).

Constants Hard-coded numbers or quoted strings, like 507 or “Tokyo”.

Concatenation
operators

||, used to combine character strings.

Arithmetic operators +, -, *, and /, used to calculate and evaluate search condition
values.

Logical operators Keywords, NOT, AND, and OR, used within simple search con-
ditions, or to combine simple search conditions to make com-
plex searches. A logical operation evaluates to true or false.

Working With Data 117

Complex search conditions can be constructed by combining simple search con-
ditions in different ways. For example, the following WHERE clause uses a col-
umn name, three constants, three comparison operators, and a set of grouping
parentheses to retrieve only those rows for employees with salaries between
$60,000 and $120,000:

WHERE DEPARTMENT = "Publications" AND
(SALARY > 60000 AND SALARY < 120000)

Search conditions in WHERE clauses often contain nested SELECT statements,
or subqueries. For example, in the following query, the WHERE clause contains a
subquery that uses the aggregate function, AVG(), to retrieve a list of all depart-
ments with bigger-than-average salaries:

EXEC SQL
DECLARE WELL_PAID CURSOR FOR

SELECT DEPT_NO
INTO :wellpaid
FROM DEPARTMENT

WHERE SALARY > (SELECT AVG(SALARY) FROM DEPARTMENT);

Comparison operators <, >, <=, >=, =, and <>, used to compare a value on the left
side of the operator to another on the right. A comparative
operation evaluates to True or False.
Other, more specialized comparison operators include ALL,
ANY, BETWEEN, CONTAINING, EXISTS, IN, IS, LIKE, NULL,
SINGULAR, SOME, and STARTING WITH. These operators
can evaluate to True, False, or Unknown.

COLLATE clause Comparisons of CHAR and VARCHAR values can sometimes
take advantage of a COLLATE clause to force the way text val-
ues are compared.

Stored procedures Reusable SQL statement blocks that can receive and return
parameters, and that are stored as part of a database’s meta-
data. For more information about stored procedures in queries,
see Chapter 12: “Working With Stored Procedures.”

Subqueries A SELECT statement nested within the WHERE clause to
return or calculate values against which rows searched by the
main SELECT statement are compared. For more information
about subqueries, see “Using Subqueries,” in this chapter.

Parentheses Group related parts of search conditions which should be pro-
cessed separately to produce a single value which is then
used to evaluate the search condition. Parenthetical expres-
sions can be nested.

Table 6-12: Elements of WHERE Clause SEARCH Conditions (Continued)

Element Description

118 Programmer’s Guide

For a general discussion of building search conditions from SQL expressions, see
“Understanding SQL Expressions,” in this chapter. For more information about
using subqueries to specify search conditions, see “Using Subqueries,” in this
chapter. For more information about aggregate functions, see “Retrieving
Aggregate Column Information,” in this chapter.

Specifying Collation Order in a Comparison Operation

When CHAR or VARCHAR values are compared in a WHERE clause, it can be
necessary to specify a collation order for the comparisons if the values being
compared use different collation orders.

To specify the collation order to use for a value during a comparison, include a
COLLATE clause after the value. For example, in the following WHERE clause
fragment from an embedded application, the value to the left of the comparison
operator is forced to be compared using a specific collation:

WHERE LNAME COLLATE FR_CA = :lname_search;

For more information about collation order and a list of collations available to
InterBase, see the Data Definition Guide.

Sorting Rows With ORDER BY
By default, a query retrieves rows in the exact order it finds them in a table, and
because internal table storage is unordered, retrieval, too, is likely to be unor-
dered. To specify the order in which rows are returned by a query, use the
optional ORDER BY clause at the end of a SELECT statement.

ORDER BY retrieves rows based on a column list. Every column in the ORDER
BY clause must also appear somewhere in the SELECT clause at the start of the
statement. Each column can optionally be ordered in ascending order (ASC, the
default), or descending order (DESC). The complete syntax of ORDER BY is:

ORDER BY col [COLLATE collation] [ASC | DESC]
[, col [COLLATE collation] [ASC | DESC] ...];

For example, the following cursor declaration orders output based on the
LAST_NAME column. Because DESC is specified in the ORDER BY clause,
employees are retrieved from Z to A:

EXEC SQL
DECLARE PHONE_LIST CURSOR FOR

SELECT LAST_NAME, FIRST_NAME, PHONE_EXT
FROM EMPLOYEE
WHERE PHONE_EXT IS NOT NULL
ORDER BY LAST_NAME DESC, FIRST_NAME;

Working With Data 119

If more than one column is specified in an ORDER BY clause, rows are first
arranged by the values in the first column. Then rows that contain the same first-
column value are arranged according to the values in the second column, and so
on. Each ORDER BY column can include its own sort order specification.

Important In multi-column sorts, after a sort order is specified, it applies to all subse-
quent columns until another sort order is specified, as in the previous
example. This attribute is sometimes called sticky sort order. For example,
the following cursor declaration orders retrieval by LAST_NAME in
descending order, then refines it alphabetically within LAST_NAME
groups by FIRST_NAME in ascending order:

EXEC SQL
DECLARE PHONE_LIST CURSOR FOR

SELECT LAST_NAME, FIRST_NAME, PHONE_EXT
FROM EMPLOYEE
WHERE PHONE_EXT IS NOT NULL
ORDER BY LAST_NAME DESC, FIRST_NAME ASC;

Specifying Collation Order in an ORDER BY Clause

When CHAR or VARCHAR columns are ordered in a SELECT statement, it can
be necessary to specify a collation order for the ordering, especially if columns
used for ordering use different collation orders.

To specify the collation order to use for ordering a column in the ORDER BY
clause, include a COLLATE clause after the column name. For example, in the
following ORDER BY clause, a different collation order for each of two columns
is specified:

. . .
ORDER BY LNAME COLLATE FR_CA, FNAME COLLATE FR_FR;

For more information about collation order and a list of available collations in
InterBase, see the Data Definition Guide.

Grouping Rows With GROUP BY
The optional GROUP BY clause enables a query to return summary information
about groups of rows that share column values instead of returning each quali-
fying row. The complete syntax of GROUP BY is:

GROUP BYcol [COLLATE collation] [, col [COLLATE collation] ...]

For example, consider two cursor declarations. The first declaration returns the
names of all employees each department, and arranges retrieval in ascending
alphabetic order by department and employee name.

120 Programmer’s Guide

EXEC SQL
DECLARE DEPT_EMP CURSOR FOR

SELECT DEPARTMENT, LAST_NAME, FIRST_NAME
FROM DEPARTMENT D, EMPLOYEE E
WHERE D.DEPT_NO = E.DEPT_NO"
ORDER BY DEPARTMENT, LAST_NAME, FIRST_NAME;

In contrast, the next cursor illustrates the use of aggregate functions with
GROUP BY to return results known as group aggregates. It returns the average
salary of all employees in each department. The GROUP BY clause assures that
average salaries are calculated and retrieved based on department names, while
the ORDER BY clause arranges retrieved rows alphabetically by department
name.

EXEC SQL
DECLARE AVG_DEPT_SAL CURSOR FOR

SELECT DEPARTMENT, AVG(SALARY)
FROM DEPARTMENT D, EMPLOYEE E
WHERE D.DEPT_NO = E.DEPT_NO
GROUP BY DEPARTMENT
ORDER BY DEPARTMENT;

Specifying Collation Order in a GROUP BY Clause

When CHAR or VARCHAR columns are grouped in a SELECT statement, it can
be necessary to specify a collation order for the grouping, especially if columns
used for grouping use different collation orders.

To specify the collation order to use for grouping columns in the GROUP BY
clause, include a COLLATE clause after the column name. For example, in the
following GROUP BY clause, the collation order for two columns is specified:

. . .
GROUP BY LNAME COLLATE FR_CA, FNAME COLLATE FR_CA;

For more information about collation order and a list of collation orders avail-
able in InterBase, see the Data Definition Guide.

Limitations of GROUP BY

When using GROUP BY, be aware of the following limitations:

• Each column name that appears in a GROUP BY clause must also be
specified in the SELECT clause.

• GROUP BY cannot specify a column whose values are derived from a
mathematical, aggregate, or user-defined function.

Working With Data 121

• GROUP BY cannot be used in SELECT statements that:

• Contain an INTO clause (singleton selects).

• Use a subquery with a FROM clause which references a view whose
definition contains a GROUP BY or HAVING clause.

• For each SELECT clause in a query, including subqueries, there can only
be one GROUP BY clause.

Restricting Grouped Rows With HAVING
Just as a WHERE clause reduces the number of rows returned by a SELECT
clause, the HAVING clause can be used to reduce the number of rows returned
by a GROUP BY clause. The syntax of HAVING is:

HAVING <search_condition>

HAVING uses search conditions that are like the search conditions that can
appear in the WHERE clause, but with the following restrictions:

• Each search condition usually corresponds to an aggregate function used
in the SELECT clause.

• The FROM clause of a subquery appearing in a HAVING clause cannot
name any table or view specified in the main query’s FROM clause.

• A correlated subquery cannot be used in a HAVING clause.

For example, the following cursor declaration returns the average salary for all
employees in each department. The GROUP BY clause assures that average sala-
ries are calculated and retrieved based on department names. The HAVING
clause restricts retrieval to those groups where the average salary is greater than
60,000, while the ORDER BY clause arranges retrieved rows alphabetically by
department name.

EXEC SQL
DECLARE SIXTY_THOU CURSOR FOR

SELECT DEPARTMENT, AVG(SALARY)
FROM DEPARTMENT D, EMPLOYEE E
WHERE D.DEPT_NO = E.DEPT_NO
GROUP BY DEPARTMENT
HAVING AVG(SALARY) > 60000
ORDER BY DEPARTMENT;

Note HAVING can also be used without GROUP BY. In this case, all rows
retrieved by a SELECT are treated as a single group, and each column
named in the SELECT clause is normally operated on by an aggregate
function.

122 Programmer’s Guide

For more information about search conditions, see “Restricting Row Retrieval
With WHERE,” in this chapter. For more information about subqueries, see
“Using Subqueries,” in this chapter.

Specifying a Query Plan With PLAN
To process a SELECT statement, InterBase uses an internal algorithm, called the
query optimizer, to determine the most efficient plan for retrieving data. Usually
the most efficient retrieval plan also results in the fastest retrieval time. Occa-
sionally the optimizer may choose a plan that is less efficient. For example, when
the number of rows in a table grows sufficiently large, or when many duplicate
rows are inserted or deleted from indexed columns in a table, but the index’s
selectivity is not recomputed, the optimizer might choose a less efficient plan.

For these occasions, SELECT provided an optional PLAN clause that enables a
knowledgeable programmer to specify a retrieval plan. A query plan is built
around the availability of indexes, the way indexes are joined or merged, and a
chosen access method.

To specify a query plan, use the following PLAN syntax:

PLAN <plan_expr >

<plan_expr> =
[JOIN | [SORT] MERGE] (<plan_item> | <plan_expr>
[, <plan_item> | <plan_expr> ...])

<plan_item> = { table | alias }
NATURAL | INDEX (<index> [, <index> ...]) | ORDER <index>

The PLAN syntax enables specifying a single table, or a join of two or more
tables in a single pass. Plan expressions can be nested in parentheses to specify
any combination of joins.

During retrieval, information from different tables is joined to speed retrieval. If
indexes are defined for the information to be joined, then these indexes are used
to perform a join. The optional JOIN keyword can be used to document this type
of operation. When no indexes exist for the information to join, retrieval speed
can be improved by specifying SORT MERGE instead of JOIN.

A <plan_item> is the name of a table to search for data. If a table is used more
than once in a query, aliases must be used to distinguish them in the PLAN
clause. Part of the <plan_item> specification indicates the way that rows should
be accessed. The following choices are possible:

• NATURAL, the default order, specifies that rows are accessed sequen-
tially in no defined order. For unindexed items, this is the only option.

Working With Data 123

• INDEX specifies that one or more indexes should be used to access items.
All indexes to be used must be specified. If any Boolean or join terms
remain after all indexes are used, they will be evaluated without benefit
of an index. If any indexes are specified that cannot be used, an error is
returned.

• ORDER specifies that items are to be sorted based on a specified index.

Selecting a Single Row

An operation that retrieves a single row of data is called a singleton select. To
retrieve a single row from a table, to retrieve a column defined with a unique
index, or to select an aggregate value like COUNT() or AVG() from a table, use
the following SELECT statement syntax:

SELECT <col > [, < col > ...]
INTO : variable [, : variable ...]
FROMtable
WHERE <search_condition >;

The mandatory INTO clause specifies the host variables where retrieved data is
copied for use in the program. Each host variable’s name must be preceded by a
colon (:). For each column retrieved, there must be one host variable of a corre-
sponding data type. Columns are retrieved in the order they are listed in the
SELECT clause, and are copied into host variables in the order the variables are
listed in the INTO clause.

The WHERE clause must specify a search condition that guarantees that only
one row is retrieved. If the WHERE clause does not reduce the number of rows
returned to a single row, the SELECT fails.

Important To select data from a table, a user must have SELECT privilege for a table,
or a stored procedure invoked by the user’s application must have SELECT
privileges for the table.

For example, the following SELECT retrieves information from the
DEPARTMENT table for the department, Publications:

EXEC SQL
SELECT DEPARTMENT, DEPT_NO, HEAD_DEPT, BUDGET, LOCATION, PHONE_NO

INTO :deptname, :dept_no, :manager, :budget, :location, :phone
FROM DEPARTMENT
WHERE DEPARTMENT = "Publications";

When SQL retrieves the specified row, it copies the value in DEPARTMENT to
the host variable, deptname, copies the value in DEPT_NO to :dept_no, copies the
value in HEAD_DEPT to :manager, and so on.

124 Programmer’s Guide

Selecting Multiple Rows

Most queries specify search conditions that retrieve more than one row. For
example, a query that asks to see all employees in a company that make more
than $60,000 can retrieve many employees.

Because host variables can only hold a single column value at a time, a query
that returns multiple rows must build a temporary table in memory, called a
results table, from which rows can then be extracted and processed, one at a time,
in sequential order. SQL keeps track of the next row to process in the results
table by establishing a pointer to it, called a cursor.

Important In dynamic SQL (DSQL), the process for creating a query and retrieving
data is somewhat different. For more information about multi-row selec-
tion in DSQL, see “Selecting Multiple Rows in DSQL,” in this chapter.

To retrieve multiple rows into a results table, establish a cursor into the table,
and process individual rows in the table, SQL provides the following sequence
of statements:

1. DECLARE CURSOR

• Establishes a name for the cursor.

• Specifies the query to perform.

2. OPEN executes the query, builds the results table, and positions the cur-
sor at the start of the table.

3. FETCH retrieves a single row at a time from the results table into host
variables for program processing.

4. CLOSE releases system resources when all rows are retrieved.

Important To select data from a table, a user must have SELECT privilege for a table,
or a stored procedure invoked by the user’s application must have SELECT
privilege for it.

Declaring a Cursor
To declare a cursor and specify rows of data to retrieve, use the DECLARE
CURSOR statement. DECLARE CURSOR is a descriptive, non-executable state-
ment. InterBase uses the information in the statement to prepare system
resources for the cursor when it is opened, but does not actually perform the
query. Because DECLARE CURSOR is non-executable, SQLCODE is not
assigned when this statement is used.

Working With Data 125

The syntax for DECLARE CURSOR is:

DECLAREcursorname CURSOR FOR
SELECT <col > [, < col > ...]

FROMtable [, < table > ...]
WHERE <search_condition >
[GROUP BY col [, col ...]]
[HAVING < search_condition >]
[ORDER BY col [ASC | DESC] [, col ...] [ASC | DESC]

| FOR UPDATE OF col [, col ...]];

The cursorname is used in subsequent OPEN, FETCH, and CLOSE statements to
identify the active cursor.

With the following exceptions, the SELECT statement inside a DECLARE
CURSOR is similar to a stand-alone SELECT:

• A SELECT in a DECLARE CURSOR cannot include an INTO clause.

• A SELECT in a DECLARE CURSOR can optionally include either an
ORDER BY clause or a FOR UPDATE clause.

For example, the following statement declares a cursor:

EXEC SQL
DECLARE TO_BE_HIRED CURSOR FOR

SELECT D.DEPARTMENT, D.LOCATION, P.DEPARTMENT
FROM DEPARTMENT D, DEPARTMENT P
WHERE D.MNGR_NO IS NULL

AND D.HEAD_DEPT = P.DEPT_NO;

Permitting Updates Through Cursors With FOR UPDATE

In many applications, data retrieval and update may be interdependent.
DECLARE CURSOR supports an optional FOR UPDATE clause that optionally
lists columns in retrieved rows that can be modified. For example, the following
statement declares such a cursor:

EXEC SQL
DECLARE H CURSOR FOR

SELECT CUST_NO
FROM CUSTOMER
WHERE ON_HOLD = "*"
FOR UPDATE OF ON_HOLD;

If a column list after FOR UPDATE is omitted, all columns retrieved for each
row may be updated. For example, the following query enables updating for
two columns:

EXEC SQL
DECLARE H CURSOR FOR

126 Programmer’s Guide

SELECT CUST_NAME CUST_NO
FROM CUSTOMER
WHERE ON_HOLD = "*";

For more information about updating columns through a cursor, see “Updating
Multiple Rows,” in this chapter.

Opening a Cursor
Before data selected by a cursor can be accessed, the cursor must be opened with
the OPEN statement. OPEN activates the cursor and builds a results table. It
builds the results table based on the selection criteria specified in the DECLARE
CURSOR statement. The rows in the results table comprise the active set of the
cursor.

For example, the following statement opens a previously declared cursor called
DEPT_EMP:

EXEC SQL
OPEN DEPT_EMP;

When InterBase executes the OPEN statement, the cursor is positioned at the
start of the first row in the results table.

Fetching Rows With a Cursor
Once a cursor is opened, rows can be retrieved, one at a time, from the results
table by using the FETCH statement. FETCH:

1. Retrieves the next available row from the results table.

2. Copies those rows into the host variables specified in the INTO clause of
the FETCH statement.

3. Advances the cursor to the start of the next available row or sets
SQLCODE to 100, indicating the cursor is at the end of the results table
and there are no more rows to retrieve.

The complete syntax of the FETCH statement in SQL is:

FETCH <cursorname > INTO : variable [[INDICATOR] : variable]
[, : variable [[INDICATOR] : variable >] ...];

Important In dynamic SQL (DSQL) multi-row select processing, a different FETCH
syntax is used. For more information about retrieving multiple rows in
DSQL, see “Fetching Rows With a DSQL Cursor,” in this chapter.

Working With Data 127

For example, the following statement retrieves a row from the results table for
the DEPT_EMP cursor, and copies its column values into the host-language vari-
ables, deptname, lname, and fname:

EXEC SQL
FETCH DEPT_EMP

INTO :deptname, :lname, :fname;

To process each row in a results table in the same manner, enclose the FETCH
statement in a host-language looping construct. For example, the following C
code fetches and prints each row defined for the DEPT_EMP cursor:

. . .
EXEC SQL

FETCH DEPT_EMP
INTO :deptname, :lname, :fname;

while (!SQLCODE)
{

printf("%s %s works in the %s department.\n", fname,
lname, deptname);

EXEC SQL
FETCH DEPT_EMP

INTO :deptname, :lname, :fname;
}
EXEC SQL

CLOSE DEPT_EMP;
. . .

Every FETCH statement should be tested to see if the end of the active set is
reached. The previous example operates in the context of a while loop that con-
tinues processing as long as SQLCODE is zero. If SQLCODE is 100, it indicates
that there are no more rows to retrieve. If SQLCODE is less than zero, it indicates
that an error occurred.

Retrieving Indicator Status

Any column can have a NULL value, except those defined with the NOT NULL
or UNIQUE integrity constraints. Rather than store a value for the column,
InterBase sets a flag indicating the column has no assigned value.

To determine if a value returned for a column is NULL, follow each variable
named in the INTO clause with the INDICATOR keyword and the name of a
short integer variable, called an indicator variable, where InterBase should store
the status of the NULL value flag for the column. If the value retrieved is:

• NULL, the indicator variable is set to -1.

• Not NULL, the indicator parameter is set to 0.

128 Programmer’s Guide

For example, the following C code declares three host-language variables,
department, manager, and missing_manager, then retrieves column values into
department, manager, and a status flag for the column retrieved into manager,
missing_manager, with a FETCH from a previously declared cursor, GETCITY:

. . .
char department[26];
char manager[36];
short missing_manager;
. . .
FETCH GETCITY INTO :department, :manager INDICATOR :missing_manager;

The optional INDICATOR keyword can be omitted:

FETCH GETCITY INTO :department, :manager :missing_manager;

Often, the space between the variable that receives the actual contents of a
column and the variable that holds the status of the NULL value flag is also
omitted:

FETCH GETCITY INTO :department, :manager:missing_manager;

Note While InterBase enforces the SQL requirement that the number of host
variables in a FETCH must equal the number of columns specified in
DECLARE CURSOR, indicator variables in a FETCH statement are not
counted toward the column count.

Refetching Rows With a Cursor

The only supported cursor movement is forward in sequential order through the
active set.

To revisit previously fetched rows, close the cursor and then reopen it with
another OPEN statement. For example, the following statements close the
DEPT_EMP cursor, then recreate it, effectively repositioning the cursor at the
start of the DEPT_EMP results table:

EXEC SQL
CLOSE DEPT_EMP;

EXEC SQL
OPEN DEPT_EMP;

Closing the Cursor
When the end of a cursor’s active set is reached, a cursor should be closed to free
up system resources. To close a cursor, use the CLOSE statement. For example,
the following statement closes the DEPT_EMP cursor:

Working With Data 129

EXEC SQL
CLOSE DEPT_EMP;

Programs can check for the end of the active set by examining SQLCODE, which
is set to 100 to indicate there are no more rows to retrieve.

A Complete Cursor Example
The following program declares a cursor, opens the cursor, and then loops
through the cursor’s active set, fetching and printing values. The program closes
the cursor when all processing is finished or an error occurs.

#include <stdio.h>
EXEC SQL

BEGIN DECLARE SECTION;
char deptname[26];
char lname[16];
char fname[11];

EXEC SQL
END DECLARE SECTION;

main ()
{

EXEC SQL
WHENEVER SQLERROR GO TO abend;

EXEC SQL
DECLARE DEPT_EMP CURSOR FOR

SELECT DEPARTMENT, LAST_NAME, FIRST_NAME
FROM DEPARTMENT D, EMPLOYEE E
WHERE D.DEPT_NO = E.DEPT_NO"
ORDER BY DEPARTMENT, LAST_NAME, FIRST_NAME;

EXEC SQL
OPEN DEPT_EMP;

EXEC SQL
FETCH DEPT_EMP

INTO :deptname, :lname, :fname;
while (!SQLCODE)
{

printf("%s %s works in the %s department.\n",fname,
lname, deptname);

EXEC SQL
FETCH DEPT_EMP

INTO :deptname, :lname, :fname;
}
EXEC SQL

CLOSE DEPT_EMP;
exit();

abend:
if (SQLCODE)

130 Programmer’s Guide

{
isc_print_sqlerror();
EXEC SQL

ROLLBACK;
EXEC SQL

CLOSE_DEPT_EMP;
EXEC SQL

DISCONNECT ALL;
exit(1)

}
else
{

EXEC SQL
COMMIT;

EXEC SQL
DISCONNECT ALL;

exit()
}

}

Selecting Rows With NULL Values
Any column can have NULL values, except those defined with the NOT NULL
or UNIQUE integrity constraints. Rather than store a value for the column,
InterBase sets a flag indicating the column has no assigned value.

Use IS NULL in a WHERE clause search condition to query for NULL values.
For example, some rows in the DEPARTMENT table do not have a value for the
BUDGET column. Departments with no stored budget have the NULL value
flag set for that column. The following cursor declaration retrieves rows for
departments without budgets for possible update:

EXEC SQL
DECLARE NO_BUDGET CURSOR FOR

SELECT DEPARTMENT, BUDGET
FROM DEPARTMENT
WHERE BUDGET IS NULL
FOR UPDATE OF BUDGET;

Note To determine if a column has a NULL value, use an indicator variable. For
more information about indicator variables, see “Retrieving Indicator Sta-
tus,” in this chapter.

A direct query on a column containing a NULL value returns zero for numbers,
blanks for characters, and 17 November 1858 for dates. For example, the follow-
ing cursor declaration retrieves all department budgets, even those with NULL
values, which are reported as zero:

EXEC SQL
DECLARE ALL_BUDGETS CURSOR FOR

Working With Data 131

SELECT DEPARTMENT, BUDGET
FROM DEPARTMENT
ORDER BY BUDGET DESCENDING;

Limitations on NULL Values

Because InterBase treats NULL values as non-values, the following limitations
on NULL values in queries should be noted:

• Rows with NULL values are sorted after all other rows.

• NULL values are skipped by all aggregate operations, except for
COUNT(*).

• NULL values cannot be elicited by a negated test in a search condition.

• NULL values cannot satisfy a join condition.

NULL values can be tested in comparisons. If a value on either side of a compar-
ison operator is NULL, the result of the comparison is Unknown.

For the Boolean operators (NOT, AND, and OR), the following considerations
are made:

• NULL values with NOT always returns Unknown.

• NULL values with AND return Unknown unless one operand for AND
is false. In this latter case, False is returned.

• NULL values with OR return Unknown unless one operand for OR is
true. In this latter case, True is returned.

For information about defining alternate NULL values, see the Data Definition
Guide.

Selecting Rows Through a View
To select a subset of rows available through a view, substitute the name of the
view for a table name in the FROM clause of a SELECT. For example, the follow-
ing cursor produces a list of employee phone numbers based on the
PHONE_VIEW view:

EXEC SQL
DECLARE PHONE_LIST CURSOR FOR

SELECT FIRST_NAME, LAST_NAME, PHONE_EXT
FROM PHONE_VIEW
WHERE EMPLOYEE.DEPT_NO = DEPARTMENT.DEPT_NO;

132 Programmer’s Guide

A view can be a join. Views can also be used in joins, themselves, in place of
tables. For more information about views in joins, see “Joining Tables,” in this
chapter.

Selecting Multiple Rows in DSQL

In DSQL users are usually permitted to specify queries at run time. To accommo-
date any type of query the user supplies, DSQL requires the use of extended
SQL descriptor areas (XSQLDAs) where a query’s input and output can be
prepared and described. For queries returning multiple rows, DSQL supports
variations of the DECLARE CURSOR, OPEN, and FETCH statements that make
use of the XSQLDA.

To retrieve multiple rows into a results table, establish a cursor into the table,
and process individual rows in the table. DSQL provides the following sequence
of statements:

1. PREPARE establishes the user-defined query specification in the
XSQLDA structure used for output.

2. DECLARE CURSOR:

• Establishes a name for the cursor.

• Specifies the query to perform.

3. OPEN executes the query, builds the results table, and positions the cur-
sor at the start of the table.

4. FETCH retrieves a single row at a time from the results table for program
processing.

5. CLOSE releases system resources when all rows are retrieved.

The following three sections describe how to declare a DSQL cursor, how to
open it, and how to fetch rows using the cursor. For more information about
creating and filling XSQLDA structures, and preparing DSQL queries with
PREPARE, see Chapter 15: “Using Dynamic SQL.” For more information about
closing a cursor, see “Closing the Cursor,” in this chapter.

Declaring a DSQL Cursor
DSQL must declare a cursor based on a user-defined SELECT statement. Usu-
ally, DSQL programs:

Working With Data 133

• Prompt the user for a query (SELECT).

• Store the query in a host-language variable.

• Issue a PREPARE statement that uses the host-language variable to
describe the query results in an XSQLDA.

• Declare a cursor using the query alias.

The complete syntax for DECLARE CURSOR in DSQL is:

DECLAREcursorname CURSOR FOR queryname ;

For example, the following C code fragment declares a string variable,
querystring, to hold the user-defined query, gets a query from the user and stores
it in querystring, uses querystring to PREPARE a query called QUERY, then
declares a cursor, C, that uses QUERY:

. . .
EXEC SQL

BEGIN DECLARE SECTION;
char querystring [512];
XSQLDA *InputSqlda, *OutputSqlda;

EXEC SQL
END DECLARE SECTION;

. . .
printf("Enter query: "); /* prompt for query from user */
gets(querystring); /* get the string, store in querystring */
. . .
EXEC SQL

PREPARE QUERY INTO OutputSqlda FROM :querystring;
. . .
EXEC SQL

DECLARE C CURSOR FOR QUERY;

For more information about creating and filling XSQLDA structures, and pre-
paring DSQL queries with PREPARE, see Chapter 15: “Using Dynamic SQL.”

Opening a DSQL Cursor
The OPEN statement in DSQL establishes a results table from the input parame-
ters specified in a previously declared and populated XSQLDA. A cursor must
be opened before data can be retrieved. The syntax for a DSQL OPEN is:

OPEN cursorname USING DESCRIPTOR sqldaname ;

For example, the following statement opens the cursor, C, using the XSQLDA,
InputSqlda:

EXEC SQL
OPEN C USING DESCRIPTOR InputSqlda;

134 Programmer’s Guide

Fetching Rows With a DSQL Cursor
DSQL uses the FETCH statement to retrieve rows from a results table. The rows
are retrieved according to specifications provided in a previously established
and populated extended SQL descriptor area (XSQLDA) that describes the
user’s request. The syntax for the DSQL FETCH statement is:

FETCH cursorname USING DESCRIPTOR descriptorname ;

For example, the following C code fragment declares XSQLDA structures for
input and output, and illustrates how the output structure is used in a FETCH
statement:

. . .
XSQLDA *InputSqlda, *OutputSqlda;
. . .
EXEC SQL

FETCH C USING DESCRIPTOR OutputSqlda;
. . .

For more information about creating and filling XSQLDA structures, and pre-
paring DSQL queries with PREPARE, see Chapter 15: “Using Dynamic SQL.”

Joining Tables

Joins enable retrieval of data from two or more tables in a database with a single
SELECT. The tables from which data is to be extracted are listed in the FROM
clause. Optional syntax in the FROM clause can reduce the number of rows
returned, and additional WHERE clause syntax can further reduce the number
of rows returned.

From the information in a SELECT that describes a join, InterBase builds a table
that contains the results of the join operation, the results table, sometimes also
called a dynamic or virtual table.

InterBase supports two basic types of joins:

• Inner joins link rows in tables based on specified join conditions, and
return only those rows that match the join conditions. There are three
types of inner joins:

• Equi-joins link rows based on common values or equality relation-
ships in the join columns.

• Joins that link rows based on comparisons other than equality in the
join columns. There is not an officially recognized name for these

Working With Data 135

types of joins, but for simplicity’s sake they may be categorized as
comparative joins, or non-equi-joins.

• Reflexive or self-joins, compare values within a column of a single
table.

• Outer joins link rows in tables based on specified join conditions and
return both rows that match the join conditions, and all other rows from
one or more tables even if they do not match the join condition.

The most commonly used joins are inner joins, because they both restrict the
data returned, and show a clear relationship between two or more tables. Outer
joins, however, are useful for viewing joined rows against a background of rows
that do not meet the join conditions.

Choosing Join Columns
Regardless of join types, to create a useful join, the columns that are compared
should be a PRIMARY KEY or a FOREIGN KEY. Joined columns need not have
the same names, but they must be of compatible data types. For example,
INTEGER, DECIMAL, NUMERIC, and FLOAT data types can be compared to
one another because they are all numbers. String values, like CHAR and
VARCHAR, can only be compared to other string values unless they contain
ASCII values that are all numbers. The CAST() function can be used to force
translation of one InterBase data type to another for comparisons. For more
information about CAST(), see “Using CAST() for Data Type Conversions,” in
this chapter.

Important If a joined column contains a NULL value for a given row, InterBase does
not include that row in the results table unless performing an outer join.

Using Inner Joins
InterBase supports two methods for creating inner joins. For portability and
compatibility with existing SQL applications, InterBase continues to support the
old SQL method for specifying joins. In older versions of SQL, there is no
explicit join language. An inner join is specified by listing tables to join in the
FROM clause of a SELECT, and the columns to compare in the WHERE clause.

For example, the following join returns all departments and department manag-
ers where the manager’s salary is at least 20% of a department’s total salary:

EXEC SQL
DECLARE BIG_SAL CURSOR FOR

SELECT D.DEPARTMENT, D.MANAGER, E.SALARY

136 Programmer’s Guide

FROM DEPARTMENT D, EMPLOYEE E
WHERE D.MNGR_NO = E.EMP_NO.NAME AND E.SALARY/5

>= (SELECT AVG(S.SALARY) FROM S EMPLOYEE
WHERE D.DEPT_NO = S.DEPT_NO)

ORDER BY D.DEPARTMENT;

InterBase also implements new, explicit join syntax based on SQL-92:

SELECT col [, col ...] | *
FROM <tablerefleft > [INNER] JOIN < tablerefright >

[ON < searchcondition >]
[WHERE <searchcondition >];

The join is explicitly declared in the FROM clause using the JOIN keyword. The
table reference appearing to the left of the JOIN keyword is called the left table,
while the table to the right of the JOIN is called the right table. Search conditions
based on a column in the right table can be specified in an optional ON clause
following the right table reference. For example, using the new join syntax, the
previously described query can be rewritten as:

EXEC SQL
DECLARE BIG_SAL CURSOR FOR

SELECT D.DEPARTMENT, D.MANAGER, E.SALARY
FROM DEPARTENT D JOIN EMPLOYEE E ON D.MNGR_NO = E.EMP_NO

AND E.SALARY/5 >= (SELECT AVG(S.SALARY) FROM S EMPLOYEE
WHERE D.DEPT_NO = S.DEPT_NO)

ORDER BY D.DEPARTMENT;

The new join syntax offers several advantages. An explicit join declaration
makes the intention of the program clear when reading its source code.

The ON clause enables join search conditions to be expressed in the FROM
clause. The search condition that follows the ON clause is the only place where
retrieval of rows can be restricted based on columns appearing in the right table.
The WHERE clause can be used to further restrict rows based solely on columns
in the left table.

The FROM clause also permits the use of table references, parenthetical, nested
joins whose result tables are created and then processed as if they were actual
tables stored in a database. For more information about nested joins, see “Using
Nested Joins,” in this chapter.

Creating Equi-joins

An inner join that matches values in join columns is called an equi-join. Equi-
joins are among the most common join operations. The ON clause in an equi-join
always takes the form:

ON t1.column = t2.column

Working With Data 137

For example, the following join returns a list of cities around the world if the
capital cities also appear in the CITIES table, and also returns the populations of
those cities:

EXEC SQL
DECLARE CAPPOP CURSOR FOR

SELECT COU.NAME, COU.CAPITAL, CIT.POPULATION
FROM COUNTRIES COU JOIN CITIES CIT ON CIT.NAME = COU.CAPITAL
WHERE COU.CAPITAL NOT NULL
ORDER BY COU.NAME;

In this example, the ON clause specifies that the CITIES table must contain a city
name that matches a capital name in the COUNTRIES table if a row is to be
returned. Note that the WHERE clause restricts rows retrieved from the
COUNTRIES table to those where the CAPITAL column contains a value.

Creating Joins Based on Non-equality Comparison Operators

Inner joins can compare values in join columns using other comparison opera-
tors besides the equality operator. For example, a join might be based on a col-
umn in one table having a value less than the value in a column in another table.
The ON clause in a comparison join always takes the form:

ON t1.column < operator > t2.column

where <operator> is a valid comparison operator. For a list of valid comparison
operators, see “Using Comparison Operators in Expressions,” in this chapter.

For example, the following join returns information about provinces in Canada
that are larger than the state of Alaska in the United States:

EXEC SQL
DECLARE BIGPROVINCE CURSOR FOR

SELECT S.STATE_NAME, S.AREA, P.PROVINCE_NAME, P.AREA
FROM STATES S JOIN PROVINCE P ON P.AREA > S.AREA AND

P.COUNTRY = "Canada"
WHERE S.STATE_NAME = "Alaska";

In this example, the first comparison operator in the ON clause tests to see if the
area of a province is greater than the area of any state (the WHERE clause
restricts final output to display only information for provinces that are larger in
area than the state of Alaska).

Creating Self-joins

A self-join is an inner join where a table is joined to itself to correlate columns of
data. For example, the RIVERS table lists rivers by name, and, for each river, lists

138 Programmer’s Guide

the river into which it flows. Not all rivers, of course, flow into other rivers. To
discover which rivers flow into other rivers, and what their names are, the
RIVERS table must be joined to itself:

EXEC SQL
DECLARE RIVERSTORIVERS CURSOR FOR

SELECT R1.RIVER, R2.RIVER
FROM RIVERS R1 JOIN RIVERS R2 ON R2.OUTFLOW = R1.RIVER
ORDER BY R1.RIVER, R2.SOURCE;

As this example illustrates, when a table is joined to itself, each invocation of the
table must be assigned a unique correlation name (R1 and R2 are correlation
names in the example). For more information about assigning and using correla-
tion names, see “Declaring and Using Correlation Names,” in this chapter.

Using Outer Joins
Outer joins produce a results table that contains columns from every row in one
table, and a subset of rows from another table. Actually, one type of outer join
returns all rows from each table, but this type of join is used less frequently than
other types. Outer join syntax is very similar to that of inner joins:

SELECT col [, col ...] | *
FROM <tablerefleft > {LEFT | RIGHT | FULL} [OUTER] JOIN

<tablerefright > [ON < searchcondition >]
[WHERE <searchcondition >];

Outer join syntax requires that you specify the type of join to perform. There are
three possibilities:

• A left outer join retrieves all rows from the left table in a join, and retrieves
any rows from the right table that match the search condition specified in
the ON clause.

• A right outer join retrieves all rows from the right table in a join, and
retrieves any rows from the left table that match the search condition
specified in the ON clause.

• A full outer join retrieves all rows from both the left and right tables in a
join regardless of the search condition specified in the ON clause.

Outer joins are useful for comparing a subset of data to the background of all
data from which it is retrieved. For example, when listing those countries which
contain the sources of rivers, it may be interesting to see those countries which
are not the sources of rivers as well.

Working With Data 139

Using a Left Outer Join

The left outer join is more commonly used than other types of outer joins. The
following left outer join retrieves those countries that contain the sources of
rivers, and identifies those countries that do not have NULL values in the
R.RIVERS column:

EXEC SQL
DECLARE RIVSOURCE CURSOR FOR

SELECT C.COUNTRY, R.RIVER
FROM COUNTRIES C LEFT JOIN RIVERS R ON R.SOURCE = C.COUNTRY
ORDER BY C.COUNTRY;

The ON clause enables join search conditions to be expressed in the FROM
clause. The search condition that follows the ON clause is the only place where
retrieval of rows can be restricted based on columns appearing in the right table.
The WHERE clause can be used to further restrict rows based solely on columns
in the left (outer) table.

Using a Right Outer Join

A right outer join retrieves all rows from the right table in a join, and only those
rows from the left table that match the search condition specified in the ON
clause. The following right outer join retrieves a list of rivers and their countries
of origin, but also reports those countries that are not the source of any river:

EXEC SQL
DECLARE RIVSOURCE CURSOR FOR

SELECT R.RIVER, C.COUNTRY
FROM RIVERS.R RIGHT JOIN COUNTRIES C ON C.COUNTRY = R.SOURCE
ORDER BY C.COUNTRY;

Tip Most right outer joins can be rewritten as left outer joins by reversing the
order in which tables are listed.

Using a Full Outer Join

A full outer join returns all selected columns that do not contain NULL values
from each table in the FROM clause without regard to search conditions. It is
useful to consolidate similar data from disparate tables.

For example, several tables in a database may contain city names. Assuming
triggers have not been created that ensure that a city entered in one table is also
entered in the others to which it also applies, one of the only ways to see a list of
all cities in the database is to use full outer joins. The following example uses

140 Programmer’s Guide

two full outer joins to retrieve the name of every city listed in three tables,
COUNTRIES, CITIES, and NATIONAL_PARKS:

EXEC SQL
DECLARE ALLCITIES CURSOR FOR

SELECT DISTINCT CIT.CITY, COU.CAPITAL, N.PARKCITY
FROM (CITIES CIT FULL JOIN COUNTRIES COU) FULL

JOIN NATIONAL_PARKS N;

This example uses a nested full outer join to process all rows from the CITIES and
COUNTRIES tables. The result table produced by that operation is then used as
the left table of the full outer join with the NATIONAL_PARKS table. For more
information about using nested joins, see “Using Nested Joins,” in this chapter.

Note In most databases where tables share similar or related information, trig-
gers are usually created to ensure that all tables are updated with shared
information. For more information about triggers, see the Data Definition
Guide.

Using Nested Joins
The SELECT statement FROM clause can be used to specify any combination of
available tables or table references, parenthetical, nested joins whose results tables
are created and then processed as if they were actual tables stored in the data-
base. Table references are flexible and powerful, enabling the succinct creation of
complex joins in a single location in a SELECT.

For example, the following statement contains a parenthetical outer join that cre-
ates a results table with the names of every city in the CITIES table even if the
city is not associated with a country in the COUNTRIES table. The results table
is then processed as the left table of an inner join that returns only those cities
that have professional sports teams of any kind, the name of the team, and the
sport the team plays.

DECLARE SPORTSCITIES CURSOR FOR
SELECT COU.COUNTRY, C.CITY, T.TEAM, T.SPORT

FROM (CITIES CIT LEFT JOIN COUNTRIES COU ON COU.COUNTRY =
CIT.COUNTRY) INNER JOIN TEAMS T ON T.CITY = C.CITY

ORDER BY COU.COUNTRY;

For more information about left joins, see “Using Outer Joins,” in this chapter.

Working With Data 141

Appending Tables

Sometimes two or more tables in a database are identically structured, or have
columns that contain similar data. Where table structures overlap, information
from those tables can be combined to produce a single results table that returns a
projection for every qualifying row in both tables. The UNION clause retrieves
all rows from each table, appends one table to the end of another, and eliminates
duplicate rows.

Unions are commonly used to perform aggregate operations on tables.

The syntax for UNION is:

UNION SELECT col [, col ...] | * FROM < tableref > [, < tableref > ...]

For example, three tables, CITIES, COUNTRIES, and NATIONAL_PARKS, each
contain the names of cities. Assuming triggers have not been created that ensure
that a city entered in one table is also entered in the others to which it also
applies, UNION can be used to retrieve the names of all cities that appear in any
of these tables.

EXEC SQL
DECLARE ALLCITIES CURSOR FOR

SELECT CIT.CITY FROM CITIES CIT
UNION SELECT COU.CAPITAL FROM COUNTRIES COU
UNION SELECT N.PARKCITY FROM NATIONAL_PARKS N;

Tip If two or more tables share entirely identical structures—similarly named
columns, identical data types, and similar data values in each column—
UNION can return all rows for each table by substituting an asterisk (*) for
specific column names in the SELECT clauses of the UNION.

Using Subqueries

A subquery is a parenthetical SELECT statement nested inside the WHERE clause
of another SELECT statement, where it functions as a search condition to restrict
the number of rows returned by the outer, or parent, query. A subquery can refer
to the same table or tables as its parent query, or to other tables.

The elementary syntax for a subquery is:

SELECT [DISTINCT] col [, col ...]
FROM <tableref > [, < tableref > ...]

WHERE {expression {[NOT] IN | comparison_operator }
| [NOT] EXISTS} (SELECT [DISTINCT] col [, col ...]

FROM <tableref > [, < tableref > ...]

142 Programmer’s Guide

WHERE <search_condition >);

Because a subquery is a search condition, it is usually evaluated before its parent
query, which then uses the result to determine whether or not a row qualifies for
retrieval. The only exception is the correlated subquery, where the parent query
provides values for the subquery to evaluate. For more information about corre-
lated subqueries, see “Correlated Subqueries,” in this chapter.

A subquery determines the search condition for a parent’s WHERE clause in one
of the following ways:

• Produces a list of values for evaluation by an IN operator in the parent
query’s WHERE clause, or where a comparison operator is modified by
the ALL, ANY, or SOME operators.

• Returns a single value for use with a comparison operator.

• Tests whether or not data meets conditions specified by an EXISTS oper-
ator in the parent query’s WHERE clause.

Subqueries can be nested within other subqueries as search conditions, estab-
lishing a chain of parent/child queries.

Simple Subqueries
A subquery is especially useful for extracting data from a single table when a
self-join is inadequate. For example, it is impossible to retrieve a list of those
countries with a larger than average area by joining the COUNTRIES table to
itself. A subquery, however, can easily return that information.

EXEC SQL
DECLARE LARGECOUNTRIES CURSOR FOR

SELECT COUNTRY, AREA
FROM COUNTRIES
WHERE AREA > (SELECT AVG(AREA) FROM COUNTRIES);
ORDER BY AREA;

In this example, both the query and subquery refer to the same table. Queries
and subqueries can refer to different tables, too. For example, the following
query refers to the CITIES table, and includes a subquery that refers to the
COUNTRIES table:

EXEC SQL
DECLARE EUROCAPPOP CURSOR FOR

SELECT CIT.CITY, CIT.POPULATION
FROM CITIES CIT
WHERE CIT.CITY IN (SELECT COU.CAPITAL FROM COUNTRIES COU

WHERE COU.CONTINENT = "Europe")
ORDER BY CIT.CITY;

Working With Data 143

This example uses correlation names to distinguish between tables even though
the query and subquery reference separate tables. Correlation names are only
necessary when both a query and subquery refer to the same tables and those
tables share column names, but it is good programming practice to use them.
For more information about using correlation names, see “Declaring and Using
Correlation Names,” in this chapter.

Correlated Subqueries
A correlated subquery is a subquery that depends on its parent query for the val-
ues it evaluates. Because each row evaluated by the parent query is potentially
different, the subquery is executed once for each row presented to it by the par-
ent query.

For example, the following query lists each country for which there are three or
more cities stored in the CITIES table. For each row in the COUNTRIES table, a
country name is retrieved in the parent query, then used in the comparison oper-
ation in the subquery’s WHERE clause to verify if a city in the CITIES table
should be counted by the COUNT() function. If COUNT() exceeds 2 for a row,
the row is retrieved.

EXEC SQL
DECLARE TRICITIES CURSOR FOR

SELECT COUNTRY
FROM COUNTRIES COU
WHERE 3 <= (SELECT COUNT (*)

FROM CITIES CIT
WHERE CIT.CITY = COU.CAPITAL);

Simple and correlated subqueries can be nested and mixed to build complex
queries. For example, the following query retrieves the country name, capital
city, and largest city of countries whose areas are larger than the average area of
countries that have at least one city within 30 meters of sea level:

EXEC SQL
DECLARE SEACOUNTRIES CURSOR FOR

SELECT CO1.COUNTRY, C01.CAPITAL, CI1.CITY
FROM COUNTRIES C01, CITIES CI1
WHERE CO1.COUNTRY = CI1.COUNTRY AND CI1.POPULATION =
(SELECT MAX(CI2.POPULATION)

FROM CITIES CI2 WHERE CI2.COUNTRY = CI1.COUNTRY)
AND CO1.AREA >

(SELECT AVG (CO2.AREA)
FROM COUNTRIES C02 WHERE EXISTS
(SELECT *
FROM CITIES CI3 WHERE CI3.COUNTRY = CO2.COUNTRY
AND CI3.ALTITUDE <= 30));

144 Programmer’s Guide

When a table is separately searched by queries and subqueries, as in this exam-
ple, each invocation of the table must establish a separate correlation name for
the table. Using correlation names is the only method to assure that column ref-
erences are associated with appropriate instances of their tables. For more infor-
mation about correlation names, see “Declaring and Using Correlation Names,”
in this chapter.

Inserting Data

New rows of data are added to one table at a time with the INSERT statement.
To insert data, a user or stored procedure must have INSERT privilege for a
table.

The INSERT statement enables data insertion from two different sources:

• A VALUES clause that contains a list of values to add, either through
hard-coded values, or host-language variables.

• A SELECT statement that retrieves values from one table to add to
another.

The syntax of INSERT is as follows:

INSERT [TRANSACTION name] INTO table [(col [, col ...])]
{VALUES (< val> [: ind] [, < val> [: ind] ...])
| SELECT <clause> };

The list of columns into which to insert values is optional in DSQL applications.
If it is omitted, then values are inserted into a table’s columns according to the
order in which the columns were created. If there are more columns than values,
the remaining columns are filled with zeros.

Inserting Columns With VALUES
Use the VALUES clause to add a row of specific values to a table, or to add val-
ues entered by a user at run time. The list of values that follows the keyword can
come from either from host-language variables, or from hard-coded assign-
ments.

For example, the following statement adds a new row to the DEPARTMENT
table using hard-coded value assignments:

EXEC SQL
INSERT INTO DEPARTMENT (DEPT_NO, DEPARTMENT)

VALUES (7734, "Marketing");

Working With Data 145

Because the DEPARTMENT table contains additional columns not specified in
the INSERT, NULL values are assigned to the missing fields.

The following C code example prompts a user for information to add to the
DEPARTMENT table, and inserts those values from host variables:

. . .
EXEC SQL

BEGIN DECLARE SECTION;
char department[26], dept_no[16];
int dept_num;

EXEC SQL
END DECLARE SECTION;

. . .
printf("Enter name of department: ");
gets(department);
printf("\nEnter department number: ");
dept_num = atoi(gets(dept_no));
EXEC SQL

INSERT INTO COUNTRIES (DEPT_NO, DEPARTMENT)
VALUES (:dept_num, :department);

When host variables are used in the values list, they must be preceded by colons
(:) so that SQL can distinguish them from table column names.

Inserting Columns With SELECT
To insert values from one table into another row in the same table or into a row
in another table, use a SELECT statement to specify a list of insertion values. For
example, the following INSERT statement copies DEPARTMENT and BUDGET
information about the publications department from the OLDDEPT table to the
DEPARTMENT table. It also illustrates how values can be hard-coded into a
SELECT statement to substitute actual column data.

EXEC SQL
INSERT INTO DEPARTMENTS (DEPT_NO, DEPARTMENT, BUDGET)

SELECT DEPT_NO, "Publications", BUDGET
FROM OLDDEPT
WHERE DEPARTMENT = "Documentation";

The assignments in the SELECT can include arithmetic operations. For example,
suppose an application keeps track of employees by using an employee number.
When a new employee is hired, the following statement inserts a new employee
row into the EMPLOYEE table, and assigns a new employee number to the row
by using a SELECT statement to find the current maximum employee number
and adding one to it. It also reads values for LAST_NAME and FIRST_NAME
from the host variables, lastname, and firstname.

EXEC SQL

146 Programmer’s Guide

INSERT INTO EMPLOYEE (EMP_NO, LAST_NAME, FIRST_NAME)
SELECT (MAX(EMP_NO) + 1, :lastname, :firstname)

FROM EMPLOYEE;

Inserting Rows With NULL Column Values
Sometimes when a new row is added to a table, values are not necessary or
available for all its columns. In these cases, a NULL value should be assigned to
those columns when the row is inserted. There are three ways to assign a NULL
value to a column on insertion:

• Ignore the column.

• Assign a NULL value to the column. This is standard SQL practice.

• Use indicator variables.

Ignoring a Column

A NULL value is assigned to any column that is not explicitly specified in an
INTO clause. When InterBase encounters an unreferenced column during inser-
tion, it sets a flag for the column indicating that its value is unknown. For exam-
ple, the DEPARTMENT table contains several columns, among them
HEAD_DEPT, MNGR_NO, and BUDGET. The following INSERT does not pro-
vide values for these columns:

EXEC SQL
INSERT INTO DEPARTMENT (DEPT_NO, DEPARTMENT)

VALUES (:newdept_no, :newdept_name);

Because HEAD_DEPT, MNGR_NO, and BUDGET are not specified, InterBase
sets the NULL value flag for each of these columns.

Note If a column is added to an existing table, InterBase sets a NULL value flag
for all existing rows in the table.

Assigning a NULL Value to a Column

When a specific value is not provided for a column on insertion, it is standard
SQL practice to assign a NULL value to that column. In InterBase a column is set
to NULL by specifying NULL for the column in the INSERT statement.

For example, the following statement stores a row into the DEPARTMENT table,
assigns the values of host variables to some columns, and assigns a NULL value
to other columns:

Working With Data 147

EXEC SQL
INSERT INTO DEPARTMENT

(DEPT_NO, DEPARTMENT, HEAD_DEPT, MNGR_NO, BUDGET,
LOCATION, PHONE_NO)

VALUES (:dept_no, :dept_name, NULL, NULL, 1500000, NULL, NULL);

Using Indicator Variables

Another method for trapping and assigning NULL values—through indicator
variables—is necessary in applications that prompt users for data, where users
can choose not to enter values. By default, when InterBase stores new data, it
stores zeroes for NULL numeric data, and spaces for NULL character data.
Because zeroes and spaces may be valid data, it becomes impossible to distin-
guish missing data in the new row from actual zeroes and spaces.

To trap missing data with indicator variables, and store NULL value flags, fol-
low these steps:

1. Declare a host-language variable to use as an indicator variable.

2. Test a value entered by the user and set the indicator variable to one of
the following values:

• 0. The host-language variable contains data.

• -1. The host-language variable does not contain data.

3. Associate the indicator variable with the host variable in the INSERT
statement using the following syntax:

INSERT INTO table (<col> [, <col> ...])
VALUES (: variable [INDICATOR] : indicator [, : variable [INDICATOR]
: indicator ...]);

Note The INDICATOR keyword is optional.

For example, the following C code fragment prompts the user for the name of a
department, the department number, and a budget for the department. It tests
that the user has entered a budget. If not, it sets the indicator variable, bi, to -1.
Otherwise, it sets bi to 0. Finally, the program INSERTS the information into the
DEPARTMENT table. If the indicator variable is -1, then no actual data is stored
in the BUDGET column, but a flag is set for the column indicating that the value
is NULL

. . .
EXEC SQL

BEGIN DECLARE SECTION;
short bi; /* indicator variable declaration */
char department[26], dept_no_ascii[26], budget_ascii[26];
long num_val; /* host variable for inserting budget */

148 Programmer’s Guide

short dept_no;
EXEC SQL

END DECLARE SECTION;
. . .
printf("Enter new department name: ");
gets(cidepartment);
printf("\nEnter department number: ");
gets(dept_no_ascii);
printf("\nEnter department’s budget: ");
gets(budget_ascii);
if (budget_ascii = "")
{

bi = -1; num_val = 0;
}
else
{

bi = 0;
num_val = atoi(budget_ascii);

}
dept_no = atoi(dept_no_ascii);
EXEC SQL

INSERT INTO DEPARTMENT (DEPARTMENT, DEPT_NO, BUDGET)
VALUES (:department, :dept_no, :num_val INDICATOR :bi);

. . .

Indicator status can also be determined for data retrieved from a table. For infor-
mation about trapping NULL values retrieved from a table, see “Retrieving Indi-
cator Status,” in this chapter.

Inserting Data Through a View
New rows can be inserted through a view if the following conditions are met:

• The view is updatable. For a complete discussion of updatable views, see
the Data Definition Guide.

• The view is created using the WITH CHECK OPTION.

• A user or stored procedure has INSERT privilege for the view.

Values can only be inserted through a view for those columns named in the
view. InterBase stores NULL values for unreferenced columns. For example,
suppose the view, PART_DEPT, is defined as follows:

EXEC SQL
CREATE VIEW PART_DEPT

(DEPARTMENT, DEPT_NO, BUDGET)
AS SELECT DEPARTMENT, DEPT_NO, BUDGET

FROM DEPARTMENT
WHERE DEPT_NO NOT NULL AND BUDGET > 50000

WITH CHECK OPTION;

Working With Data 149

Because PART_DEPT references a single table, DEPARTMENT, new data can be
inserted for the DEPARTMENT, DEPT_NO, and BUDGET columns. The WITH
CHECK OPTION assures that all values entered through the view fall within
ranges of values that can be selected by this view. For example, the following
statement inserts a new row for the Publications department through the
PART_DEPT view:

EXEC SQL
INSERT INTO PART_DEPT (DEPARTMENT, DEPT_NO, BUDGET)

VALUES ("Publications", "7735", 1500000);

InterBase inserts NULL values for all other columns in the DEPARTMENT table
that are not available directly through the view.

For information about creating a view, see Chapter 5: “Working With Data Defi-
nition Statements.” For the complete syntax of CREATE VIEW, see the Language
Reference.

Specifying Transaction Names in an INSERT
InterBase enables an SQL application to run simultaneous transactions if:

• Each transaction is first named with a SET TRANSACTION statement.
For a complete discussion of transaction handling and naming, see
Chapter 4: “Working With Transactions.”

• Each data manipulation statement (SELECT, INSERT, UPDATE,
DELETE, DECLARE, OPEN, FETCH, and CLOSE) specifies a
TRANSACTION clause that identifies the name of the transaction under
which it operates.

• SQL statements are not dynamic (DSQL). DSQL does not support user-
specified transaction names.

With INSERT, the TRANSACTION clause intervenes between the INSERT key-
word and the list of columns to insert, as in the following syntax fragment:

INSERT TRANSACTION name INTO table (col [, col ...])

The TRANSACTION clause is optional in single-transaction programs. It must
be used in a multi-transaction program unless a statement operates under con-
trol of the default transaction, gds__trans. For example, the following INSERT is
controlled by the transaction, T1:

EXEC SQL
INSERT TRANSACTION T1 INTO DEPARTMENT (DEPARTMENT, DEPT_NO, BUDGET)

VALUES (:deptname, :deptno, :budget INDICATOR :bi);

150 Programmer’s Guide

Updating Data

To change values for existing rows of data in a table, use the UPDATE statement.
To update a table, a user or procedure must have UPDATE privilege for it. The
syntax of UPDATE is:

UPDATE [TRANSACTION name] table
SET col = < assignment > [, col = < assignment > ...]
WHERE <search_condition > | WHERE CURRENT OF cursorname ;

UPDATE changes values for columns specified in the SET clause; columns not
listed in the SET clause are not changed. A single UPDATE statement can be
used to modify any number of rows in a table. For example, the following state-
ment modifies a single row:

EXEC SQL
UPDATE DEPARTMENT

SET DEPARTMENT = "Publications"
WHERE DEPARTMENT = "Documentation";

The WHERE clause in this example targets a single row for update. If the same
change should be propagated to a number of rows in a table, the WHERE clause
can be more general. For example, to change all occurrences of “Documenta-
tion” to “Publications” for all departments in the DEPARTMENT table where
DEPARTMENT equals “Documentation,” the UPDATE statement would be as
follows:

EXEC SQL
UPDATE DEPARTMENT

SET DEPARTMENT = "Publications"
WHERE DEPARTMENT = "Documentation";

Using UPDATE to make the same modification to a number of rows is some-
times called a mass update, or a searched update.

The WHERE clause in an UPDATE statement can contain a subquery that refer-
ences one or more other tables. For a complete discussion of subqueries, see
“Using Subqueries,” in this chapter.

Updating Multiple Rows
There are two basic methods for modifying rows:

• The searched update method, where the same changes are applied to a
number of rows, is most useful for automated updating of rows without
a cursor.

Working With Data 151

• The positioned update method, where rows are retrieved through a cursor
and updated row by row, is most useful for enabling users to enter differ-
ent changes for each row retrieved.

A searched update is easier to program than a positioned update, but also more
limited in what it can accomplish.

Using a Searched Update

Use a searched update to make the same changes to a number of rows. The
UPDATE SET clause specifies the actual changes that are to be made to columns
for each row that matches the search condition specified in the WHERE clause.
Values to set can be specified as constants or variables.

For example, the following C code fragment prompts for a country name and a
percentage change in population, then updates all cities in that country with the
new population:

. . .
EXEC SQL

BEGIN DECLARE SECTION;
char country[26], asciimult[10];
int multiplier;

EXEC SQL
END DECLARE SECTION;

. . .
main ()
{

printf("Enter country with city populations needing adjustment: ");
gets(country);
printf("\nPercent change (100%% to -100%%:");
gets(asciimult);
multiplier = atoi(asciimult);
EXEC SQL

UPDATE CITIES
SET POPULATION = POPULATION * (1 + :multiplier / 100)
WHERE COUNTRY = :country;

if (SQLCODE && (SQLCODE != 100))
{

isc_print_sqlerr(SQLCODE, isc_$status);
EXEC SQL

ROLLBACK RELEASE;
}
else
{

EXEC SQL
COMMIT RELEASE;

}
}

152 Programmer’s Guide

Important Searched updates cannot be performed on arrays of data types.

Using a Positioned Update

Use cursors to select rows for update when prompting users for changes on a
row-by-row basis, and displaying pre- or post-modification values between row
updates. Updating through a cursor is a seven-step process:

1. Declare host-language variables needed for the update operation.

2. Declare a cursor describing the rows to retrieve for update, and include
the FOR UPDATE clause in DSQL. For more information about declaring
and using cursors, see “Selecting Multiple Rows,” in this chapter.

3. Open the cursor.

4. Fetch a row.

5. Display current values and prompt for new values.

6. Update the currently selected row using the WHERE CURRENT OF
clause.

7. Repeat steps 3 to 7 until all selected rows are updated.

For example, the following C code fragment updates the POPULATION column
by user-specified amounts for cities in the CITIES table that are in a country also
specified by the user:

. . .
EXEC SQL

BEGIN DECLARE SECTION;
char country[26], asciimult[10];
int multiplier;

EXEC SQL
END DECLARE SECTION;

. . .
main ()
{

EXEC SQL
DECLARE CHANGEPOP CURSOR FOR

SELECT CITY, POPULATION
FROM CITIES
WHERE COUNTRY = :country;

printf("Enter country with city populations needing adjustment: ");
gets(country);
EXEC SQL

OPEN CHANGEPOP;
EXEC SQL

FETCH CHANGEPOP INTO :country;

Working With Data 153

while(!SQLCODE)
{

printf("\nPercent change (100%% to -100%%:");
gets(asciimult);
multiplier = atoi(asciimult);
EXEC SQL

UPDATE CITIES
SET POPULATION = POPULATION * (1 + :multiplier / 100)
WHERE CURRENT OF CHANGEPOP;

EXEC SQL
FETCH CHANGEPOP INTO :country;

if (SQLCODE && (SQLCODE != 100))
{

isc_print_sqlerr(SQLCODE, isc_$status);
EXEC SQL

ROLLBACK RELEASE;
exit(1);

}
}
EXEC SQL

COMMIT RELEASE;
}

Important Using FOR UPDATE with a cursor causes rows to be fetched from the data-
base one at a time. If FOR UPDATE is omitted, rows are fetched in batches.

Setting Column Values to NULL With UPDATE
To set a column’s value to NULL during update, specify a NULL value for the
column in the SET clause. For example, the following UPDATE sets the budget
of all departments without managers to NULL:

EXEC SQL
UPDATE DEPARTMENT

SET BUDGET = NULL
WHERE MNGR_NO = NULL;

Updating Through a View
Existing rows can be updated through a view if the following conditions are
met:

• The view is updatable. For a complete discussion of updatable views, see
the Data Definition Guide.

• The view is created using the WITH CHECK OPTION.

• A user or stored procedure has UPDATE privilege for the view.

154 Programmer’s Guide

Values can only be updated through a view for those columns named in the
view. For example, suppose the view, PART_DEPT, is defined as follows:

EXEC SQL
CREATE VIEW PART_DEPT

(DEPARTMENT, NUMBER, BUDGET)
AS SELECT DEPARTMENT, DEPT_NO, BUDGET

FROM DEPARTMENT
WITH CHECK OPTION;

Because PART_DEPT references a single table, data can be updated for the col-
umns named in the view. The WITH CHECK OPTION assures that all values
entered through the view fall within ranges prescribed for each column when
the DEPARTMENT table was created. For example, the following statement
updates the budget of the Publications department through the PART_DEPT
view:

EXEC SQL
UPDATE PART_DEPT

SET BUDGET = 2505700
WHERE DEPARTMENT = "Publications";

For information about creating a view, see Chapter 5: “Working With Data Defi-
nition Statements.” For the complete syntax of CREATE VIEW, see the Language
Reference.

Specifying Transaction Names in UPDATE
InterBase enables an SQL application to run simultaneous transactions if:

• Each transaction is first named with a SET TRANSACTION statement.
For a complete discussion of transaction handling and naming, see
Chapter 4: “Working With Transactions.”

• Each data manipulation statement (SELECT, INSERT, UPDATE,
DELETE, DECLARE, OPEN, FETCH, and CLOSE) specifies a
TRANSACTION clause that identifies the name of the transaction under
which it operates.

• SQL statements are not dynamic (DSQL). DSQL does not support multi-
ple simultaneous transactions.

In UPDATE, the TRANSACTION clause intervenes between the UPDATE key-
word and the name of the table to update, as in the following syntax:

UPDATE [TRANSACTION name] table
SET col = < assignment > [, col = < assignment > ...]
WHERE <search_condition > | WHERE CURRENT OF cursorname ;

Working With Data 155

The TRANSACTION clause must be used in multi-transaction programs, but is
optional in single-transaction programs or in programs where only one transac-
tion is open at a time. For example, the following UPDATE is controlled by the
transaction, T1:

EXEC SQL
UPDATE TRANSACTION T1 DEPARTMENT

SET BUDGET = 2505700
WHERE DEPARTMENT = "Publications";

Deleting Data

To remove rows of data from a table, use the DELETE statement. To delete rows
a user or procedure must have DELETE privilege for the table.

The syntax of DELETE is:

DELETE [TRANSACTION name] FROM table
WHERE <search_condition > | WHERE CURRENT OF cursorname ;

DELETE irretrievably removes entire rows from the table specified in the FROM
clause, regardless of each column’s data type.

A single DELETE can be used to remove any number of rows in a table. For
example, the following statement removes the single row containing “Channel
Marketing” from the DEPARTMENT table:

EXEC SQL
DELETE FROM DEPARTMENT

WHERE DEPARTMENT = "Channel Marketing:;

The WHERE clause in this example targets a single row for update. If the same
deletion criteria apply to a number of rows in a table, the WHERE clause can be
more general. For example, to remove all rows from the DEPARTMENT table
with BUDGET values < $1,000,000, the DELETE statement would be as follows:

EXEC SQL
DELETE FROM DEPARTMENT

WHERE BUDGET < 1000000;

Using DELETE to remove a number of rows is sometimes called a mass delete.

The WHERE clause in a DELETE statement can contain a subquery that refer-
ences one or more other tables. For a complete discussion of subqueries, see
“Using Subqueries,” in this chapter.

156 Programmer’s Guide

Deleting Multiple Rows
There are two methods for modifying rows:

• The searched delete method, where the same deletion condition applies to
a number of rows, is most useful for automated removal of rows.

• The positioned delete method, where rows are retrieved through a cursor
and deleted row by row, is most useful for enabling users to choose
which rows that meet certain conditions should be removed.

A searched delete is easier to program than a positioned delete, but less flexible.

Using a Searched Delete

Use a searched delete to remove a number of rows that match a condition speci-
fied in the WHERE clause. For example, the following C code fragment prompts
for a country name, then deletes all rows that have cities in that country:

. . .
EXEC SQL

BEGIN DECLARE SECTION;
char country[26];

EXEC SQL
END DECLARE SECTION;

. . .
main ()
{

printf("Enter country with cities to delete: ");
gets(country);
EXEC SQL

DELETE FROM CITIES
WHERE COUNTRY = :country;

if(SQLCODE && (SQLCODE != 100))
{

isc_print_sqlerr(SQLCODE, isc_$status);
EXEC SQL

ROLLBACK RELEASE;
}
else
{

EXEC SQL
COMMIT RELEASE;

}
}

Working With Data 157

Using a Positioned Delete

Use cursors to select rows for deletion when users should decide deletion on a
row-by-row basis, and displaying pre- or post-modification values between row
updates. Updating through a cursor is a seven-step process:

1. Declare host-language variables needed for the delete operation.

2. Declare a cursor describing the rows to retrieve for possible deletion, and
include the FOR UPDATE clause. For more information about declaring
and using cursors, see “Selecting Multiple Rows,” in this chapter.

3. Open the cursor.

4. Fetch a row.

5. Display current values and prompt for permission to delete.

6. Delete the currently selected row using the WHERE CURRENT OF
clause to specify the name of the cursor.

7. Repeat steps 3 to 7 until all selected rows are deleted.

For example, the following C code deletes rows in the CITIES table that are in
North America only if a user types Y when prompted:

. . .
EXEC SQL

BEGIN DECLARE SECTION;
char cityname[26];

EXEC SQL
END DECLARE SECTION;

char response[5];
. . .
main ()
{

EXEC SQL
DECLARE DELETECITY CURSOR FOR

SELECT CITY,
FROM CITIES
WHERE CONTINENT = "North America";

EXEC SQL
OPEN DELETECITY;

while (!SQLCODE)
{

EXEC SQL
FETCH DELETECITY INTO :cityname;

if (SQLCODE)
{

if (SQLCODE == 100)
{

printf("Deletions complete.");

158 Programmer’s Guide

EXEC SQL
COMMIT;

EXEC SQL
CLOSE DELETECITY;

EXEC SQL
DISCONNECT ALL:

}
isc_print_sqlerr(SQLCODE, isc_$status);
EXEC SQL

ROLLBACK;
EXEC SQL

DISCONNECT ALL;
exit(1);

}
printf("\nDelete %s (Y/N)?", cityname);
gets(response);
if(response[0] == 'Y' || response == 'y')
{

EXEC SQL
DELETE FROM CITIES
WHERE CURRENT OF DELETECITY;

if(SQLCODE && (SQLCODE != 100))
{

isc_print_sqlerr(SQLCODE, isc_$status);
EXEC SQL

ROLLBACK;
EXEC SQL

DISCONNECT;
exit(1);

}
}

}

Deleting Through a View
Entire rows can be deleted through a view if the following conditions are met:

• The view is updatable. For a complete discussion of updatable views, see
the Data Definition Guide.

• A user or stored procedure has DELETE privilege for the view.

For example, the following statement deletes all departments with budgets
under $1,000,000, from the DEPARTMENT table through the PART_DEPT view:

EXEC SQL
DELETE FROM PART_DEPT

WHERE BUDGET < 1000000;

For information about creating a view, see Chapter 5: “Working With Data Defi-
nition Statements.” For CREATE VIEW syntax, see the Language Reference.

Working With Data 159

Specifying Transaction Names in a DELETE
InterBase enables an SQL application to run simultaneous transactions if:

• Each transaction is first named with a SET TRANSACTION statement.
For a complete discussion of transaction handling and naming, see
Chapter 4: “Working With Transactions.”

• Each data manipulation statement (SELECT, INSERT, UPDATE,
DELETE, DECLARE, OPEN, FETCH, and CLOSE) specifies a
TRANSACTION clause that identifies the name of the transaction under
which it operates.

• SQL statements are not dynamic (DSQL). DSQL does not support multi-
ple simultaneous transactions.

For DELETE, the TRANSACTION clause intervenes between the DELETE key-
word and the FROM clause specifying the table from which to delete:

DELETE TRANSACTIONname FROM table ...

The TRANSACTION clause is optional in single-transaction programs or in pro-
grams where only one transaction is open at a time. It must be used in a multi-
transaction program. For example, the following DELETE is controlled by the
transaction, T1:

EXEC SQL
DELETE TRANSACTION T1 FROM PART_DEPT

WHERE BUDGET < 1000000";

160 Programmer’s Guide

Working With Dates 161

CHAPTER 7

7Working With Dates

Most host languages do not support the DATE data type. Instead, they treat
dates as strings or structures. InterBase supports a DATE data type that is stored
in tables as two long integers. An InterBase DATE data type includes informa-
tion about year, month, day of the month, and time.

This chapter discusses how to SELECT, INSERT, and UPDATE dates from tables
in SQL applications using the following isc call interface routines:

• isc_decode_date() to convert the InterBase internal date format to the
C time structure

• isc_encode_date() to convert the C time structure to the internal
InterBase date format

The chapter also discusses how to use the CAST() function to translate a DATE
data type into a CHARACTER data type and back again, and how to use the
DATE literals, NOW and TODAY when selecting and inserting dates.

Note InterBase does not directly support SQL-92 DATE, TIME, and
TIMESTAMP data types.

Selecting Dates

To select a date from a table, and convert it to a form usable in a C language pro-
gram, follow these steps:

1. Create a host variable for a C time structure. Most C and C++ compilers
provide a typedef declaration, tm, for the C time structure in the time.h
header file. The following C code includes that header file, and declares a
variable of type tm:

#include <time.h>;
. . .
struct tm hire_time;
. . .

162 Programmer’s Guide

Note To create host-language time structures in languages other than C and
C++, see the host-language reference manual.

2. Create a host variable of type ISC_QUAD. For example, the host-variable
declaration might look like this:

ISC_QUAD hire_date;

The ISC_QUAD structure is automatically declared for programs when
they are preprocessed with gpre, but the programmer must declare
actual host-language variables of type ISC_QUAD.

3. Retrieve a date from a table into the ISC_QUAD variable. For example,

EXEC SQL
SELECT LAST_NAME, FIRST_NAME, DATE_OF_HIRE

INTO :lname, :fname, :hire_date
FROM EMPLOYEE
WHERE LAST_NAME = "Smith" AND FIRST_NAME = "Margaret";

Convert the ISC_QUAD variable into a numeric Unix format with the
InterBase function, isc_decode_date(). This function is automatically
declared for programs when they are preprocessed with gpre.
isc_decode_date() requires two parameters, the address of the
ISC_QUAD host-language variable, and the address of the tm
host-language variable. For example, the following code fragment
coverts hire_date to hire_time:

isc_decode_date(&hire_date, &hire_time);

Inserting Dates

To insert a date in a table, it must be converted from the host-language format
into InterBase format, and then stored. To perform the conversion and insertion
in a C program, follow these steps:

1. Create a host variable for a C time structure. Most C and C++ compilers
provide a typedef declaration, tm, for the C time structure in the time.h
header file. The following C code includes that header file, and declares a
tm variable, hire_time:

#include <time.h>;
. . .
struct tm hire_time;
. . .

Working With Dates 163

To create host-language time structures in languages other than C and
C++, see the host-language reference manual.

2. Create a host variable of type ISC_QUAD, for use by InterBase. For
example, the host-variable declaration might look like this:

ISC_QUAD mydate;

The ISC_QUAD structure is automatically declared for programs when
they are preprocessed with gpre, but the programmer must declare
actual host-language variables of type ISC_QUAD.

3. Put date and time information into hire_time.

4. Use the InterBase isc_encode_date() function to convert the information
in hire_time into InterBase internal format and store that formatted infor-
mation in the ISC_QUAD host variable (hire_date in the example). This
function is automatically declared for programs when they are prepro-
cessed with gpre. isc_encode_date() requires two parameters, the
address of the Unix time structure, and the address of the ISC_QUAD
host-language variable.

For example, the following code converts hire_time to hire_date:

isc_encode_date(&hire_time, &hire_date);

5. Insert the date into a table. For example,

EXEC SQL
INSERT INTO EMPLOYEE (EMP_NO, DEPARTMENT, DATE_OF_HIRE)

VALUES (:emp_no, :deptname, :hire_date);

Updating Dates

To update a date in a table, it must be converted from the host-language format
into InterBase format, and then stored. To convert a host variable into InterBase
format, see “Inserting Dates,” in this chapter. The actual update is performed
using an UPDATE statement. For example,

EXEC SQL
UPDATE EMPLOYEE
SET DATE_OF_HIRE = :hire_date
WHERE DATE_OF_HIRE < "1 JAN 1994"

164 Programmer’s Guide

Using CAST() to Convert Dates

The built-in CAST() function can be used in SELECT statements to translate a
DATE data type into a CHARACTER or NUMERIC data type, or to translate
CHARACTER and NUMERIC data types into DATE data types. Typically,
CAST() is used in the WHERE clause to compare different data types. The syn-
tax for CAST() is:

CAST (<value> AS <datatype>)

In the following WHERE clause, CAST() is used to translate a CHAR data type,
INTERVIEW_DATE, to a DATE data type to compare against a DATE data type,
HIRE_DATE:

. . . WHERE HIRE_DATE = CAST(INTERVIEW_DATE AS DATE);

In the next example, CAST() is used to translate a DATE data type into a CHAR
data type:

. . . WHERE CAST(HIRE_DATE AS CHAR) = INTERVIEW_DATE;

CAST() also can be used to compare columns with different data types in the
same table, or across tables. For more information about CAST(), see Chapter 6:
“Working With Data.”

Using Date Literals

InterBase supports two date literals, NOW, and TODAY. Date literals are string
values entered between quotation marks that can be interpreted as date values
for SELECT, INSERT, and UPDATE operations. NOW is a date literal that com-
bines today’s date and time in InterBase format. TODAY is today’s date with
time information set to zero.

In SELECT, NOW and TODAY can be used in the search condition of a WHERE
clause to restrict the data retrieved:

EXEC SQL
SELECT * FROM CROSS_RATE WHERE UPDATE_DATE = "TODAY";

In INSERT and UPDATE, NOW and TODAY can be used to enter date and time
values instead of relying on isc calls to convert C dates to InterBase dates:

EXEC SQL
INSERT INTO CROSS_RATE VALUES(:from, :to, :rate, "NOW");

Working With Dates 165

EXEC SQL
UPDATE CROSS_RATE

SET CONV_RATE = 1.75,
SET UPDATE_DATE = "NOW"
WHERE FROM_CURRENCY = "POUND" AND TO_CURRENCT = "DOLLAR"

AND UPDATE_DATE < "TODAY";

166 Programmer’s Guide

Working With BLOB Data 167

CHAPTER 8

8Working With BLOB Data

This chapter describes the binary large object (BLOB) data type and how to work
with it using SQL, DSQL, and the InterBase API. Depending on your particular
application, you might need to read all or only part of this chapter.

For example, if you plan to convert BLOB data from one data type to another,
such as from one bitmapped graphic format to another or from the MIDI sound
format to the Wave format, you need to read the entire chapter, including the
information about BLOB filters and BLOB control.

Important BLOB filters are not available on NetWare servers.

If you plan to read and write BLOB data without any conversion, you can read
the first few sections of the chapter, including:

• What is a BLOB?

• How are BLOB Data Stored?

• BLOB Subtypes

• BLOB Database Storage

• BLOB Segment Length

• Accessing BLOB Data with SQL

• Selecting BLOB Data

• Inserting BLOB Data

• Updating BLOB Data

• Deleting BLOB Data

• Accessing BLOB Data Using API Calls

You do not need to read the information on BLOB filters, unless you determine
that the information is required for your application.

168 Programmer’s Guide

What is a BLOB?

A BLOB is a binary large object that cannot easily be stored in a database as one
of the standard data types. You can use a BLOB to store large amounts of data of
various types, including:

• Bitmapped images

• Sounds

• Video segments

• Text

InterBase support of BLOB data provides all the advantages of a database man-
agement system, including transaction control, maintenance, and access using
the standard relational operators and data manipulation statements. BLOB data
is stored in the database. Other systems only store pointers in the database to
non-database files. InterBase stores the actual BLOB data in the database, and
establishes a unique identification handle in the appropriate table to point to the
database location of the BLOB. By maintaining the BLOB data within the data-
base, InterBase greatly improves access to and management of the data.

The combination of true database management of BLOB data and support for a
variety of data types makes InterBase BLOB support ideal for transaction-
intensive multimedia applications. For example, InterBase is an ideal platform
for interactive kiosk applications that might provide hundreds or thousands of
product descriptions, photographs, and video clips, in addition to point-of-sale
and order processing capabilities.

How are BLOB Data Stored?

BLOB is the InterBase data type that represents various objects, such as bit-
mapped images, sound, video, and text. Before you store these items in the data-
base, you create or manage them as platform- or product-specific files or data
structures, such as:

• TIFF, PICT, .BMP, .WMF, .GEM, TARGA or other bitmapped or vector-
graphic files.

• MIDI or .WAV sound files.

• Audio Video Interleaved Format (.AVI) or QuickTime video files.

• ASCII, .MIF, .DOC, .WPx or other text files.

Working With BLOB Data 169

• CAD files.

You must programmatically load these files from memory into the database, as
you do any other host-language data items or records you intend to store in
InterBase.

BLOB Subtypes
Although you manage BLOB data in the same way you manage other data
types, InterBase provides more flexible data typing rules for BLOB data. Because
there are many native data types that you can define as BLOB data, InterBase
treats them somewhat generically and allows you to define your own data type,
known as a subtype. Also, InterBase provides two standard subtypes with which
you can characterize BLOB data:

• Subtype 0, an unstructured subtype, generally applied to binary data or
data of an indeterminate type.

• Subtype 1, applied to TEXT.

You can specify user-defined subtypes as negative numbers between -1 and
-32,678. Positive integers are reserved for InterBase subtypes.

For example, the following statement defines three BLOB columns: BLOB1 with
subtype 0 (the default), BLOB2 with subtype 1 (TEXT), and BLOB3 with user-
defined subtype -1:

EXEC SQL CREATE TABLE TABLE2
(

BLOB1 BLOB,
BLOB2 BLOB SUB_TYPE 1,
BLOB3 BLOB SUB_TYPE -1

);

To specify both a default segment length and a subtype when creating a BLOB
column, use the SEGMENT SIZE option after the SUB_TYPE option. For exam-
ple:

EXEC SQL CREATE TABLE TABLE2
(

BLOB1 BLOB SUB_TYPE 1 SEGMENT SIZE 100;
);

The only rule InterBase enforces over these user-defined subtypes is that, when
converting a BLOB from one subtype to another, those subtypes must be com-
patible. InterBase does not otherwise enforce subtype integrity.

170 Programmer’s Guide

BLOB Database Storage
Because BLOB data are typically large, variably-sized objects of binary or text
data, InterBase stores them most efficiently using a method of segmentation. It
would be an inefficient use of disk space to store each BLOB as one contiguous
mass. Instead, InterBase stores each BLOB in segments that are indexed by a
handle that InterBase generates when you create the BLOB. This handle is
known as the BLOB ID and is a quadword (64-bit) containing a unique combina-
tion of table identifier and BLOB identifier.

The BLOB ID for each BLOB is stored in its appropriate field in the table record.
The BLOB ID points to the first segment of the BLOB, or to a page of pointers,
each of which points to a segment of one or more BLOB fields. You can retrieve
the BLOB ID by executing a SELECT statement that specifies the BLOB as the
target, as in the following example:

EXEC SQL
DECLARE BLOBDESC CURSOR FOR

SELECT GUIDEBOOK
FROM TOURISM
WHERE STATE = "CA";

You can define BLOB columns the same way you define non-BLOB columns. For
example, the following SQL code creates a table with a BLOB column called
PROJ_DESC:

CREATE TABLE PROJECT
(

PROJ_ID PROJNO NOT NULL,
PROJ_NAME VARCHAR(20) NOT NULL UNIQUE,
PROJ_DESC BLOB SUBTYPE 1 SEGMENT SIZE 80,
TEAM_LEADER EMPNO,
PRODUCT PRODTYPE,
...

);

Note that in the preceding example the subtype parameter is set to 1, which
denotes a TEXT BLOB, and the segment size is set to 80 bytes.

The following diagram shows the relationship between a BLOB column contain-
ing a BLOB ID and the BLOB data referenced by the BLOB ID:

Working With BLOB Data 171

Figure 8-1: Relationship of a BLOB ID to BLOB Segments in a Database

Rather than store BLOB data directly in the table, InterBase stores a BLOB ID in
each row of the table. The BLOB ID, a unique number, points to the first segment
of the BLOB data that is stored elsewhere in the database, in a series of segments.
When an application creates a BLOB, it must write data to that BLOB a segment
at a time. Similarly, when an application reads of BLOB, it reads a segment at a
time. Because most BLOB data are large objects, most BLOB management is per-
formed with loops in the application code.

BLOB Segment Length
When you define a BLOB in a table, you can specify, in the BLOB definition
statement, the expected size of BLOB segments that are to be written to the col-
umn. The segment length you define for a BLOB column specifies the maximum
number of bytes that an application is expected to write to or read from any
BLOB in the column. The default segment length is 80. For example, the follow-
ing column declaration creates a BLOB with a segment length of 120:

EXEC SQL CREATE TABLE TABLE2
(

BLOB1 BLOB SEGMENT SIZE 120;
);

InterBase uses the segment length setting to determine the size of an internal
buffer to which it writes BLOB segment data. Normally, you should not attempt
to write segments larger than the segment length you defined in the table; doing
so may result in a buffer overflow and possible memory corruption.

Specifying a segment size of n guarantees that no more than n number of bytes
are read or written in a single BLOB operation. With some types of operations,
for instance, with SELECT, INSERT, and UPDATE operations, you can read or
write BLOB segments of varying length.

In the following example of an INSERT CURSOR statement, specify the segment
length in a host language variable, segment_length, as follows:

BLOB ID

BLOB
column

Table row

BLOB data segment segment segment . . .

172 Programmer’s Guide

EXEC SQL
INSERT CURSOR BCINS VALUES (:write_segment_buffer INDICATOR

:segment_length);

For more information about the syntax of the INSERT CURSOR statement, see
the Language Reference.

Overriding Segment Length
You can override the segment length setting by including the
MAXIMUM_SEGMENT option in a DECLARE CURSOR statement. For exam-
ple, the following BLOB INSERT cursor declaration overrides the segment
length that was defined for the field, BLOB2, increasing it to 1024:

EXEC SQL
DECLARE BCINS CURSOR FOR INSERT BLOB BLOB2 INTO TABLE 2
MAXIMUM_SEGMENT 1024;

Note By overriding the segment length setting, you affect only the segment size
for the cursor, not for the column, or for other cursors. Other cursors using
the same BLOB column maintain the original segment size that was
defined in the column definition, or can specify their own overrides.

The segment length setting does not affect InterBase system performance.
Choose the segment length most convenient for the specific application. The
largest possible segment length is 65,535 bytes (64K).

Accessing BLOB Data With SQL

InterBase supports SELECT, INSERT, UPDATE, and DELETE operations on
BLOB data. The following sections contain brief discussions of example pro-
grams. These programs illustrate how to perform standard SQL operations on
BLOB data.

Selecting BLOB Data
The following example program, emblob1.e, selects BLOB data from the
GUIDEBOOK column of the TOURISM table contained in the example database,
atlas.gdb:

1. Declare host-language variables to store the BLOB ID, the BLOB segment
data, and the length of segment data:

EXEC SQL

Working With BLOB Data 173

BEGIN DECLARE SECTION;
BASED ON TOURISM.GUIDEBOOK blob_id;
BASED ON TOURISM.GUIDEBOOK.SEGMENT blob_segment_buf;
BASED ON TOURISM.STATE state;
unsigned short blob_seg_len;

EXEC SQL
END DECLARE SECTION;

The BASED ON . . . SEGMENT syntax declares a host-language variable,
blob_segment_buf, that is large enough to hold a BLOB segment during a
FETCH operation. For more information about the BASED ON state-
ment, see the Language Reference.

2. Declare a table cursor to select the desired BLOB column, in this case the
GUIDEBOOK column:

EXEC SQL
DECLARE TC CURSOR FOR

SELECT STATE, GUIDEBOOK
FROM TOURISM
WHERE STATE = "CA";

3. Declare a BLOB read cursor. A BLOB read cursor is a special cursor used
for reading BLOB segments:

EXEC SQL
DECLARE BC CURSOR FOR
READ BLOB GUIDEBOOK
FROM TOURISM;

The segment length of the GUIDEBOOK BLOB column is defined as 60,
so BLOB cursor, BC, reads a maximum of 60 bytes at a time.

To override the segment length specified in the database schema for
GUIDEBOOK, use the MAXIMUM_SEGMENT option. For example, the
following code restricts each BLOB read operation to a maximum of 40
bytes, and SQLCODE is set to 101 to indicate when only a portion of a
segment has been read:

EXEC SQL
DECLARE BC CURSOR FOR
READ BLOB GUIDEBOOK
FROM TOURISM
MAXIMUM_SEGMENT 40;

Note No matter what the segment length setting is, only one segment is read at a
time.

4. Open the table cursor and fetch a row of data containing a BLOB:

EXEC SQL
OPEN TC;

174 Programmer’s Guide

EXEC SQL
FETCH TC INTO :state, :blob_id;

The FETCH statement fetches the STATE and GUIDEBOOK columns
into host variables, state,and blob_id, respectively.

5. Open the BLOB read cursor using the BLOB ID stored in the blob_id vari-
able, and fetch the first segment of BLOB data:

EXEC SQL
OPEN BC USING :blob_id;

EXEC SQL
FETCH BC INTO :blob_segment_buf:blob_seg_len;

When the FETCH operation completes, blob_segment_buf contains the
first segment of the BLOB, and blob_seg_len contains the segment’s
length, which is the number of bytes copied into blob_segment_buf.

6. Fetch the remaining segments in a loop. SQLCODE should be checked
each time a fetch is performed. An error code of 100 indicates that all of
the BLOB data has been fetched. An error code of 101 indicates that the
segment contains additional data:

while (SQLCODE != 100 || SQLCODE == 101)
{

printf("%*.*s", blob_seg_len, blob_seg_len, blob_segment_buf);
EXEC SQL

FETCH BC INTO :blob_segment_buf:blob_seg_len;
}

InterBase produces an error code of 101 when the length of the segment
buffer is less than the length of a particular segment.

For example, if the length of the segment buffer is 40 and the length of a
particular segment is 60, the first FETCH produces an error code of 101
indicating that data remains in the segment. The second FETCH reads
the remaining 20 bytes of data, and produces an SQLCODE of 0, indicat-
ing that the next segment is ready to be read, or 100 if this was the last
segment in the BLOB.

7. Close the BLOB read cursor:

EXEC SQL
CLOSE BC;

8. Close the table cursor:

EXEC SQL
CLOSE TC;

Working With BLOB Data 175

Inserting BLOB Data
The following program, emblob2.e, inserts BLOB data into the GUIDEBOOK col-
umn of the TOURISM table contained in the example database, atlas.gdb:

1. Declare host-language variables to store the BLOB ID, BLOB segment
data, and the length of segment data:

EXEC SQL
BEGIN DECLARE SECTION;

BASED ON TOURISM.GUIDEBOOK blob_id;
BASED ON TOURISM.GUIDEBOOK.SEGMENT blob_segment_buf;
BASED ON TOURISM.STATE state;
unsigned short blob_seg_len;

EXEC SQL
END DECLARE SECTION;

The BASED ON . . . SEGMENT syntax declares a host-language variable,
blob_segment_buf, that is large enough to hold a BLOB segment during a
FETCH operation. For more information about the BASED ON directive,
see the Language Reference.

2. Declare a BLOB insert cursor:

EXEC SQL
DECLARE BC CURSOR FOR INSERT BLOB GUIDEBOOK INTO TOURISM;

3. Open the BLOB insert cursor and specify the host variable in which to
store the BLOB ID:

EXEC SQL
OPEN BC INTO :blob_id;

4. Store the segment data in the segment buffer, blob_segment_buf, calculate
the length of the segment data, and use an INSERT CURSOR statement
to write the segment:

sprintf(blob_segment_buf, "My segment number is: %d\n", i);
blob_segment_len = strlen(blob_segment_buf);

EXEC SQL
INSERT CURSOR BC VALUES (:blob_segment_buf:blob_segment_len);

Repeat these steps in a loop until you have written all BLOB segments.

5. Close the BLOB insert cursor:

EXEC SQL
CLOSE BC;

176 Programmer’s Guide

6. Use an INSERT statement to insert a new row containing the BLOB into
the TOURISM table:

EXEC SQL
INSERT INTO TOURISM (STATE,GUIDEBOOK) VALUES ("CA",:blob_id);

7. Commit the changes to the database:

EXEC SQL
COMMIT;

Updating BLOB Data
You cannot update a BLOB directly. You must create a new BLOB, read the old
BLOB data into a buffer where you can edit or modify it, then write the modified
data to the new BLOB.

Create a new BLOB by following these steps:

1. Declare a BLOB insert cursor:

EXEC SQL
DECLARE BC CURSOR FOR INSERT BLOB GUIDEBOOK INTO TOURISM;

2. Open the BLOB insert cursor and specify the host variable in which to
store the BLOB ID:

EXEC SQL
OPEN BC INTO :blob_id;

3. Store the old BLOB segment data in the segment buffer blob_segment_buf,
calculate the length of the segment data, perform any modifications to
the data, and use an INSERT CURSOR statement to write the segment:

/* Programmatically read the first/next segment of the old BLOB
* segment data into blob_segment_buf; */

EXEC SQL
INSERT CURSOR BC VALUES (:blob_segment_buf:blob_segment_len);

Repeat these steps in a loop until you have written all BLOB segments.

4. Close the BLOB insert cursor:

EXEC SQL
CLOSE BC;

5. When you have completed creating the new BLOB, issue an UPDATE
statement to replace the old BLOB in the table with the new one, as in the
following example:

Working With BLOB Data 177

EXEC SQL UPDATE TOURISM
SET

GUIDEBOOK = :blob_id;
WHERE CURRENT OF TC;

Note The TC table cursor points to a target row established by declaring the cur-
sor and then fetching the row to update.

To modify a text BLOB using this technique, you might read an existing BLOB
field into a host-language buffer, modify the data, then write the modified buffer
over the existing field data with an UPDATE statement.

Deleting BLOB Data
There are two methods to delete a BLOB. The first method is to delete the row
containing the BLOB. The second method is to update the row and set the BLOB
column to NULL, or to the BLOB ID of a different BLOB (e.g., the new BLOB cre-
ated to update the data of an existing BLOB). For example, the following state-
ment deletes current BLOB data in the GUIDEBOOK column of the TOURISM
table by setting it to NULL:

EXEC SQL UPDATE TOURISM
SET

GUIDEBOOK = NULL;
WHERE CURRENT OF TC;

BLOB data is not immediately deleted when DELETE is specified. The actual
delete operation occurs when InterBase performs version cleanup. The follow-
ing code fragment illustrates how to recover space after deleting a BLOB:

EXEC SQL
UPDATE TABLE SET BLOB_COLUMN = NULL WHERE ROW = :myrow;

EXEC SQL
COMMIT;

/* wait for all active transactions to finish */
/* force a sweep of the database */

When InterBase performs garbage collection on old versions of a record, it veri-
fies whether or not recent versions of the record reference the BLOB ID. If the
record does not reference the BLOB ID, InterBase cleans up the BLOB.

178 Programmer’s Guide

Accessing BLOB Data With API Calls

In addition to accessing BLOB data using SQL as described in this chapter, the
InterBase API provides routines for accessing BLOB data. The following API
calls are provided for accessing and managing BLOB data:

For details on using the API calls to access BLOB data, see the API Guide.

Filtering BLOB Data

An understanding of BLOB subtypes is particularly important when working
with BLOB filters. A BLOB filter is a routine that translates BLOB data from one
subtype to another. InterBase includes a set of special internal BLOB filters that
convert from subtype 0 to subtype 1 (TEXT), and from subtype 1 (TEXT) to sub-

Table 8-1: API BLOB Calls

Function Description

isc_blob_default_desc() Loads a BLOB descriptor data structure with default
information about a BLOB.

isc_blob_gen_bpb() Generates a BLOB parameter buffer (BPB) from
source and target BLOB descriptors to allow dynamic
access to BLOB subtype and character set informa-
tion.

isc_blob_info() Returns information about an open BLOB.

isc_blob_lookup_desc() Looks up and stores into a BLOB descriptor the sub-
type, character set, and segment size of a BLOB.

isc_blob_set_desc() Sets the fields of a BLOB descriptor to values speci-
fied in parameters to isc_blob_set_desc() .

isc_cancel_blob() Discards a BLOB and frees internal storage.

isc_close_blob() Closes an open BLOB.

isc_create_blob2() Creates a context for storing a BLOB, opens the
BLOB for write access, and optionally specifies a filter
to be used to translate the BLOB data from one sub-
type to another.

isc_get_segment() Reads a segment from an open BLOB.

isc_open_blob2() Opens an existing BLOB for retrieval and optional fil-
tering.

isc_put_segment() Writes a BLOB segment.

Working With BLOB Data 179

type 0. In addition to using these standard filters, you can write your own exter-
nal filters to provide special data translation. For example, you might develop a
filter to translate bitmapped images from one format to another.

Important BLOB filters are available for databases residing on all InterBase server
platforms except NetWare, where BLOB filters cannot be created or used.

Using the Standard InterBase Text Filters
The standard InterBase filters convert BLOB data of subtype 0, or any InterBase
system type, to subtype 1 (TEXT).

When a text filter is being used to read data from a BLOB column, it modifies the
standard InterBase behavior for supplying segments. Regardless of the actual
nature of the segments in the BLOB column, the text filter enforces the rule that
segments must end with a newline character (\n).

The text filter returns all the characters up to and including the first newline as
the first segment, the next characters up to and including the second newline as
the second segment, and so on.

Tip To convert any non-text subtype to TEXT, declare its FROM subtype as
subtype 0 and its TO subtype as subtype 1.

Using an External BLOB Filter
Unlike the standard InterBase filters that convert between subtype 0 and sub-
type 1, an external BLOB filter is generally part of a library of routines you create
and link to your application.

To use an external filter, you must first write it, compile and link it, then declare
it to the database that contains the BLOB data you want processed.

Declaring an External Filter to the Database

To declare an external filter to a database, use the DECLARE FILTER statement.
For example, the following statement declares the filter, SAMPLE:

EXEC SQL
DECLARE FILTER SAMPLE

INPUT_TYPE -1 OUTPUT_TYPE -2
ENTRY_POINT "FilterFunction"
MODULE_NAME "filter.dll";

In the example, the filter’s input subtype is defined as -1 and its output subtype
as -2. In this example, INPUT_TYPE specifies lowercase text and

180 Programmer’s Guide

OUTPUT_TYPE specifies uppercase text. The purpose of filter, SAMPLE, there-
fore, is to translate BLOB data from lowercase text to uppercase text.

The ENTRY_POINT and MODULE_NAME parameters specify the external rou-
tine that InterBase calls when the filter is invoked. The MODULE_NAME
parameter specifies filter.dll, the dynamic link library containing the filter’s exe-
cutable code. The ENTRY_POINT parameter specifies the entry point into the
DLL. The example shows only a simple file name. It is good practice to specify a
fully-qualified path name, since users of your application need to load the file.

Reading and Writing BLOB Data Using a Filter

The following illustration shows the default behavior of the SAMPLE filter that
translates from lowercase text to uppercase text.

Figure 8-2: Filtering from Lowercase to Uppercase

Similarly, when reading data, the SAMPLE filter can easily read BLOB data of
subtype -2, and translate it to data of subtype -1.

Figure 8-3: Filtering from Uppercase to Lowercase

Invoking a Filter in an Application

To invoke a filter in an application, use the FILTER option when declaring a
BLOB cursor. Then, when the application performs operations using the cursor,
InterBase automatically invokes the filter.

For example, the following INSERT cursor definition specifies that the filter,
SAMPLE, is to be used in any operations involving the cursor, BCINS1:

EXEC SQL
DECLARE BCINS1 CURSOR FOR

INSERT BLOB BLOB1 INTO TABLE1
FILTER FROM -1 TO -2;

Application

abcdef

BLOB

ABCDEF
Filter:
SAMPLE

BLOB

ABCDEF

Application

abcdef
Filter:
SAMPLE

Working With BLOB Data 181

When InterBase processes this declaration, it searches a list of filters defined in
the current database for a filter with matching FROM and TO subtypes. If such a
filter exists, InterBase invokes it during BLOB operations that use the cursor,
BCINS1. If InterBase cannot locate a filter with matching FROM and TO sub-
types, it returns an error to the application.

Writing an External BLOB Filter

If you choose to write your own filters, you must have a detailed understanding
of the data types you plan to translate. As mentioned elsewhere in this chapter,
InterBase does not do strict data type checking on BLOB data, but does enforce
the rule that BLOB source and target subtypes must be compatible. Maintaining
and enforcing this compatibility is your responsibility.

Filter Types
Filters can be divided into two types: filters that convert data one segment at a
time, and filters that convert data many segments at a time.

The first type of filter reads a segment of data, converts it, and supplies it to the
application a segment at a time.

The second type of filter might read all the data and do all the conversion when
the BLOB read cursor is first opened, and then simulate supplying data a seg-
ment at a time to the application.

If timing is an issue for your application, you should carefully consider these
two types of filters and which might better serve your purpose.

Read-only and Write-only Filters
Some filters may only support reading from or writing to a BLOB, but not both
operations. If you attempt to use a BLOB filter for an operation that it does not
support, InterBase returns an error to the application.

Defining the Filter Function
When writing your filter, you must include an entry point, known as a filter func-
tion in the declaration section of the program. InterBase calls the filter function
when your application performs a BLOB access operation. All communication

182 Programmer’s Guide

between InterBase and the filter is through the filter function. The filter function
itself may call other functions that comprise the filter executable.

Figure 8-4: Filter Interaction with an Application and a Database

Declare the name of the filter function and the name of the filter executable with
the ENTRY_POINT and MODULE_NAME parameters of the DECLARE
FILTER statement.

A filter function must have the following declaration calling sequence:

filter_function_name (short action , isc_blob_ctl control);

The parameter, action, is one of eight possible action macro definitions and the
parameter, control, is an instance of the isc_blob_ctl BLOB control structure,
defined in the InterBase header file ibase.h. These parameters are discussed later
in this chapter.

The following listing of a skeleton filter declares the filter function, jpeg_filter:

#include <ibase.h>

#define SUCCESS 0
#define FAILURE 1

ISC_STATUS jpeg_filter(short action, isc_blob_ctl control)
{

ISC_STATUS status = SUCCESS;

switch (action)
{
case isc_blob_filter_open:

. . .
break;

case isc_blob_filter_get_segment:
. . .
break;

InterBase

Application

Filter

Working With BLOB Data 183

case isc_blob_filter_create:
. . .
break;

case isc_blob_filter_put_segment:
. . .
break;

case isc_blob_filter_close:
. . .
break;

case isc_blob_filter_alloc:
. . .
break;

case isc_blob_filter_free:
. . .
break;

case isc_blob_filter_seek:
. . .
break;

default:
status = isc_uns_ext /* unsupported action value */
. . .
break;

}
return status;
}

InterBase passes one of eight possible actions to the filter function, jpeg_filter, by
way of the action parameter, and also passes an instance of the BLOB control
structure, isc_blob_ctl, by way of the parameter control.

The ellipses (. . .) in the previous listing represent code that performs some oper-
ations based on each action, or event, that is listed in the case statement. Each
action is a particular event invoked by a database operation the application
might perform. For more information, see “Programming Filter Function
Actions,” in this chapter.

The isc_blob_ctl BLOB control structure provides the fundamental data exchange
between InterBase and the filter. For more information on the BLOB control
structure, see “Defining the BLOB Control Structure,” in this chapter.

Defining the BLOB Control Structure

The BLOB control structure, isc_blob_ctl, provides the fundamental method of
data exchange between InterBase and a filter. The declaration for the isc_blob_ctl
control structure is in the InterBase include file, ibase.h.

The isc_blob_ctl structure is used in two ways:

1. When the application performs a BLOB access operation, InterBase calls
the filter function and passes it an instance of isc_blob_ctl.

184 Programmer’s Guide

2. Internal filter functions can pass an instance of isc_blob_ctl to internal
InterBase access routines.

In either case, the purpose of certain isc_blob_ctl fields depends on the action
being performed.

For example, when an application attempts a BLOB INSERT, InterBase passes an
isc_blob_filter_put_segment action to the filter function. The filter function passes
an instance of the control structure to InterBase. The ctl_buffer of the structure
contains the segment data to be written, as specified by the application in its
BLOB INSERT statement. Because the buffer contains information to pass into
the filter function, it is called an IN field. The filter function should include
instructions in the case statement under the isc_blob_filter_put_segment case for
performing the write to the database.

In a different case, for instance when an application attempts a FETCH opera-
tion, the case of an isc_blob_filter_get_segment action should include instructions
for filling ctl_buffer with segment data from the database to return to the applica-
tion. In this case, because the buffer is used for filter function output, it is called
an OUT field.

The following table describes each of the fields in the isc_blob_ctl BLOB control
structure, and whether they are used for filter function input (IN), or output
(OUT).

Table 8-2: isc_blob_ctl Structure Field Descriptions

Field Name Description

(*ctl_source)() Pointer to the internal InterBase BLOB access routine. (IN)

*ctl_source_handle Pointer to an instance of isc_blob_ctl to be passed to the
internal InterBase BLOB access routine. (IN)

ctl_to_sub_type Target subtype. Information field. Provided to support multi-
purpose filters that can perform more than one kind of trans-
lation. This field and the next one enable such a filter to
decide which translation to perform. (IN)

ctl_from_sub_type Source subtype. Information field. Provided to support multi-
purpose filters that can perform more than one kind of trans-
lation. This field and the previous one enable such a filter to
decide which translation to perform. (IN)

ctl_buffer_length For isc_blob_filter_put_segment, field is an IN field that con-
tains the length of the segment data contained in ctl_buffer.
For isc_blob_filter_get_segment, field is an IN field set to the
size of the buffer pointed to by ctl_buffer, which is used to
store the retrieved BLOB data.

Working With BLOB Data 185

Setting Control Structure Information Field Values

The isc_blob_ctl structure contains three fields that store information about the
BLOB currently being accessed: ctl_max_segment, ctl_number_segments, and
ctl_total_length.

You should attempt to maintain correct values for these fields in the filter func-
tion, whenever possible. Depending on the purpose of the filter, maintaining
correct values for the fields is not always possible. For example, a filter that com-
presses data on a segment-by-segment basis cannot determine the size of
ctl_max_segment until it processes all segments.

These fields are informational only. InterBase does not use the values of these
fields in internal processing.

ctl_segment_length Length of the current segment. For
isc_blob_filter_put_segment, this field is not used.
For isc_blob_filter_get_segment, the field is an OUT field set
to the size of the retrieved segment (or partial segment, in the
case when the buffer length ctl_buffer_length is less than the
actual segment length).

ctl_bpb_length Length of the BLOB parameter buffer. Reserved for future
enhancement.

*ctl_bpb Pointer to a BLOB parameter buffer. Reserved for future
enhancement.

*ctl_buffer Pointer to a segment buffer. For isc_blob_filter_put_segment,
field is an IN field that contains the segment data.
For isc_blob_filter_get_segment, the field is an OUT field the
filter function fills with segment data for return to the applica-
tion.

ctl_max_segment Length of longest segment in the BLOB. Initial value is 0. The
filter function sets this field. This field is informational only.

ctl_number_segments Total number of segments in the BLOB. Initial value is 0. The
filter function sets this field. This field is informational only.

ctl_total_length Total length of the BLOB. Initial value is 0. The filter function
sets this field. This field is informational only.

*ctl_status Pointer to the InterBase status vector. (OUT)

ctl_data[8] 8-element array of application-specific data. Use this field to
store resource pointers, such as memory pointers and file
handles created by the isc_blob_filter_open handler, for
example. Then, the next time the filter function is called, the
resource pointers will be available for use. (IN/OUT)

Table 8-2: isc_blob_ctl Structure Field Descriptions (Continued)

Field Name Description

186 Programmer’s Guide

Programming Filter Function Actions

When an application performs a BLOB access operation, InterBase passes a cor-
responding action message to the filter function by way of the action parameter.
There are eight possible actions, each of which results from a particular access
operation. The following list of action macro definitions are declared in the
ibase.h file:

#define isc_blob_filter_open 0
#define isc_blob_filter_get_segment 1
#define isc_blob_filter_close 2
#define isc_blob_filter_create 3
#define isc_blob_filter_put_segment 4
#define isc_blob_filter_alloc 5
#define isc_blob_filter_free 6
#define isc_blob_filter_seek 7

The following table describes the BLOB access operation that corresponds to
each action:

Table 8-3: BLOB Access Operations

Action Invoked when . . . Use to . . .

isc_blob_
filter_open

Application opens a
BLOB READ cursor.

• Set the information fields of the BLOB con-
trol structure.

• Perform initialization tasks, such as allocat-
ing memory or opening temporary files.

• Set the status variable, if necessary. The
value of the status variable becomes the fil-
ter function’s return value.

isc_blob_filter_
get_segment

Application executes a
BLOB FETCH state-
ment.

• Set the ctl_buffer and ctl_segment_length
fields of the BLOB control structure to con-
tain a segment’s worth of translated data on
the return of the filter function.

• Perform the data translation if the filter pro-
cesses the BLOB segment-by-segment.

• Set the status variable. The value of the sta-
tus variable becomes the filter function’s
return value.

isc_blob_filter_
close

Application closes a
BLOB cursor.

• Perform exit tasks, such as freeing allocated
memory, closing, or removing temporary
files.

Working With BLOB Data 187

Tip Store resource pointers, such as memory pointers and file handles created
by the isc_blob_filter_open handler, in the ctl_data field of the isc_blob_ctl
BLOB control structure. Then, the next time the filter function is called, the
resource pointers are still available.

isc_blob_filter_
create

Application opens a
BLOB INSERT cursor.

• Set the information fields of the BLOB con-
trol structure.

• Perform initialization tasks, such as allocat-
ing memory or opening temporary files.

• Set the status variable, if necessary. The
value of the status variable becomes the fil-
ter function’s return value.

isc_blob_filter_
put_segment

Application executes a
BLOB INSERT state-
ment.

• Perform the data translation on the segment
data passed in through the BLOB control
structure.

• Write the segment data to the database. If
the translation process changes the segment
length, the new value must be reflected in
the values passed to the writing function.

• Set the status variable. The value of the sta-
tus variable becomes the filter function’s
return value.

isc_blob_filter_
alloc

InterBase initializes fil-
ter processing. Not a
result of a particular
application action.

• Set the information fields of the BLOB con-
trol structure.

• Perform initialization tasks, such as allocat-
ing memory or opening temporary files.

• Set the status variable, if necessary. The
value of the status variable becomes the fil-
ter function’s return value.

isc_blob_filter_
free

InterBase ends filter
processing. Not a
result of a particular
application action.

• Perform exit tasks, such as freeing allocated
memory, closing, or removing temporary
files.

isc_blob_filter_
seek

Reserved for internal
filter use; not used by
external filters.

Table 8-3: BLOB Access Operations (Continued)

Action Invoked when . . . Use to . . .

188 Programmer’s Guide

Testing the Filter Function Status Return Value

The filter function must return an integer indicating the status of the operation it
performed. You can have the function return any InterBase status value returned
by an internal InterBase routine.

In certain filter applications, a filter function may have to supply status values
directly. The following table lists status values that apply particularly to BLOB
processing:

For more information about InterBase status values, see the Language Reference.

Table 8-4: BLOB Filter Status Values

Macro Constant Value Meaning

SUCCESS 0 Indicates the filter action has been handled success-
fully. On a BLOB read (isc_blob_filter_get_segment)
operation, indicates that the entire segment has been
read.

FAILURE 1 Indicates an unsuccessful operation. In most cases,
a status more specific to the error is returned.

isc_uns_ext See ibase.h Indicates that the attempted action is unsupported by
the filter. For example, a read-only filter would return
isc_uns_ext for an isc_blob_filter_put_segment
action.

isc_segment See ibase.h Returned during a BLOB read operation. Indicates
that the supplied buffer is not large enough to contain
the remaining bytes in the current segment. In this
case, only ctl_buffer_length bytes are copied, and the
remainder of the segment must be obtained through
additional isc_blob_filter_get_segment calls.

isc_segstr_eof See ibase.h Returned during a BLOB read operation. Indicates
that the end of the BLOB has been reached; there
are no additional segments remaining to be read.

Using Arrays 189

CHAPTER 9

9 Using Arrays

InterBase supports arrays of most data types. Using an array enables multiple
data items to be stored in a single column. InterBase can treat an array as a single
unit, or as a series of separate units, called slices. Using an array is appropriate
when:

• The data items naturally form a set of the same data type.

• The entire set of data items in a single database column must be repre-
sented and controlled as a unit, as opposed to storing each item in a sep-
arate column.

• Each item must also be identified and accessed individually.

The data items in an array are called array elements. An array can contain ele-
ments of any InterBase data type except BLOB, and cannot be an array of arrays.
All of the elements of a particular array are of the same data type.

Creating Arrays

Arrays are defined with the CREATE DOMAIN or CREATE TABLE statements.
Defining an array column is just like defining any other column, except that the
array dimensions must also be specified. For example, the following statement
defines both a regular character column, and a single-dimension, character array
column containing four elements:

EXEC SQL
CREATE TABLE TABLE1
(

NAME CHAR(10),
CHAR_ARR CHAR(10)[4]

);

Array dimensions are always enclosed in square brackets following a column’s
data type specification.

190 Programmer’s Guide

For a complete discussion of CREATE TABLE and array syntax, see the Language
Reference.

Multi-dimensional Arrays
InterBase supports multi-dimensional arrays, arrays with 1 to 16 dimensions. For
example, the following statement defines three integer array columns with two,
three, and six dimensions respectively:

EXEC SQL
CREATE TABLE TABLE1
(

INT_ARR2 INTEGER[4,5]
INT_ARR3 INTEGER[4,5,6]
INT_ARR6 INTEGER[4,5,6,7,8,9]

);

In this example, INT_ARR2 allocates storage for 4 rows, 5 elements in width, for
a total of 20 integer elements, INT_ARR3 allocates 120 elements, and INT_ARR6
allocates 60,480 elements.

Important InterBase stores multi-dimensional arrays in row-major order. Some host
languages, such as FORTRAN, expect arrays to be in column-major order.
In these cases, care must be taken to translate element ordering correctly
between InterBase and the host language.

Specifying Subscript Ranges for Array Dimensions
In InterBase, array dimensions have a specific range of upper and lower bound-
aries, called subscripts. In many cases, the subscript range is implicit: the first ele-
ment of the array is element 1, the second element 2, and the last is element n.
For example, the following statement creates a table with a column that is an
array of four integers:

EXEC SQL
CREATE TABLE TABLE1
(

INT_ARR INTEGER[4]
};

The subscripts for this array are 1, 2, 3, and 4.

A different set of upper and lower boundaries for each array dimension can be
explicitly defined when an array column is created. For example, C program-
mers, familiar with arrays that start with a lower subscript boundary of zero,
may want to create array columns with a lower boundary of zero as well.

Using Arrays 191

To specify array subscripts for an array dimension, both the lower and upper
boundaries of the dimension must be specified using the following syntax:

lower : upper

For example, the following statement creates a table with a single-dimension
array column of four elements where the lower boundary is 0 and the upper
boundary is 3:

EXEC SQL
CREATE TABLE TABLE1
(

INT_ARR INTEGER[0:3]
};

The subscripts for this array are 0, 1, 2, and 3.

When creating multi-dimensional arrays with explicit array boundaries, sepa-
rate each dimension’s set of subscripts from the next with commas. For example,
the following statement creates a table with a two-dimensional array column
where each dimension has four elements with boundaries of 0 and 3:

EXEC SQL
CREATE TABLE TABLE1
(

INT_ARR INTEGER[0:3, 0:3]
};

Accessing Arrays

InterBase can perform operations on an entire array, effectively treating it as a
single element, or it can operate on an array slice, a subset of array elements. An
array slice can consist of a single element, or a set of many contiguous elements.

InterBase supports the following data manipulation operations on arrays:

• Selecting data from an array

• Inserting data into an array

• Updating data in an array slice

• Selecting data from an array slice

• Evaluating an array element in a search condition

A user-defined function (UDF) can only reference a single array element.

The following array operations are not supported:

192 Programmer’s Guide

• Referencing array dimensions dynamically in DSQL

• Inserting data into an array slice

• Setting individual array elements to NULL

• Using the aggregate functions, MIN(), MAX(), SUM(), AVG(), and
COUNT() with arrays

• Referencing arrays in the GROUP BY clause of a SELECT

• Creating views that select from array slices

Selecting Data From an Array
To select data from an array, perform the following steps:

1. Declare a host-language array variable of the correct size to hold the
array data. For example, the following statements create three such vari-
ables:

EXEC SQL
BEGIN DECLARE SECTION;

BASED ON TABLE1.CHAR_ARR char_arr;
BASED ON TABLE1.INT_ARR int_arr;
BASED ON TABLE1.FLOAT_ARR float_arr;

EXEC SQL
END DECLARE SECTION;

2. Declare a cursor that specifies the array columns to select. For example,

EXEC SQL
DECLARE TC1 CURSOR FOR

SELECT NAME, CHAR_ARR[], INT_ARR[]
FROM TABLE1;

Be sure to include brackets ([]) after the array column name to select the
array data. If the brackets are left out, InterBase reads the array ID for the
column, instead of the array data.

The ability to read the array ID, which is actually a BLOB ID, is included
only to support applications that access array data using InterBase API
calls.

3. Open the cursor, and fetch data:

EXEC SQL
OPEN TC1;

EXEC SQL
FETCH TC1 INTO :name, :char_arr, :int_arr;

Using Arrays 193

Note It is not necessary to use a cursor to select array data. For example, a single-
ton SELECT might be appropriate, too.

When selecting array data, keep in mind that InterBase stores elements in row-
major order. For example, in a 2-dimensional array, with 2 rows and 3 columns,
all 3 elements in row 1 are returned, then all three elements in row two.

Inserting Data Into an Array
INSERT can be used to insert data into an array column. The data to insert must
exactly fill the entire array, or an error can occur.

To insert data into an array, follow these steps:

1. Declare a host-language variable to hold the array data. Use the BASED
ON clause as a handy way of declaring array variables capable of hold-
ing data to insert into the entire array. For example, the following state-
ments create three such variables:

EXEC SQL
BEGIN DECLARE SECTION;

BASED ON TABLE1.CHAR_ARR char_arr;
BASED ON TABLE1.INT_ARR int_arr;
BASED ON TABLE1.FLOAT_ARR float_arr;

EXEC SQL
END DECLARE SECTION;

2. Load the host-language variables with data.

3. Use INSERT to write the arrays. For example,

EXEC SQL
INSERT INTO TABLE1 (NAME, CHAR_ARR, INT_ARR, FLOAT_ARR)
VALUES ("Sample", :char_arr, :int_arr, :float_arr);

4. Commit the changes:

EXEC SQL
COMMIT;

Important When inserting data into an array column, provide data to fill all array ele-
ments, or the results will be unpredictable.

Selecting From an Array Slice
The SELECT statement supports syntax for retrieving contiguous ranges of ele-
ments from arrays. These ranges are referred to as array slices. Array slices to
retrieve are specified in square brackets ([]) following a column name containing

194 Programmer’s Guide

an array. The number inside the brackets indicates the elements to retrieve. For a
one-dimensional array, this is a single number. For example, the following state-
ment selects the second element in a one-dimensional array:

EXEC SQL
SELECT JOB_TITLE[2]

INTO :title
FROM EMPLOYEE
WHERE LAST_NAME = :lname;

To retrieve a subset of several contiguous elements from a one-dimensional
array, specify both the first and last elements of the range to retrieve, separating
the values with a colon. The syntax is as follows:

[lower_bound : upper_bound]

For example, the following statement retrieves a subset of three elements from a
one-dimensional array:

EXEC SQL
SELECT JOB_TITLE[2:4]

INTO :title
FROM EMPLOYEE
WHERE LAST_NAME = :lname;

For multi-dimensional arrays, the lower and upper values for each dimension
must be specified, separated from one another by commas, using the following
syntax:

[lower : upper , lower : upper [, lower : upper ...]]

Note In this syntax, the bold brackets must be included.

For example, the following statement retrieves two rows of three elements each:

EXEC SQL
DECLARE TC2 CURSOR FOR

SELECT INT_ARR[1:2,1:3]
FROM TABLE1

Because InterBase stores array data in row-major order, the first range of values
between the brackets specifies the subset of rows to retrieve. The second range of
values specifies which elements in each row to retrieve.

To select data from an array slice, perform the following steps:

1. Declare a host-language variable large enough to hold the array slice
data retrieved. For example,

EXEC SQL
BEGIN DECLARE SECTION;

char char_slice[11]; /* 11-byte string for CHAR(10) data type */

Using Arrays 195

long int_slice[2][3];
EXEC SQL

END DECLARE SECTION;

The first variable, char_slice, is intended to store a single element from the
CHAR_ARR column. The second example, int_slice, is intended to store a
six-element slice from the INT_ARR integer column.

2. Declare a cursor that specifies the array slices to read. For example,

EXEC SQL
DECLARE TC2 CURSOR FOR

SELECT CHAR_ARR[1], INT_ARR[1:2,1:3]
FROM TABLE1

3. Open the cursor, and the fetch data:

EXEC SQL
OPEN TC2;

EXEC SQL
FETCH TC2 INTO :char_slice, :int_slice;

Updating Data in an Array Slice
A subset of elements in an array can be updated with a cursor. To perform an
update, follow these steps:

1. Declare a host-language variable to hold the array slice data. For
example,

EXEC SQL
BEGIN DECLARE SECTION;

char char_slice[11]; /* 11-byte string for CHAR(10) data type */
long int_slice[2][3];

EXEC SQL
END DECLARE SECTION;

The first variable, char_slice, is intended to hold a single element of the
CHAR_ARR array column defined in the programming example in the
previous section. The second example, int_slice, is intended to hold a six-
element slice of the INT_ARR integer array column.

2. Select the row that contains the array data to modify. For example, the
following cursor declaration selects data from the INT_ARRAY and
CHAR_ARRAY columns:

EXEC SQL
DECLARE TC1 CURSOR FOR

SELECT CHAR_ARRAY[1], INT_ARRAY[1:2,1:3] FROM TABLE1;
EXEC SQL

196 Programmer’s Guide

OPEN TC1;
EXEC SQL

FETCH TC1 INTO :char_slice, :int_slice;

This example fetches the data currently stored in the specified slices of
CHAR_ARRAY and INT_ARRAY, and stores it into the char_slice and
int_slice host-language variables, respectively.

3. Load the host-language variables with new or updated data.

4. Execute an UPDATE statement to insert data into the array slices. For
example, the following statements put data into parts of CHAR_ARRAY
and INT_ARRAY, assuming char_slice and int_slice contain information
to insert into the table:

EXEC SQL
UPDATE TABLE1
SET

CHAR_ARR[1] = :char_slice,
INT_ARR[1:2,1:3] = :int_slice

WHERE CURRENT OF TC1;

5. Commit the changes:

EXEC SQL
COMMIT;

The following fragment of the output from this example illustrates the contents
of the columns, CHAR_ARR and INT_ARR after this operation.

Testing an Array Element Value in a Search Condition
A single array element’s value can be evaluated in the search condition of a
WHERE clause. For example,

EXEC SQL
DECLARE TC2 CURSOR FOR

SELECT CHAR_ARR[1], INT_ARR[1:2,1:3]
FROM TABLE1
WHERE SMALLINT_ARR[1,1,1] = 111;

char_arr values:
 [0]:string0 [1]:NewString [2]:string2 [3]:string3

int_arr values:
 [0][0]:0 [0][1]:1 [0][2]:2 [0][3]:3
 [1][0]:10 [1][1]:999 [1][2]:999 [1][3]:999
 [2][0]:20 [2][1]:999 [2][2]:999 [2][3]:999
 [3][0]:30 [3][1]:31 [3][2]:32 [3][3]:33

updated values

Using Arrays 197

Important Multi-element array slices cannot be evaluated.

Using Host Variables in Array Subscripts
Integer host variables can be used as array subscripts. For example, the follow-
ing cursor declaration uses host variables, getval, and testval, in array subscripts:

EXEC SQL
DECLARE TC2 CURSOR FOR

SELECT CHAR_ARR[1], INT_ARR[:getval:1,1:3]
FROM TABLE1
WHERE FLOAT_ARR[:testval,1,1] = 111.0;

Using Arithmetic Expressions With Arrays
Arithmetic expressions involving arrays can be used only in search conditions.
For example, the following code fetches a row of array data at a time that meets
the search criterion:

for (i = 1; i < 100 && SQLCODE == 0; i++)
{

EXEC SQL
SELECT ARR[:i] INTO :array_var
FROM TABLE1
WHERE ARR1[:j + 1] = 5;

process_array(array_var);
}

198 Programmer’s Guide

Working With Security 199

CHAPTER 10

10Working With Security

This chapter describes SQL security, and how to assign and revoke security priv-
ileges for tables, views, and stored procedures, and also how to assign and
revoke privileges for individual columns in a table. It discusses using views to
restrict data access, and examines other InterBase security measures available to
safeguard databases.

Overview of SQL Access Privileges

SQL security is controlled at the table level with access privileges, a list of opera-
tions that a user is allowed to perform on a given table or view. The GRANT
statement assigns access privileges for a table or view to specified users or pro-
cedures. The REVOKE statement removes previously granted access privileges.

GRANT can also enable users or stored procedures to use stored procedures
through the EXECUTE privilege, while REVOKE is used to remove those privi-
leges.

Default Table Security and Access
In SQL, all tables are automatically secured against unauthorized access when
they are created. Initially, only a table’s creator, its owner, has access to a table,
and only they may use GRANT to assign privileges to other users or to proce-
dures.

Note On some platforms InterBase also supports a SYSDBA user who has access
to all database objects; furthermore, on platforms that support the concept
of a superuser, or user with root or locksmith privileges, such a user also
has access to all database objects.

200 Programmer’s Guide

Default Procedure Security and Access
All stored procedures are automatically secured against unauthorized use when
they are created. Initially, only a procedure’s creator, its owner, can execute or
call the procedure, and only its owner may assign EXECUTE privileges to other
users or to other procedures.

Note On some platforms InterBase also supports a SYSDBA user who has access
to all database objects; furthermore, on platforms that support the concept
of a superuser, or user with root or locksmith privileges, such a user also
has access to all database objects.

Privileges Available
The following table lists the SQL access privileges that can be granted and
revoked:

ALL grants or revokes SELECT, DELETE, INSERT, and UPDATE privileges
using a single keyword, but does not grant EXECUTE privilege. SELECT,
DELETE, INSERT, and UPDATE privileges can also be granted or revoked sin-
gly or in combination.

Note Statements that grant or revoke EXECUTE privilege cannot grant or revoke
other privileges.

Granting Access to a Table

To give a user access to a table, use GRANT to assign privileges. At a minimum,
GRANT requires parameters which specify an access privilege to grant, the table
name to which access is to be granted, and the name of a user to whom the priv-
ilege will apply. User names are derived either from the system, or, for remote or

Table 10-1: SQL Access Privileges

Privilege Access

ALL Select, delete, insert, and update data.

SELECT Read data.

DELETE Delete data.

INSERT Write new data.

UPDATE Modify existing data.

EXECUTE Execute or call a stored procedure.

Working With Security 201

secured database attachments, from the isc4.gdb security database on the server
where the database being accessed resides. For more information about isc4.gdb,
see the Windows Client User’s Guide.

For example, the following statement grants SELECT privilege for the
DEPARTMENTS table to a user, EMIL:

EXEC SQL
GRANT SELECT ON DEPARTMENTS TO EMIL;

A stored procedure, too, can be given privileges for a table. When a procedure is
the recipient of privileges, the PROCEDURE keyword must precede the name of
the procedure. For example, the following statement grants INSERT privilege
for the ACCOUNTS table to the procedure, MONEY_TRANSFER:

EXEC SQL
GRANT INSERT ON ACCOUNTS TO PROCEDURE MONEY_TRANSFER

Tip As a security measure, privileges to tables can be granted to a procedure
instead of to individual users. If a user has EXECUTE privilege on a proce-
dure that accesses a table, then the user does not need privileges to the
table.

Granting Multiple Privileges
To give a user a specific subset of privileges to a table, but not all of them, list the
privileges, separating them with commas, in the GRANT statement. For exam-
ple, the following statement assigns INSERT and UPDATE privileges for the
DEPARTMENTS table to a user, LI:

EXEC SQL
GRANT INSERT, UPDATE ON DEPARTMENTS TO LI;

Procedures, too, can be assigned a specific subset of privileges. When a proce-
dure is given privileges, the PROCEDURE keyword must precede its name. For
example, the following statement assigns INSERT and UPDATE privileges for
the ACCOUNTS table to a procedure, MONEY_TRANSFER:

EXEC SQL
GRANT INSERT, UPDATE ON ACCOUNTS TO PROCEDURE MONEY_TRANSFER;

Any combination of SELECT, DELETE, INSERT, and UPDATE privileges can be
assigned with the GRANT statement.

202 Programmer’s Guide

Granting All Privileges
The ALL privilege combines the SELECT, DELETE, INSERT, and UPDATE priv-
ileges for a table in a single expression. It is a shorthand way to assign all SQL
access privileges to a user or procedure except for EXECUTE. For example, the
following statement grants all access privileges for the DEPARTMENTS table to
a user, SUSAN:

EXEC SQL
GRANT ALL ON DEPARTMENTS TO SUSAN;

SUSAN can now SELECT, DELETE, INSERT, and UPDATE the DEPARTMENTS
table.

Procedures, too, can be assigned all privileges. When a procedure is assigned
privileges, the PROCEDURE keyword must precede its name. For example, the
following statement grants all privileges for the ACCOUNTS table to the proce-
dure, MONEY_TRANSFER:

EXEC SQL
GRANT ALL ON ACCOUNTS TO PROCEDURE MONEY_TRANSFER;

Granting Privileges to a List of Users
GRANT can be used to assign the same access privileges to a number of users at
the same time. Instead of indicating a single user to whom privileges should be
assigned, provide a list of users, each separated from one another by commas.
The following statement gives INSERT and UPDATE privileges for the
DEPARTMENTS table to users FRANÇOIS, BEATRICE, and HELGA:

EXEC SQL
GRANT INSERT, UPDATE ON DEPARTMENTS TO FRANÇOIS, BEATRICE, HELGA;

Granting Privileges to a List of Procedures
GRANT can be used to assign the same access privileges to a number of stored
procedures at the same time. Instead of indicating a single procedure to which
privileges should be assigned, provide a list of procedures, each separated from
one another by commas. The PROCEDURE keyword must precede the first pro-
cedure name in the list. The following statement gives INSERT and UPDATE
privileges for the ACCOUNTS table to the procedures, ACCT_MAINT, and
MONEY_TRANSFER:

Working With Security 203

EXEC SQL
GRANT INSERT, UPDATE ON DEPARTMENTS TO PROCEDURE ACCT_MAINT,

MONEY_TRANSFER;

Granting Privileges to All Users
To assign the same access privileges for a table to all users, use the PUBLIC key-
word rather than listing all users in the GRANT statement. The following state-
ment grants SELECT, INSERT, and UPDATE privileges on the DEPARTMENTS
table to all users:

EXEC SQL
GRANT SELECT, INSERT, UPDATE ON DEPARTMENTS TO PUBLIC;

Important PUBLIC only grants privileges to users, not to stored procedures. Privi-
leges granted to users with PUBLIC can only be revoked from PUBLIC.

Granting Users UPDATE Access to Columns in a Table
Besides assigning access rights for an entire table at a time, GRANT can assign
UPDATE rights for columns within a table. To assign access to columns within a
table, a list of columns in parentheses, separated from one another with commas,
should follow the list of rights to assign in the GRANT statement. For example,
the following statement assigns UPDATE access for the CONTACT and PHONE
columns in the CUSTOMERS table to all users:

EXEC SQL
GRANT UPDATE (CONTACT, PHONE) ON CUSTOMERS TO PUBLIC;

Privileges granted to users for columns within a table may increase the rights
already assigned to them at the table level, but cannot subtract from them.

To restrict user access to a table, use the REVOKE statement.

Granting Users the Right to Grant Privileges
GRANT can also be used to assign grant authority, the right to assign access priv-
ileges for a table, to other users, but not to stored procedures.

Initially, only a table’s owner has grant authority for that table, so only the
owner can grant SELECT, DELETE, INSERT, and UPDATE access to other users.
When other users are granted access to the table, they cannot, in turn, grant
access to still other users unless they have been given permission to do so.

To assign grant authority to another user, include the WITH GRANT OPTION
clause at the end of a GRANT statement. For example, the following statement

204 Programmer’s Guide

assigns SELECT access to user, EMIL, and allows EMIL to grant SELECT access
to other users:

EXEC SQL
GRANT SELECT ON DEPARTMENTS TO EMIL WITH GRANT OPTION;

WITH GRANT OPTION clauses are cumulative, even if issued by different
users. For example, EMIL can be given grant authority for SELECT by one user,
and grant authority for INSERT by another user. For more information about
cumulative privileges, see “Grant Authority Implications,” in this chapter.

Grant Authority Restrictions

Users with grant authority can only assign the privileges assigned to them with
the WITH GRANT OPTION clause.

For example, in the GRANT example in the previous section, EMIL is granted
SELECT access to the DEPARTMENTS table. EMIL can grant SELECT privilege
to other users. Suppose EMIL is now given INSERT access as well, but without
the WITH GRANT OPTION:

EXEC SQL
GRANT INSERT ON DEPARTMENTS TO EMIL;

EMIL can SELECT from and INSERT to the DEPARTMENTS table. EMIL can
still grant SELECT privileges to other users, but cannot assign INSERT privi-
leges.

To change a user’s existing privileges to include grant authority, issue a second
GRANT statement which includes the WITH GRANT OPTION clause. For
example, to grant EMIL INSERT privilege with grant authority, reissue the
GRANT statement and include the WITH GRANT OPTION clause:

EXEC SQL
GRANT INSERT ON DEPARTMENTS TO EMIL WITH GRANT OPTION;

Grant Authority Implications

Consider every extension of grant authority with care. Once other users are per-
mitted grant authority on a table, they can, in turn, grant those same privileges,
and grant authority for them, to other users.

As the number of users with privileges and grant authority for a table increases,
the likelihood that different users can grant the same privileges and grant
authority to any single user also increases.

Working With Security 205

SQL permits duplicate privilege and authority assignment under the assump-
tion that it is intentional. Duplicate privilege and authority assignments to a sin-
gle user have implications for subsequent revocation of that user’s privileges
and authority. For more information about revoking privileges, see “Revoking
User Access,” in this chapter.

Suppose two users to whom the appropriate privileges and grant authority have
been extended, GALENA and SUDHANSHU, both issue the following state-
ment:

EXEC SQL
GRANT INSERT ON DEPARTMENTS TO SPINOZA WITH GRANT OPTION;

Later, GALENA revokes the privilege and grant authority for SPINOZA:

EXEC SQL
REVOKE INSERT ON DEPARTMENTS FROM SPINOZA;

GALENA now believes that SPINOZA no longer has INSERT privilege and
grant authority for the DEPARTMENTS table. The immediate net effect of the
statement is negligible because SPINOZA retains the INSERT privilege and
grant authority assigned by SUDHANSHU.

When full control of access privileges on a table is desired, grant authority
should not be assigned indiscriminately. In cases where privileges must be uni-
versally revoked for a user who may have received rights from several users,
there are two options:

• Each user who assigned rights must issue an appropriate REVOKE state-
ment.

• The table’s owner must issue a REVOKE statement for all users of the
table, then issue GRANT statements to reestablish access privileges for
the users who should not lose their rights.

For more information about the REVOKE statement, see “Revoking User
Access,” in this chapter.

Granting Privileges to Execute Procedures

To use a stored procedure, users or other stored procedures must have
EXECUTE privilege for it, using the following GRANT syntax:

EXEC SQL
GRANT EXECUTE ON PROCEDUREname TO <userlist> ;

206 Programmer’s Guide

<userlist> = username [, username ...] | PROCEDURE name
[, name ...] | PUBLIC

<userlist> can contain both a list of user names and a list of procedure names. If
PUBLIC is used, separate lists of users and procedures are prohibited. PUBLIC
cannot be used to assign privileges to procedures.

In the following statement, EXECUTE privilege for the FUND_BALANCE pro-
cedure is extended to two users, NKOMO, and SUSAN, and to two procedures,
ACCT_MAINT, and MONEY_TRANSFER:

EXEC SQL
GRANT EXECUTE ON PROCEDURE FUND_BALANCE TO NKOMO, SUSAN, PROCEDURE

ACCT_MAINT, MONEY_TRANSFER;

How GRANT Affects Views

In most respects, SQL treats a view as it does any other table. GRANT can be
used to assign access privileges for it.

For SELECT privileges, this poses no problem. Reading data from a view does
not change the view.

INSERT, UPDATE, and DELETE privileges for an updatable view, on the other
hand, should be assigned with caution. To a user assigned these privileges, it
appears that changes the user makes are applied to an actual table. In reality, for
a user’s changes to occur they must actually be made to the base table underly-
ing the view.

Tip Updatable views for which INSERT and UPDATE privileges are to be
granted should always be created using the SQL integrity constraint,
WITH CHECK OPTION so that users can only update rows in the base
table that can be accessed through the view.

Before granting INSERT, UPDATE, and DELETE privileges for a view, deter-
mine that it is updatable. For more information about updatable views, see the
Data Definition Guide.

Views That are Subsets of a Table
When a view is based on a single table, data changes are made directly to the
view’s underlying table.

For UPDATE, changes only affect the columns visible through the view. Existing
values in other invisible and inaccessible columns are not changed. Views

Working With Security 207

created using the SQL integrity constraint, WITH CHECK OPTION, can be
updated only if the UPDATE statement fulfills the constraint’s requirements.

For DELETE, the removal of a row affects columns invisible through the view. If
SQL integrity constraints or triggers exist for any column in the underlying
table, and the deletion of the row violates any of those constraints or trigger con-
ditions, the DELETE statement fails.

For INSERT, the addition of a row affects columns both visible and accessible to
the view, and columns which are invisible and inaccessible. Insertion succeeds
only when:

• Data for insertion into visible columns meets SQL integrity constraint
criteria for the column, and also meets any trigger conditions that apply.

• All other columns may contain NULL values. SQL integrity constraints
or triggers for these columns might not allow NULL values in some or all
of these columns.

For more information about creating and working with views, see the Data Defi-
nition Guide.

Views With Joins
When a view definition contains a join of any kind, it is no longer a legally
updatable view, and InterBase cannot directly update the underlying tables.

Note If extreme care is taken, INSERT, UPDATE, and DELETE operations on
views with joins are still possible if appropriate triggers are defined on the
view. Even if triggers are defined, integrity constraints in the base tables
might still prevent INSERT, UPDATE, and DELETE statements from suc-
ceeding.

For more information about integrity constraints and triggers, see the Data Defi-
nition Guide.

Revoking User Access

To take away a user’s or stored procedure’s privileges for a table or view, use the
REVOKE statement. At a minimum, REVOKE requires parameters which spec-
ify one access privilege to remove, the table or view to which the privilege revo-
cation applies, and the name of a user for whom or procedure for which the
privilege should be revoked. For example, the following statement removes
SELECT privilege for user SUSAN on the DEPARTMENTS table:

208 Programmer’s Guide

EXEC SQL
REVOKE SELECT ON DEPARTMENTS FROM SUSAN;

The following statement removes UPDATE privilege for the procedure,
MONEY_TRANSFER, on the ACCOUNTS table:

EXEC SQL
REVOKE UPDATE ON ACCOUNTS FROM PROCEDURE MONEY_TRANSER;

REVOKE also removes a user’s or procedure’s privilege to execute a stored pro-
cedure. For example, the following statement removes EXECUTE privilege for
user, EMIL, on the MONEY_TRANSFER procedure:

EXEC SQL
REVOKE EXECUTE ON PROCEDURE MONEY_TRANSFER FROM EMIL;

The next statement removes EXECUTE privilege for the procedure,
ACCT_MAINT, on the MONEY_TRANSFER procedure:

EXEC SQL
REVOKE EXECUTE ON PROCEDURE MONEY_TRANSER FROM PROCEDURE ACCT_MAINT;

For the complete syntax of REVOKE, see the Language Reference.

REVOKE Restrictions
The following restrictions and rules of scope apply to the REVOKE statement.

• Privileges can only be revoked by the user who granted them.

• Other privileges assigned by other users are not affected.

• Revoking a privilege for a user, A, to whom grant authority was given,
automatically revokes that privilege for all users to whom it was subse-
quently assigned by user A.

• Privileges granted to PUBLIC can only be revoked for PUBLIC.

Revoking Multiple Privileges
To remove some, but not all, of the access privileges assigned to a user or proce-
dure for a table, list the privileges to remove, separating them with commas. The
following statement removes INSERT and UPDATE privileges for the
DEPARTMENTS table from a user, LI:

EXEC SQL
REVOKE INSERT, UPDATE ON DEPARTMENTS FROM LI;

Working With Security 209

The next statement removes INSERT and DELETE privileges for the
ACCOUNTS table from a stored procedure, MONEY_TRANSFER:

EXEC SQL
REVOKE INSERT, DELETE ON ACCOUNTS FROM PROCEDURE MONEY_TRANSFER;

Any combination of previously assigned SELECT, DELETE, INSERT, and
UPDATE privileges can be revoked.

Revoking All Privileges
The ALL privilege combines the SELECT, DELETE, INSERT, and UPDATE priv-
ileges for a table in a single expression. It is a shorthand way to remove all SQL
table access privileges from a user or procedure. For example, the following
statement revokes all access privileges for the DEPARTMENTS table for a user,
SUSAN:

EXEC SQL
REVOKE ALL ON DEPARTMENTS FROM SUSAN;

Even if a user does not have all access privileges for a table, ALL can still be
used. Using ALL in this manner may be helpful when a current user’s access
rights are unknown.

Important ALL does not revoke EXECUTE privilege.

Revoking Privileges for a List of Users
REVOKE can be used to remove the same access privileges for a number of users
at the same time. Instead of indicating a single user for whom privileges should
be revoked, provide a list of users, each separated from one another by commas.
For example, the following statement revokes INSERT and UPDATE privileges
for the DEPARTMENTS table for users, FRANÇOIS, BEATRICE, and HELGA:

EXEC SQL
REVOKE INSERT, UPDATE ON DEPARTMENTS FROM FRANÇOIS, BEATRICE, HELGA;

Revoking Privileges for a List of Procedures
REVOKE can also be used to remove the same access privileges for a number of
procedures at the same time. Instead of indicating a single procedure for which
privileges should be revoked, provide a list of procedures, each separated from
one another by commas. The PROCEDURE keyword must precede the first pro-
cedure listed. For example, the following statement revokes INSERT and

210 Programmer’s Guide

UPDATE privileges for the ACCOUNTS table for the procedures,
MONEY_TRANSFER, and ACCT_MAINT:

EXEC SQL
REVOKE INSERT, UPDATE ON ACCOUNTS FROM PROCEDURE MONEY_TRANSFER,

ACCT_MAINT;

Revoking Privileges for All Users
To revoke privileges granted to all users as PUBLIC, use REVOKE with PUBLIC.
The following statement revokes SELECT, INSERT, and UPDATE privileges on
the DEPARTMENTS table for all users:

EXEC SQL
REVOKE SELECT, INSERT, UPDATE ON DEPARTMENTS FROM PUBLIC;

Once this statement is executed, only the table’s owner retains full access privi-
leges to DEPARTMENTS.

Important PUBLIC does not revoke privileges for stored procedures. PUBLIC cannot
be used to strip privileges from users who were granted them as individual
users.

Revoking Grant Authority
To revoke a user’s grant authority for a given privilege, use the following
REVOKE syntax:

EXEC SQL
REVOKE GRANT OPTION FORprivilege [, privilege ...] ON table

FROMuser ;

The following statement revokes SELECT grant authority on the
DEPARTMENTS table from a user, EMIL:

EXEC SQL
REVOKE GRANT OPTION FOR SELECT ON DEPARTMENTS FROM EMIL;

Using Views to Restrict Data Access

Besides using GRANT and REVOKE to control access to database tables, views
can be used to restrict data access. A view is usually created as a subset of col-
umns and rows from one or more underlying tables. Because it is only a subset
of its underlying tables, a view already provides a measure of access security.

Working With Security 211

For example, suppose an EMPLOYEE table contains columns for LAST_NAME,
FIRST_NAME, JOB, SALARY, DEPT, and PHONE. This table contains much
information that is useful to all employees. It also contains employee informa-
tion that should remain confidential to almost everyone: SALARY. Rather than
allow all employees access to the EMPLOYEE table, and the confidential salary
information it contains, a view can be created which allows access to other col-
umns in the EMPLOYEE table, but which excludes SALARY:

EXEC SQL
CREATE VIEW EMPDATA AS

SELECT LAST_NAME, FIRST_NAME, DEPARTMENT, JOB, PHONE
FROM EMPLOYEE;

Access to the EMPLOYEE table can now be restricted, while SELECT access to
the view, EMPDATA, can be granted to everyone.

Note Be careful when creating a view from base tables which contain sensitive
information. Depending on the data included in a view, it may be possible
for users to recreate or infer the missing data.

Providing Additional Security

Standard SQL security is controlled at the table level. The database that contains
SQL tables is not protected in SQL. Because a database is a file, standard SQL
leaves file security to the operating system. Properly managed by a system
administrator, file security at the operating system level might be adequate for
many situations, but not for Windows clients.

Other situations may call for additional database file security. InterBase supports
a security database scheme that is optional for some server/client connections,
and required for others. For example, all Windows client applications that con-
nect to a server must pass a valid USER and PASSWORD combination to the
server as part of the CONNECT statement. Any client application connecting to
an NT or NetWare server must also supply a valid USER and PASSWORD com-
bination. A valid combination is one that matches an entry in the security data-
base on the server.

For more information about providing a USER and PASSWORD combination
when connecting to a database, see the Language Reference. For information
about creating and administering a security database on a server, see the Win-
dows Client User’s Guide.

212 Programmer’s Guide

Working With User-defined Functions 213

CHAPTER 11

11Working With User-defined
Functions

Just as InterBase has built-in SQL functions such as MIN(), MAX(), and CAST(),
it also supports libraries of external functions, or user-defined functions (UDFs).
A UDF is a function written entirely in a host language to perform a data manip-
ulation task not directly supported by InterBase. Possibilities include statistical,
string, and date functions.

Important UDFs are not supported on NetWare.

Once a UDF is created, it can be used in a database application anywhere that a
built-in SQL function can be used. This chapter describes how to create UDFs
and how to use them in an application.

Creating a UDF

Creating a UDF is a three-step process:

1. Writing and compiling a UDF in a programming language such as C.

2. Building a dynamically linked library containing the UDF.

3. Declaring the UDF to the database.

All steps in this process are programming tasks, except for declaring a UDF to
the database, which is a data-definition task. Step 2, building a dynamic link
library of UDFs is optional, though highly recommended. Building a library
enables the database to link the library to an application at run time without
requiring user or programmer intervention.

If a library is not built, then each individual UDF object file must be made sepa-
rately available to the database.

214 Programmer’s Guide

Writing and Compiling Functions

A UDF can be written in C or in any other host language that can be called from
C. Throughout this chapter, the sample UDF code comes from a single C source
file, udflib.c, in the InterBase examples directory.

Writing a Function Module
In C, a UDF is written like any standard function. The UDF can require up to ten
input parameters, and must return only a single C data value. A single source
code module can define one or more UDFs. For example, the sample UDF mod-
ule, udflib.c, contains the following UDFs:

• fn_abs() returns the absolute value of a number passed as an input argu-
ment.

• fn_datediff() takes two InterBase dates as input, and returns the number
of days between them.

• fn_trim() imitates the SQL-92 TRIM() function. It takes three input argu-
ments, an integer specifying the string trim operation to perform (trim
leading characters, trim trailing characters, or trim both leading and
trailing characters), the character to trim, and the string from which to
trim characters. It returns the trimmed string.

The sample code for these functions is as follows:

#include <math.h>
#include <ctype.h>
#include <string.h>
#include <time.h>

/* Defines for fn_trim(). */

#define LEADING 0
#define TRAILING 1
#define BOTH 2

/* Function prototypes. */

static char *strtriml(char *string, int c);
static char *strtrimr(char *string, int c);
char *fn_trim(int operation, int c, char *string);
long fn_datediff(ISC_QUAD d1, ISC_QUAD d2);
double fn_abs(double *x);

Working With User-defined Functions 215

/* Function Definitons */

/* fn_abs() returns the absolute value of its argument. */
double fn_abs(double *x)
{

return(*x < 0.0) ? -*x : *x;
}
/* fn_datediff() returns the number of days between two dates */
long fn_datediff(ISC_QUAD d1, ISC_QUAD d2)
{

struct tm tm1, tm2;

isc_decode_date(d1, &tm1); /* convert IB date to tm */
isc_decode_date(d2, &tm2);
return(long) (timelocal(&tm1) - timelocal(&tm2)) / (24 * 3600.0);

}
/* trim leading and/or trailing characters of type c from string */
char *fn_trim(int operation, int c, char *string)
{

switch (operation) {
case LEADING:

strtriml(string, c);
case TRAILING:

strtrimr(string, c);
break;

case BOTH:
default:

strtrimr(string, c);
strtriml(string, c);
break;

}
return(string);

}

/* trim all chars of type c from left of string and close up */

static char *strtriml(char *string, int c)
{

int n,i;

n = 0;
while (string[n] == c) /* skip leading characters */

n++;
for (i = 0;string[n];i++,n++) /* copy backward over itself */

string[i] = string[n];
string[i] = NULL; /* don’t forget string terminator */

}
/* trim all chars of type c from right of string and truncate length */

static char *strtrimr(char *string, int c)
{

int n;

216 Programmer’s Guide

n = strlen(string) - 1;
while (string[n] == c)

n--;
string[n + 1] = NULL;
return(string);

}

As this sample code illustrates, a UDF source code module can use typedefs
defined in the InterBase ibase.h header file. To compile such a module success-
fully, include ibase.h in the source code by adding the following include direc-
tive:

#include "ibase.h"

Note The sample code also includes calls to two InterBase library functions,
isc_decode_date(), and isc_encode_date(). The ibase.h header file includes
function prototypes for all InterBase library function calls.

Specifying Parameters

A UDF can accept up to ten parameters corresponding to any InterBase data
type. Array elements cannot be passed as parameters. If a UDF returns a BLOB,
the number of input parameters is restricted to nine. All parameters are passed
to the UDF by reference.

Programming language data types specified as parameters must be capable of
handling corresponding InterBase data types. For example, the C function decla-
ration for fn_abs() accepts one parameter of type double. The expectation is that
when fn_abs() is called, it will be passed a data type of DOUBLE PRECISION by
InterBase.

UDFs that accept BLOB parameters require special data structure for processing.
A BLOB is passed by reference to a BLOB UDF structure. For more information
about the BLOB UDF structure, see “Writing a BLOB UDF,” in this chapter.

Specifying a Return Value

A UDF can return values that can be translated into any InterBase data type,
including a BLOB, but it cannot return arrays of data types. For example, the C
function declaration for fn_abs() returns a value of type double, which corre-
sponds to the InterBase DOUBLE PRECISION data type.

By default, return values are passed by reference. Numeric values can be
returned by reference or by value. To return a numeric parameter by value,
include the optional BY VALUE keyword after the return value when declaring
a UDF to a database.

Working With User-defined Functions 217

A UDF that returns a BLOB does not actually define a return value. Instead, a
pointer to a structure describing the BLOB to return must be passed as the last
input parameter to the UDF.

For more information about declaring UDFs, see “Declaring a UDF to a Data-
base,” in this chapter. For more information about declaring a BLOB UDF, see
“Declaring a BLOB UDF,” in this chapter.

Writing a BLOB UDF
A BLOB UDF differs from other UDFs, because pointers to BLOB control struc-
tures are passed to the UDF instead of references to actual data. A BLOB UDF
cannot open or close a BLOB, but instead invokes functions to perform BLOB
access.

Creating a BLOB Control Structure

A BLOB control structure is a C struct, declared within a UDF module as a
typedef. Programmers must provide the control structure definition, which
should be defined as follows:

typedef struct blob {
void (*blob_get_segment) ();
int *blob_handle;
long number_segments;
long max_seglen;
long total_size;
void (*blob_put_segment) ();

} *BLOB;

blob_get_segment

The first field in the BLOB struct, blob_get_segment, is a pointer to a function that
is called to read a segment from a BLOB if one is passed to the UDF. The function
takes four arguments: a BLOB handle, the address of a buffer into which to place
BLOB a segment of data that is read, the size of that buffer, and the address of
variable into to store the size of the segment that is read.

If BLOB data is not read by the UDF, set blob_get_segment to NULL.

blob_handle

The second field in the BLOB struct, blob_handle, is required. It is a BLOB handle
that uniquely identifies a BLOB passed to a UDF or returned by it.

218 Programmer’s Guide

number_segments

For BLOB data passed to a UDF, number_segments specifies the total number of
segments in the BLOB. Set this value to NULL if BLOB data is not passed to a
UDF.

max_seglen

For BLOB data passed to a UDF, max_seglen specifies the size, in bytes, of the
largest single segment passed. Set this value to NULL if BLOB data is not passed
to a UDF.

total_size

For BLOB data passed to a UDF, total_size specifies the actual size, in bytes, of
the BLOB as a single unit. Set this value to NULL if BLOB data is not passed to a
UDF.

blob_put_segment

The last field in the BLOB struct, blob_put_segment, is a pointer to a function that
is called to write a segment to a BLOB if one is being returned by the UDF. The
function takes three arguments: a BLOB handle, the address of a buffer contain-
ing the data to write into the BLOB, and the size, in bytes, of the data to write.

If BLOB data is not read by the UDF, set blob_put_segment to NULL.

A BLOB UDF Example

The following code creates a UDF, blob_concatenate(), that appends data from
one BLOB to the end of another BLOB to return a third BLOB consisting of con-
catenated BLOB data.

/* BLOB control structure */
typedef struct blob {

void (*blob_get_segment) ();
int *blob_handle;
long number_segments;
long max_seglen;
long total_size;
void (*blob_put_segment) ();

} *BLOB;

extern char *isc_$alloc();
#define MAX(a, b) (a > b) ? a : b
#define DELIMITER "-----------------------------"

blob_concatenate(BLOB from1, BLOB from2, BLOB to)
/* Note BLOB to, as final input parameter, is actually for output! */

Working With User-defined Functions 219

{
char *buffer;
long length, b_length;

b_length = MAX(from1->max_seglen, from2->max_seglen);
buffer = isc_alloc(b_length);

/* write the from1 BLOB into the return BLOB, to */
while ((*from1->blob_get_segment) (from1->blob_handle, buffer,

b_length, &length))
(*to->blob_put_segment) (to->blob_handle, buffer, length);

/* now write a delimiter as a dividing line in the blob */
(*to->blob_put_segment) (to->blob_handle, DELIMITER,

sizeof(DELIMITER) - 1);

/* finally write the from2 BLOB into the return BLOB, to */
while ((*from2->blob_get_segment) (from2->blob_handle, buffer,

b_length, &length))
(*to->blob_put_segment) (to->blob_handle, buffer, length);

/* free the memory allocated to the buffer */
isc_$free(buffer);

}

Compiling a Function Module
After a UDF module is written, it can be compiled in a normal fashion into object
or library format. The UDFs in the resulting object or library module can then be
declared to the database. Once declared to the database, the library containing
all the UDFs is automatically loaded at run time from a shared library or
dynamic link library.

Note UDFs are not supported on NetWare. Not all other platforms support
dynamically linked or shared libraries. On these platforms, UDF libraries
must be linked explicitly into applications, or the InterBase server. For
more information about platform-specific linking requirements, see the
Installing and Running on . . . Guide for that platform.

Creating a UDF Library

UDF libraries are standard C object libraries that are dynamically loaded by the
database at run time. UDF libraries can be created on any platform supported by
InterBase. To use the same set of UDFs with databases running on different plat-
forms, create separate libraries on each platform where the databases reside.
UDFs run on the server where the database resides.

220 Programmer’s Guide

The InterBase examples directory contains a sample makefile, make.lib, that builds
a UDF function library from udflib.c. make.lib is specific to each platform where
InterBase runs.

Modifying a UDF Library
To add a UDF to an existing UDF library on a platform:

• Compile the UDF according to the instructions for the platform.

• Include all object files previously included in the library and the newly-
created object file in the command line when creating the function
library.

Note On some platforms, object files can be added directly to existing libraries.
For more information, consult the platform-specific compiler and linker
documentation.

To delete a UDF from a library, follow the linker’s instructions for removing an
object from a library. Deleting a UDF from a library does not eliminate references
to it in the database.

Declaring a UDF to a Database

After a UDF is created, it must also be declared to any databases where it will be
used. Declaring a UDF to a database informs the database about the function:

• Its name as it will be used in embedded SQL statements.

• The number and data types of its arguments.

• The return data type.

• The name of the function as it exists in the UDF module or library.

• The name of the module where the UDF exists.

To declare a UDF to a database, follow these steps:

1. Start isql and connect to the desired database.

2. Use the DECLARE EXTERNAL FUNCTION statement to inform the
database about the UDF.

The syntax for DECLARE EXTERNAL FUNCTION is as follows:

Working With User-defined Functions 221

DECLARE EXTERNAL FUNCTIONsql_name
[<datatype> | CSTRING (int) [, <datatype>] | CSTRING (int) ...]
RETURNS {<datatype> [BY VALUE] | CSTRING (int)}
ENTRY_POINT " <entryname> "
MODULE_NAME "<modulename> ";

The following table describes the parameters for DECLARE EXTERNAL
FUNCTION:

sql_name is the name of the UDF that is used to call the function from SQL state-
ments. It can be different from the name of the actual function in the library or
module source code. That name must be specified as "<entryname>". For exam-
ple, the following isql script declares three UDFs, ABS(), DATEDIFF(), and
TRIM(), to the employee.gdb database:

CONNECT "employee.gdb";
DECLARE EXTERNAL FUNCTION ABS

DOUBLE PRECISION
RETURNS DOUBLE BY VALUE
ENTRY_POINT "fn_abs" MODULE_NAME "udflib.lib";

COMMIT;
DECLARE EXTERNAL FUNCTION DATEDIFF

DATE, DATE
RETURNS INTEGER
ENTRY_POINT "fn_datediff" MODULE_NAME "udflib.lib";

COMMIT;
DECLARE EXTERNAL FUNCTION TRIM

Table 11-1: DECLARE EXTERNAL FUNCTION Parameters

Argument Description

sql_name Name of the UDF as it will appear in SQL statements.

<datatype> InterBase data type of an input parameter. All input parameters
are passed to a UDF by reference. A UDF can have zero or more
input parameters.

RETURNS Specifies the return value of a function.

PARAMETER pnum Specifies that the return value for the UDF is stored in the input
parameter identified by <pnum>.

<datatype>
[BY VALUE]

Specifies the InterBase SQL data type returned by the UDF.
Return values are passed by reference unless the optional BY
VALUE clause is used. Only numeric data types can be returned
by value.

CSTRING (int) Specifies a string value int bytes in length.

ENTRY_POINT
"<entryname>"

Quoted string specifying the name of the UDF as stored in the
linked library.

MODULE_NAME
"<modulename>"

Quoted file specification identifying the library or module in which
the UDF resides.

222 Programmer’s Guide

SMALLINT, CSTRING(256), SMALLINT
RETURNS CSTRING(256)
ENTRY_POINT "fn_trim" MODULE_NAME "udflib.lib";

COMMIT;

Although UDFs are written in a host language and therefore take host-language
data types for both its parameters and its return value, when a UDF is declared,
it must translate them to SQL data types or to a CSTRING type of a specified
maximum byte length. CSTRING is used to translate parameters of CHAR and
VARCHAR data types into a null-terminated C string for processing, and to
return a variable-length, null-terminated C string to InterBase for automatic con-
version to CHAR or VARCHAR.

For a complete discussion of declaring UDFs, see the Data Definition Guide. For
examples of calling UDFs from an application, including the use of CSTRING as
a parameter and return value, see “Calling a UDF,” in this chapter.

Declaring a BLOB UDF
A BLOB UDF is declared to the database using DECLARE EXTERNAL
FUNCTION like any non-BLOB UDF. A UDF that returns a BLOB does not actu-
ally define a return value. Instead, a pointer to a structure describing the BLOB
to return must be passed as the last input parameter to the UDF. For example,
the following statement declares the BLOB UDF, BLOB_PLUS_BLOB, to a data-
base:

DECLARE EXTERNAL FUNCTION BLOB_PLUS_BLOB
BLOB,
BLOB,
BLOB
ENTRY_POINT "blob_concatenate" MODULE_NAME "udflib.lib";

COMMIT;

Calling a UDF

After a UDF is created and declared to a database, it can be used in SQL state-
ments wherever a built-in function is permitted. To use a UDF, insert its name in
an SQL statement at an appropriate location, and enclose its input arguments in
parentheses.

For example, the following DELETE statement calls the ABS() UDF as part of a
search condition that restricts which rows are deleted:

Working With User-defined Functions 223

EXEC SQL
DELETE FROM CITIES

WHERE ABS (POPULATION - 100000) > 50000;

UDFs can also be called in stored procedures and triggers. For more informa-
tion, see the Data Definition Guide.

Using a UDF With SELECT
In SELECT statements, a UDF can be used in a select list to specify data retrieval,
or in the WHERE clause search condition.

The following statement uses ABS() to guarantee that a returned column value is
positive:

EXEC SQL
SELECT ABS (JOB_GRADE) FROM PROJECTS;

The next statement uses DATEDIFF() in a search condition to restrict rows
retrieved:

EXEC SQL
SELECT START_DATE FROM PROJECTS

WHERE DATEDIFF (:today, START_DATE) > 10;

Using a UDF With INSERT
In INSERT statements, a UDF can be used in the comma-delimited list in the
VALUES clause.

The following statement uses TRIM() to remove leading blanks from firstname
and trailing blanks from lastname before inserting the values of these host vari-
ables into the EMPLOYEE table:

EXEC SQL
INSERT INTO EMPLOYEE(FIRST_NAME, LAST_NAME, EMP_NO, DEPT_NO, SALARY)

VALUES (TRIM (0, ' ',:firstname), TRIM (1, ' ', :lastname),
:empno, :deptno, greater(30000, :est_salary));

Using a UDF With UPDATE
In UPDATE statements, a UDF can be used in the SET clause as part of the
expression assigning column values.

For example, the following statement uses TRIM() to ensure that update values
do not contain leading or trailing blanks:

224 Programmer’s Guide

EXEC SQL
UPDATE COUNTRIES

SET COUNTRY = TRIM (2, ' ', COUNTRY);

Using a UDF With DELETE
In DELETE statements, a UDF can be used in a WHERE clause search condition:

EXEC SQL
DELETE FROM COUNTRIES

WHERE ABS (POPULATION - 100000) < 50000;

Working With Stored Procedures 225

CHAPTER 12

12Working With Stored
Procedures

A stored procedure is a self-contained set of extended SQL statements stored in a
database as part of its metadata. Stored procedures can pass parameters to and
receive return values from applications. In applications, stored procedures can
be invoked directly to perform a task, or can be substituted for a table or view in
a SELECT statement.

The advantages of using stored procedures are:

• Applications can share code. A common piece of SQL code written once
and stored in the database can be used in any application that accesses
the database, including the new InterBase interactive SQL tool, isql.

• Modular design. Stored procedures can be shared among applications,
eliminating duplicate code, and reducing the size of applications.

• Streamlined maintenance. When a procedure is updated, the changes are
automatically reflected in all applications that use it without the need to
recompile and relink them.

• Improved performance, especially for remote client access. Stored proce-
dures are executed by the server, not the client.

This chapter describes how to call and execute stored procedures in applications
once they are written. For information on how to create a stored procedure, see
the Data Definition Guide.

Using Stored Procedures

There are two types of procedures that can be called from an application:

• Select procedures that an application can use in place of a table or view in a
SELECT statement. A select procedure must return one or more values,
or an error results.

226 Programmer’s Guide

• Executable procedures that an application can call directly, with the
EXECUTE PROCEDURE statement. An executable procedure may or
may not return values to the calling program.

Both kinds of procedures are defined with CREATE PROCEDURE and have the
same syntax. The difference is in how the procedure is written and how it is
intended to be used. Select procedures always return zero or more rows, so that
to the calling program they appear as a table or view. Executable procedures are
simply routines invoked by the calling program that can return only a single set
of values.

In fact, a single procedure conceivably can be used as a select procedure or an
executable procedure, but this is not recommended. In general a procedure is
written specifically to be used in a SELECT statement (a select procedure) or to
be used in an EXECUTE PROCEDURE statement (an executable procedure). For
more information on creating stored procedures, see the Data Definition Guide.

Procedures and Transactions
Procedures operate within the context of a transaction in the program that uses
them. If procedures are used in a transaction, and the transaction is rolled back,
then any actions performed by the procedures are also rolled back. Similarly, a
procedure’s actions are not final until its controlling transaction is committed.

Security for Procedures
Users must be given EXECUTE privilege to use a stored procedure in an applica-
tion. An extension to the GRANT statement enables assignment of EXECUTE
privilege, and an extension to the REVOKE statement enables removal of the
privilege. For more information about granting privileges to users, see the Data
Definition Guide.

Stored procedures themselves sometimes need access to tables or views for
which a user does not—or should not—have privileges. The GRANT statement
assigns privileges to procedures, and REVOKE eliminates privileges.

Using Select Procedures

A select procedure is used in place of a table or view in a SELECT statement and
can return zero or more rows. A select procedure must return one or more out-
put parameters, or an error results. If returned values are not specified, NULL
values are returned by default.

Working With Stored Procedures 227

The advantages of select procedures over tables or views are:

• They can take input parameters that can affect the output produced.

• They can contain control statements, local variables, and data manipula-
tion statements, offering great flexibility to the user.

Input parameters are passed to a select procedure in a comma-delimited list in
parentheses following the procedure name. For example, the following isql
script file defines the procedure, GET_EMP_PROJ, which returns the project
numbers to which an employee is assigned (PROJ_ID) when passed the
employee number (emp_no) as an input parameter:

SET TERM !! ;
CREATE PROCEDURE GET_EMP_PROJ (emp_no SMALLINT)
RETURNS (PROJ_ID CHAR(5)) AS
BEGIN

FOR SELECT PROJ_ID
FROM EMPLOYEE_PROJECT
WHERE EMP_NO = :emp_no
INTO :PROJ_ID

DO
SUSPEND;

END !!

The following statement retrieves PROJ_ID from the above procedure, passing
the host variable, number, as input:

SELECT PROJ_ID FROM GET_EMP_PROJ (:number);

Calling a Select Procedure
To use a select procedure in place of a table or view name in an application, use
the procedure name anywhere a table or view name is appropriate. Supply any
input parameters required in a comma-delimited list in parentheses following
the procedure name.

EXEC SQL
SELECT PROJ_ID FROM GET_EMP_PROJ (:emp_no)
ORDER BY PROJ_ID;

Using a Select Procedure With Cursors
A select procedure can also be used in a cursor declaration. For example, the fol-
lowing code declares a cursor named PROJECTS, using the GET_EMP_PROJ
procedure in place of a table:

EXEC SQL

228 Programmer’s Guide

DECLARE PROJECTS CURSOR FOR
SELECT PROJ_ID FROM GET_EMP_PROJ (:emp_no)

ORDER BY PROJ_ID;

The following application C code with embedded SQL then uses the PROJECTS
cursor to print project numbers to standard output:

EXEC SQL
OPEN PROJECTS;

/* Print employee projects. */
while (SQLCODE == 0)
{

EXEC SQL
FETCH PROJECTS INTO :proj_id :nullind;

if (SQLCODE == 100)
break;

if (nullind == 0)
printf("\t%s\n", proj_id);

}

Using Executable Procedures

An executable procedure is called directly by an application, and often performs
a task common to applications using the same database. Executable procedures
can receive input parameters from the calling program, and can optionally
return a single row to the calling program.

Input parameters pass to an executable procedure in a comma-delimited list fol-
lowing the procedure name.

Note Executable procedures cannot return multiple rows.

Executing a Procedure
To execute a procedure in an application, use the following syntax:

EXEC SQL
EXECUTE PROCEDUREname [: param [[INDICATOR]: indicator]]

[, : param [[INDICATOR]: indicator] ...]
[RETURNING_VALUES :param [[INDICATOR]: indicator]
[, : param [[INDICATOR]: indicator]...]];

When an executable procedure uses input parameters, the parameters can be lit-
eral values (such as 7 or “Fred”), or host variables. If a procedure returns output

Working With Stored Procedures 229

parameters, host variables must be supplied in the RETURNING_VALUES
clause to hold the values returned.

For example, the following statement demonstrates how the executable proce-
dure, DEPT_BUDGET, is called with literal parameters:

EXEC SQL
EXECUTE PROCEDURE DEPT_BUDGET 100 RETURNING_VALUES :sumb;

The following statement also calls the same procedure using a host variable
instead of a literal as the input parameter:

EXEC SQL
EXECUTE PROCEDURE DEPT_BUDGET :rdno RETURNING_VALUES :sumb;

Indicator Variables

Both input parameters and return values can have associated indicator variables
for tracking NULL values. You must use indicator variables to indicate
unknown or NULL values of return parameters. The INDICATOR keyword is
optional. An indicator variable that is less than zero indicates that the parameter
is unknown or NULL. An indicator variable that is 0 indicates that the associ-
ated parameter contains a non-NULL value. For more information about indica-
tor variables, see Chapter 6: “Working With Data.”

Executing a Procedure in a DSQL Application
To execute a stored procedure in a dynamic SQL (DSQL) application follow
these steps:

1. Use a PREPARE statement to parse and prepare the procedure call for
execution using the following syntax:

EXEC SQL
PREPAREsql_statement_name FROM : var | "< statement >";

2. Set up an input XSQLDA using the following syntax:

EXEC SQL
DESCRIBE INPUT sql_statement_name INTO SQL DESCRIPTOR input_xsqlda;

3. Use DESCRIBE OUTPUT to set up an output XSQLDA using the follow-
ing syntax:

EXEC SQL
DESCRIBE OUTPUTsql_statement_name INTO SQL DESCRIPTOR

output_xsqlda ;

230 Programmer’s Guide

Setting up an output XSQLDA is only necessary for procedures that
return values.

4. Execute the statement using the following syntax:

EXEC SQL
EXECUTEstatement USING SQL DESCRIPTOR input_xsqlda
INTO DESCRIPTOR output_xsqlda ;

Input parameters to stored procedures can be passed as run-time values by sub-
stituting a question mark (?) for each value. For example, the following DSQL
statements prepare and execute the ADD_EMP_PROJ procedure:

. . .
strcpy(uquery, "EXECUTE PROCEDURE ADD_EMP_PROJ ?, ?");
. . .
EXEC SQL

PREPARE QUERY FROM :uquery;
EXEC SQL

DESCRIBE INPUT QUERY INTO SQL DESCRIPTOR input_xsqlda;
EXEC SQL

DESCRIBE OUTPUT QUERY INTO SQL DESCRIPTOR output_xsqlda;
EXEC SQL

EXECUTE QUERY USING SQL DESCRIPTOR input_xsqlda INTO SQL DESCRIPTOR
output_xsqlda;

. . .

Working With Events 231

CHAPTER 13

13Working With Events

This chapter describes the InterBase event mechanism and how to write applica-
tions that register interest in and respond to events. The event mechanism
enables applications to respond to actions and database changes made by other,
concurrently running applications without the need for those applications to
communicate directly with one another, and without incurring the expense of
CPU time required for periodic polling to determine if an event has occurred.

Understanding the Event Mechanism

In InterBase, an event is a message passed by a trigger or a stored procedure to
the InterBase event manager to announce the occurrence of a specified condition
or action, usually a database change such as an INSERT, UPDATE, or DELETE.
Events are passed by triggers or stored procedures only when the transaction
under which they occur is committed.

The event manager maintains a list of events posted to it by triggers and stored
procedures. It also maintains a list of applications that have registered an inter-
est in events. Each time a new event is posted to it, the event manager notifies
interested applications that the event has occurred.

Applications can respond to specific events that might be posted by a trigger or
stored procedure by:

1. Indicating an interest in the events to the event manager.

2. Waiting for event notification.

3. Determining which event occurred (if an application is waiting for more
than one event to occur).

The InterBase event mechanism, then, consists of three parts:

• A trigger or stored procedure that posts an event to the event manager.

232 Programmer’s Guide

• The event manager that maintains an event queue and notifies applica-
tions when an event occurs.

• An application that registers interest in the event and waits for it to
occur.

A second application that uses the event-posting stored procedure (or that fires
the trigger) causes the event manager to notify the waiting application so that it
can resume processing.

Signaling Event Occurrence With POST_EVENT

A trigger or stored procedure must signal the occurrence of an event, usually a
database change such as an INSERT, UPDATE, or DELETE, by using the
POST_EVENT statement. POST_EVENT alerts the event manager to the occur-
rence of an event after a transaction is committed. At that time, the event man-
ager passes the information to registered applications.

A trigger or stored procedure that posts an event is sometimes called an event
alerter. For example, the following isql script creates a trigger that posts an event
to the event manager whenever any application inserts data in a table:

SET TERM !! ;
CREATE TRIGGER POST_NEW_ORDER FOR SALES

ACTIVE
AFTER INSERT
POSITION 0
AS

BEGIN
POST_EVENT "new_order";

END
!!
SET TERM ; !!

Event names are restricted to 15 characters in size.

Note POST_EVENT is a stored procedure and trigger language extension, avail-
able only within stored procedures and triggers.

For a complete discussion of writing a trigger or stored procedure as an event
alerter, see the Data Definition Guide.

Working With Events 233

Registering Interest in Events With EVENT INIT

An application must register a request to be notified about a particular event
with the InterBase event manager before waiting for the event to occur. To regis-
ter interest in an event, use the EVENT INIT statement. EVENT INIT requires
two arguments:

• An application-specific request handle to pass to the event manager.

• A list of events to be notified about, enclosed in parentheses.

The application-specific request handle is used by the application in a subse-
quent EVENT WAIT statement to indicate a readiness to receive event notifica-
tion. The request handle is used by the event manager to determine where to
send notification about particular events to wake up a sleeping application so
that it can respond to them.

The list of event names in parentheses must match event names posted by trig-
gers or stored procedures, or notification cannot occur.

To register interest in a single event, use the following EVENT INIT syntax:

EXEC SQL
EVENT INIT request_name (event_name);

event_name can be up to 15 characters in size, and can be passed as a constant
string in quotes, or as a host-language variable.

For example, the following application code creates a request named
RESPOND_NEW that registers interest in the “new_order” event:

EXEC SQL
EVENT INIT RESPOND_NEW ("new_order");

The next example illustrates how RESPOND_NEW might be initialized using a
host-language variable, myevent, to specify the name of an event:

EXEC SQL
EVENT INIT RESPOND_NEW (:myevent);

After an application registers interest in an event, it is not notified about an
event until it first pauses execution with EVENT WAIT. For more information
about waiting for events, see “Waiting for Events With EVENT WAIT,” in this
chapter.

Note As an alternative to registering interest in an event and waiting for the
event to occur, applications can use an InterBase API call to register interest
in an event, and identify an asynchronous trap (AST) function to receive
event notification. This method enables an application to continue other

234 Programmer’s Guide

processing instead of waiting for an event to occur. For more information
about programming events with the InterBase API, see the API Guide.

Registering Interest in Multiple Events
Often, an application may be interested in several different events even though
it can only wait on a single request handle at a time. EVENT INIT enables an
application to specify a list of event names in parentheses, using the following
syntax:

EXEC SQL
EVENT INIT request_name (event_name [event_name ...]);

Each event_name can be up to 15 characters in size, and should correspond to
event names posted by triggers or stored procedures, or notification may never
occur. For example, the following application code creates a request named
RESPOND_MANY that registers interest in three events, “new_order,”
“change_order,” and “cancel_order”:

EXEC SQL
EVENT INIT RESPOND_MANY ("new_order", "change_order",

"cancel_order");

Note An application can also register interest in multiple events by using a sepa-
rate EVENT INIT statement with a unique request handle for a single event
or groups of events, but it can only wait on one request handle at a time.

Waiting for Events With EVENT WAIT

Even after an application registers interest in an event, it does not receive notifi-
cation about that event. Before it can receive notification, it must use the EVENT
WAIT statement to indicate its readiness to the event manager, and to suspend
its processing until notification occurs.

To signal the event manager and suspend an application’s processing, use the
following EVENT WAIT statement syntax:

EXEC SQL
EVENT WAIT request_name ;

request_name must be the name of a request handle declared in a previous
EVENT INIT statement.

The following statements register interest in an event, and wait for event notifi-
cation:

Working With Events 235

EXEC SQL
EVENT INIT RESPOND_NEW ("new_order");

EXEC SQL
EVENT WAIT RESPOND_NEW;

Once EVENT WAIT is executed, application processing stops until the event
manager sends a notification message to the application.

Note An application can contain more than one EVENT WAIT statement, but all
processing stops when the first statement is encountered. When processing
is restarted, it stops when the next EVENT WAIT is encountered, and so
forth.

If one event occurs while an application is processing another, the event man-
ager sends notification the next time the application returns to a wait state.

Responding to Events

When event notification occurs, a suspended application resumes normal pro-
cessing at the next statement following EVENT WAIT.

If an application has registered interest in more than one event with a single
EVENT INIT call, then the application must determine which event occurred by
examining the event array, isc_event[]. The event array is automatically created
for an application during preprocessing. Each element in the array corresponds
to an event name passed as an argument to EVENT INIT. The value of each ele-
ment is the number of times that event occurred since execution of the last
EVENT WAIT statement with the same request handle.

In the following code, an application registers interest in three events, then sus-
pends operation pending event notification:

EXEC SQL
EVENT INIT RESPOND_MANY ("new_order", "change_order",

"cancel_order");
EXEC SQL

EVENT WAIT RESPOND_MANY;

When any of the “new_order,” “change_order,” or “cancel_order” events are
posted and their controlling transactions commit, the event manager notifies the
application and processing resumes. The following code illustrates how an
application might test which event occurred:

236 Programmer’s Guide

for (i = 0; i < 3; i++)
{

if (isc_$event[i] > 0)
{

/* this event occurred, so process it */
. . .

}
}

Error Handling and Recovery 237

CHAPTER 14

14Error Handling and Recovery

All SQL applications should include mechanisms for trapping, responding to,
and recovering from run-time errors, the errors that can occur when someone
uses an application. This chapter describes both standard, portable SQL meth-
ods for handling errors, and additional error handling specific to InterBase.

Standard Error Handling

Every time an SQL statement is executed, it returns a status indicator in the
SQLCODE variable, which is declared automatically for SQL programs during
preprocessing with gpre. The following table summarizes possible SQLCODE
values and their meanings:

To trap and respond to run-time errors, SQLCODE should be checked after each
SQL operation. There are three ways to examine SQLCODE and respond to
errors:

• Use WHENEVER statements to automate checking SQLCODE and han-
dle errors when they occur.

• Test SQLCODE directly after individual SQL statements.

• Use a judicious combination of WHENEVER statements and direct
testing.

Table 14-1: Possible SQLCODE Values

Value Meaning

0 Success.

1-99 Warning or informational message.

100 End of file (no more data).

< 0 Error. Statement failed to complete.

238 Programmer’s Guide

Each method has advantages and disadvantages, described fully in the remain-
der of this chapter.

Handling Errors With WHENEVER Statements
The WHENEVER statement enables all SQL errors to be handled with a mini-
mum of coding. WHENEVER statements specify error-handling code that a pro-
gram should execute when SQLCODE indicates errors, warnings, or end-of-file.
The syntax of WHENEVER is:

EXEC SQL
WHENEVER {SQLERROR | SQLWARNING | NOT FOUND}

{GOTO label | CONTINUE};

After WHENEVER appears in a program, all subsequent SQL statements auto-
matically jump to the specified code location identified by label when the appro-
priate error or warning occurs.

Because they affect all subsequent statements, WHENEVER statements are usu-
ally embedded near the start of a program. For example, the first statement in
the following C code’s main() function is a WHENEVER that traps SQL errors:

main()
{

EXEC SQL
WHENEVER SQLERROR GOTO ErrorExit;

. . .
Error Exit:

if (SQLCODE)
{

print_error();
EXEC SQL

ROLLBACK;
EXEC SQL

DISCONNECT;
exit(1);

}
}
. . .
print_error()
{

printf("Database error, SQLCODE = %d\n", SQLCODE);
}

Up to three WHENEVER statements can be active at any time:

• WHENEVER SQLERROR is activated when SQLCODE is less than zero,
indicating that a statement failed.

Error Handling and Recovery 239

• WHENEVER SQLWARNING is activated when SQLCODE contains a
value from 1 to 99, inclusive, indicating that while a statement executed,
there is some question about the way it succeeded.

• WHENEVER NOT FOUND is activated when SQLCODE is 100, indicat-
ing that end-of-file was reached during a FETCH or SELECT.

Omitting a statement for a particular condition means it is not trapped, even if it
occurs. For example, if WHENEVER NOT FOUND is left out of a program, then
when a FETCH or SELECT encounters the end-of-file, SQLCODE is set to 100,
but program execution continues as if no error condition has occurred.

Error conditions also can be overlooked by using the CONTINUE statement
inside a WHENEVER statement:

. . .
EXEC SQL

WHENEVER SQLWARNING
CONTINUE;

. . .

This code traps SQLCODE warning values, but ignores them. Ordinarily, warn-
ings should be investigated, not ignored.

Important Use WHENEVER SQLERROR CONTINUE at the start of error-handling
routines to disable error handling temporarily. Otherwise, there is a possi-
bility of an infinite loop; should another error occur in the handler itself,
the routine will call itself again.

Scope of WHENEVER Statements

WHENEVER only affects all subsequent SQL statements in the module, or source
code file, where it is defined. In programs with multiple source code files, each
module must define its own WHENEVER statements.

Changing Error-handling Routines

To switch to another error-handling routine for a particular error condition,
embed another WHENEVER statement in the program at the point where error
handling should be changed. The new assignment overrides any previous
assignment, and remains in effect until overridden itself. For example, the fol-
lowing program fragment sets an initial jump point for SQLERROR conditions
to ErrorExit1, then resets it to ErrorExit2:

EXEC SQL
WHENEVER SQLERROR

GOTO ErrorExit1;

240 Programmer’s Guide

. . .
EXEC SQL

WHENEVER SQLERROR
GOTO ErrorExit2;

. . .

Limitations of WHENEVER Statements

There are two limitations to WHENEVER. It:

• Traps errors indiscriminately. For example, WHENEVER SQLERROR
traps both missing databases and data entry that violates a CHECK con-
straint, and jumps to a single error-handling routine. While a missing
database is a severe error that may require action outside the context of
the current program, invalid data entry may be the result of a typing
mistake that could be fixed by reentering the data.

• Does not easily enable a program to resume processing at the point
where the error occurred. For example, a single WHENEVER
SQLERROR can trap data entry that violates a CHECK constraint at sev-
eral points in a program, but jumps to a single error-handling routine. It
might be helpful to allow the user to reenter data in these cases, but the
error routine cannot determine where to jump to resume program pro-
cessing.

Error-handling routines can be very sophisticated. For example, in C or C++, a
routine might use a large case statement to examine SQLCODE directly and
respond differently to different values. Even so, creating a sophisticated routine
that can resume processing at the point where an error occurred is difficult. To
resume processing after error recovery, consider testing SQLCODE directly after
each SQL statement, or consider using a combination of error-handling meth-
ods.

Testing SQLCODE Directly
A program can test SQLCODE directly after each SQL statement instead of rely-
ing on WHENEVER to trap and handle all errors. The main advantage to testing
SQLCODE directly is that custom error-handling routines can be designed for
particular situations.

For example, the following C code fragment checks if SQLCODE is not zero after
a SELECT statement completes. If so, an error has occurred, so the statements
inside the if clause are executed. These statements test SQLCODE for two spe-
cific values, -1, and 100, handling each differently. If SQLCODE is set to any

Error Handling and Recovery 241

other error value, a generic error message is displayed and the program is ended
gracefully.

EXEC SQL
SELECT CITY INTO :city FROM STATES

WHERE STATE = :stat:statind;

if (SQLCODE)
{

if (SQLCODE == -1)
printf("too many records found\n");

else if (SQLCODE == 100)
printf("no records found\n");

else
{

printf("Database error, SQLCODE = %d\n", SQLCODE);
EXEC SQL

ROLLBACK;
EXEC SQL

DISCONNECT;
exit(1);

}
}
printf("found city named %s\n", city);
EXEC SQL

COMMIT;
EXEC SQL

DISCONNECT;

The disadvantage to checking SQLCODE directly is that it requires many lines
of extra code just to see if an error occurred. On the other hand, it enables errors
to be handled with function calls, as the following C code illustrates:

EXEC SQL
SELECT CITY INTO :city FROM STATES

WHERE STATE = :stat:statind;

switch (SQLCODE)
{

case 0:
break; /* NO ERROR */

case -1
ErrorTooMany();
break;

case 100:
ErrorNotFound();
break;

default:
ErrorExit(); /* Handle all other errors */
break;

}
. . .

242 Programmer’s Guide

Using function calls for error handling enables programs to resume execution if
errors can be corrected.

Combining Error-handling Techniques
Error handling in many programs can benefit from combining WHENEVER
with direct checking of SQLCODE. A program might include generic
WHENEVER statements for handling most SQL error conditions, but for critical
operations, WHENEVER statements might be temporarily overridden to enable
direct checking of SQLCODE.

For example, the following C code:

• Sets up generic error handling with three WHENEVER statements.

• Overrides the WHENEVER SQLERROR statement to force program con-
tinuation using the CONTINUE clause.

• Checks SQLCODE directly.

• Overrides WHENEVER SQLERROR again to reset it.

main()
{

EXEC SQL
WHENEVER SQLERROR GOTO ErrorExit; /* trap all errors */

EXEC SQL
WHENEVER SQLWARNING GOTO WarningExit; /* trap warnings */

EXEC SQL
WHENEVER NOT FOUND GOTO AllDone; /* trap end of file */

. . .
EXEC SQL

WHENEVER SQLERROR CONTINUE; /* prevent trapping of errors */
EXEC SQL

SELECT CITY INTO :city FROM STATES
WHERE STATE = :stat:statind;

switch (SQLCODE)
{

case 0:
break; /* NO ERROR */

case -1
ErrorTooMany();
break;

case 100:
ErrorNotFound();
break;

default:
ErrorExitFunction(); /* Handle all other errors */
break;

}
EXEC SQL

Error Handling and Recovery 243

WHENEVER SQLERROR GOTO ErrorExit; /* reset to trap all errors */
. . .
}

Guidelines for Error Handling
The following guidelines apply to all error-handling routines in a program.

Using SQL and Host-language Statements

All SQL statements and InterBase functions can be used in error-handling rou-
tines, except for CONNECT.

Any host-language statements and functions can appear in an error-handling
routine without restriction.

Important Use WHENEVER SQLERROR CONTINUE at the start of error-handling
routines to disable error-handling temporarily. Otherwise, there is a possi-
bility of an infinite loop; should another error occur in the handler itself,
the routine will call itself again.

Nesting Error-handling Routines

Although error-handling routines can be nested or called recursively, this prac-
tice is not recommended unless the program preserves the original contents of
SQLCODE and the InterBase error status array.

Handling Unexpected and Unrecoverable Errors

Even if an error-handling routine catches and handles recoverable errors, it
should always contain statements to handle unexpected or unrecoverable errors.

The following code handles unrecoverable errors:

. . .
isc_print_sqlerr(SQLCODE, isc_status);
EXEC SQL

ROLLBACK;
EXEC SQL

DISCONNECT;
exit(1);

244 Programmer’s Guide

Portability

For portability among different SQL implementations, SQL programs should
limit error handling to WHENEVER statements or direct examination of
SQLCODE values.

InterBase internal error recognition occurs at a finer level of granularity than
SQLCODE representation permits. A single SQLCODE value can represent
many different internal InterBase errors. Where portability is not an issue, it may
be desirable to perform additional InterBase error handling. The remainder of
this chapter explains how to use these additional features.

Additional InterBase Error Handling

The same SQLCODE value can be returned by multiple InterBase errors. For
example, the SQLCODE value, -901, is generated in response to many different
InterBase errors. When portability to other vendors’ SQL implementations is not
required, SQL programs can sometimes examine the InterBase error status array,
isc_status, for more specific error information.

isc_status is an array of twenty elements of type ISC_STATUS. It is declared
automatically for programs when they are preprocessed with gpre. Two kinds of
InterBase error information are reported in the status array:

• InterBase error message components.

• InterBase error numbers.

As long as the current SQLCODE value is not -1, 0, or 100, error-handling rou-
tines that examine the error status array can do any of the following:

• Display SQL and InterBase error messages.

• Capture SQL and InterBase error messages to a storage buffer for further
manipulation.

• Trap for and respond to particular InterBase error codes.

The InterBase error status array is usually examined only after trapping errors
with WHENEVER or testing SQLCODE directly.

Error Handling and Recovery 245

Displaying Error Messages
If SQLCODE is less than -1, additional InterBase error information can be dis-
played using the InterBase isc_print_sqlerror() function inside an error-han-
dling routine. During preprocessing with gpre, this function is automatically
declared for InterBase applications.

isc_print_sqlerror() displays the SQLCODE value, a related SQL error message,
and any InterBase error messages in the status array. It requires two parameters:
SQLCODE, and a pointer to the error status array, isc_status.

For example, when an error occurs, the following code displays the value of
SQLCODE, displays a corresponding SQL error message, then displays addi-
tional InterBase error message information if possible:

. . .
EXEC SQL

SELECT CITY INTO :city FROM STATES
WHERE STATE = :stat:statind;

if(SQLCODE)
{

isc_print_sqlerror(SQLCODE, isc_status);
EXEC SQL

ROLLBACK;
EXEC SQL

DISCONNECT ALL;
exit(1);

}
. . .

Important Some windowing systems do not encourage or permit direct screen writes.
Do not use isc_print_sqlerror() when developing applications for these
environments. Instead, use isc_sql_interprete() and isc_interprete() to
capture messages to a buffer for display.

Capturing SQL Error Messages With isc_sql_interprete()
Instead of displaying SQL error messages, an application can capture the text of
those messages in a buffer by using isc_sql_interprete(). Capture messages in a
buffer when applications:

• Run under windowing systems that do not permit direct writing to the
screen.

• Store a record of all error messages in a log file.

• Manipulate or format error messages for display.

246 Programmer’s Guide

Given SQLCODE, a pointer to a storage buffer, and the maximum size of the
buffer in bytes, isc_sql_interprete() builds an SQL error message string, and
puts the formatted string in the buffer where it can be manipulated. A buffer size
of 256 bytes is large enough to hold any SQL error message.

For example, the following code stores an SQL error message in err_buf, then
writes err_buf to a log file. The code assumes that iff an error occurs during the
processing of an SQL statement, the log file is properly declared and opened
inside main() before SQL statements are executed:

. . .
char err_buf[256]; /* error message buffer for isc_sql_interprete() */
FILE *efile; /* code fragment assumes pointer to an open file */
. . .
EXEC SQL

SELECT CITY INTO :city FROM STATES
WHERE STATE = :stat:statind;

if (SQLCODE)
{

isc_sql_interprete(SQLCODE, err_buf, sizeof(err_buf));
fprintf(efile, "%s\n", err_buf); /* write buffer to log file */
EXEC SQL

ROLLBACK; /* undo database changes */
EXEC SQL

DISCONNECT ALL; /* close open databases */
exit(1); /* exit with error flag set */

}
. . .

isc_sql_interprete() retrieves and formats a single message corresponding to a
given SQLCODE. When SQLCODE is less than -1, more specific InterBase error
information is available. It, too, can be retrieved, formatted, and stored in a
buffer by using the isc_interprete() function.

Capturing InterBase Error Messages With isc_interprete()
The text of InterBase error messages can be captured in a buffer by using
isc_interprete(). Capture messages in a buffer when applications:

• Run under windowing systems that do not permit direct writing to the
screen.

• Store a record of all error messages in a log file.

• Manipulate or format error messages for display.

Important isc_interprete() should not be used unless SQLCODE is less than -1
because the contents of isc_status may not contain reliable error informa-
tion in these cases.

Error Handling and Recovery 247

Given both the location of a storage buffer previously allocated by the program,
and a pointer to the start of the status array, isc_interprete() builds an error mes-
sage string from the information in the status array, and puts the formatted
string in the buffer where it can be manipulated. It also advances the status array
pointer to the start of the next cluster of available error information.

isc_interprete() retrieves and formats a single error message each time it is
called. When an error occurs in an InterBase program, however, the status array
may contain more than one error message. To retrieve all relevant error mes-
sages, error-handling routines should repeatedly call isc_interprete() until it
returns no more messages.

Because isc_interprete() modifies the pointer to the status array that it receives,
do not pass isc_status directly to it. Instead, declare a pointer to isc_status, then
pass the pointer to isc_interprete().

The following C code fragment illustrates how InterBase error messages can be
captured to a log file, and demonstrates the proper declaration of a string buffer
and pointer to isc_status. It assumes the log file is properly declared and opened
before control is passed to the error-handling routine. It also demonstrates how to
set the pointer to the start of the status array in the error-handling routine before
isc_interprete() is first called.

. . .
#include "ibase.h";
. . .
main()
{
char msg[512];
ISC_STATUS *vector;
FILE *efile; /* code fragment assumes pointer to an open file */
. . .
if (SQLCODE < -1)

ErrorExit();
}
. . .

ErrorExit()
{

vector = isc_status; /* (re)set to start of status vector */
isc_interprete(msg, &vector); /* retrieve first mesage */
fprintf(efile, "%s\n", msg); /* write buffer to log file */
msg[0] = '-'; /* append leading hyphen to secondary messages */
while (isc_interprete(msg + 1, &vector)) /* more?*/

fprintf(efile, "%s\n", msg); /* if so, write it to log */
fclose(efile); /* close log prior to quitting program */
EXEC SQL

ROLLBACK;
EXEC SQL

DISCONNECT ALL;

248 Programmer’s Guide

exit(1); /* quit program with an 'abnormal termination' code */
}
. . .

In this example, the error-handling routine performs the following tasks:

• Sets the error array pointer to the starting address of the status vector,
isc_status.

• Calls isc_interprete() a single time to retrieve the first error message
from the status vector.

• Writes the first message to a log file.

• Makes repeated calls to isc_interprete() within a while loop to retrieve
any additional messages. If additional messages are retrieved, they are
also written to the log file.

• Rolls back the transaction.

• Closes the database and releases system resources.

Trapping and Handling InterBase Error Codes
Whenever SQLCODE is less than -1, the error status array, isc_status, may con-
tain detailed error information specific to InterBase, including error codes, num-
bers that uniquely identify each error. With care, error-handling routines can
trap for and respond to specific codes.

To trap and handle InterBase error codes in an error-handling routine, follow
these steps:

1. Check SQLCODE to be sure it is less than -1.

2. Check that the first element of the status array is set to isc_arg_gds, indi-
cating that an InterBase error code is available. In C programs, the first
element of the status array is isc_status[0].

Do not attempt to handle errors reported in the status array if the first
status array element contains a value other than 1.

3. If SQLCODE is less than -1 and the first element in isc_status is set to
isc_arg_gds, use the actual InterBase error code in the second element of
isc_status to branch to an appropriate routine for that error.

Tip InterBase error codes are mapped to mnemonic definitions (for example,
isc_arg_gds) that can be used in code to make it easier to read, understand,
and maintain. Definitions for all InterBase error codes can be found in the
ibase.h file.

Error Handling and Recovery 249

The following C code fragment illustrates an error-handling routine that:

• Displays error messages with isc_print_sqlerror().

• Illustrates how to parse for and handle six specific InterBase errors
which might be corrected upon roll back, data entry, and retry.

• Uses mnemonic definitions for InterBase error numbers.

. . .
int c, jval, retry_flag = 0;
jmp_buf jumper;
. . .
main()
{

. . .
jval = setjmp(jumper);
if (retry_flag)

ROLLBACK;
. . .

}
int ErrorHandler(void)
{

retry_flag = 0; /* reset to 0, no retry */
isc_print_sqlerror(SQLCODE, isc_status); /* display errors */
if (SQLCODE < -1)
{

if (isc_status[0] == isc_arg_gds)
{

switch (isc_status[1])
{

case isc_convert_error:
case isc_deadlock:
case isc_integ_fail:
case isc_lock_conflict:
case isc_no_dup:
case isc_not_valid:

printf("\n Do you want to try again? (Y/N)");
c = getchar();
if (c == 'Y' || c == 'y')
{

retry_flag = 1; /* set flag to retry */
longjmp(jumper, 1);

}
break;

case isc_end_arg: /* there really isn’t an error */
retry_flag = 1; /* set flag to retry */
longjump(jumper, 1);
break;

default: /* we can’t handle everything, so abort */
break;

}
}

250 Programmer’s Guide

}
EXEC SQL

ROLLBACK;
EXEC SQL

DISCONNECT ALL;
exit(1);

}

Using Dynamic SQL 251

CHAPTER 15

15Using Dynamic SQL

This chapter describes how to write dynamic SQL applications, applications that
elicit or build SQL statements for execution at run time.

In many database applications, a programmer specifies exactly which SQL state-
ments to execute against a particular database. When the application is com-
piled, these statements become fixed. In some database application it is useful to
build and execute statements from text string fragments or from strings elicited
from the user at run time. These applications require the capability to create and
execute SQL statements dynamically at run time. Dynamic SQL (DSQL) pro-
vides this capability. For example, the InterBase isql utility is a DSQL applica-
tion.

Overview of the DSQL Programming Process

Building and executing DSQL statements involves the following general steps:

• Embedding SQL statements that support DSQL processing in an applica-
tion.

• Using host-language facilities, such as data types and macros, to provide
input and output areas for passing statements and parameters at run
time.

• Programming methods that use these statements and facilities to process
SQL statements at run time.

These steps are described in detail throughout this chapter.

DSQL Limitations

Although DSQL offers many advantages, it also has the following limitations:

252 Programmer’s Guide

• Access to one database at a time.

• Dynamic transaction processing is not permitted; all named transactions
must be declared at compile time.

• Dynamic access to BLOB and array data is not supported; BLOB and
array data can be accessed, but only through standard, statically pro-
cessed SQL statements, or through low-level API calls.

• Database creation is restricted to CREATE DATABASE statements exe-
cuted within the context of EXECUTE IMMEDIATE.

For more information about database access in DSQL, see “Accessing Data-
bases,” in this chapter. For more information about handling transactions in
DSQL applications, see “Handling Transactions,” in this chapter. For more infor-
mation about working with BLOB data in DSQL, see “Processing BLOB Data,”
in this chapter. For more information about handling array data in DSQL, see
“Processing Array Data,” in this chapter. For more information about dynamic
creation of databases, see “Creating a Database,” in this chapter.

Accessing Databases
Using standard SQL syntax, a DSQL application can only use one database han-
dle per source file module, and can, therefore, only be connected to a single data-
base at a time. Database handles must be declared and initialized when an
application is preprocessed with gpre. For example, the following code creates a
single handle, db1, and initializes it to zero:

#include "ibase.h"
isc_db_handle db1 ;
. . .
db1 = 0L;

After a database handle is declared and initialized, it can be assigned dynami-
cally to a database at run time as follows:

char dbname[129];
. . .
prompt_user("Name of database to open: ");
gets(dbname);
EXEC SQL

SET DATABASE db1 = :dbname;
EXEC SQL

CONNECT db1;
. . .

The database accessed by DSQL statements is always the last database handle
mentioned in a SET DATABASE command. A database handle can be used to

Using Dynamic SQL 253

connect to different databases as long as a previously connected database is first
disconnected with DISCONNECT. DISCONNECT automatically sets database
handles to NULL. The following statements disconnect from a database, zero the
database handle, and connect to a new database:

EXEC SQL
DISCONNECT db1;

EXEC SQL
SET DATABASE db1 = "employee.gdb";

EXEC SQL
CONNECT db1;

To access more than one database using DSQL, create a separate source file mod-
ule for each database, and use low-level API calls to attach to the databases and
access data. For more information about accessing databases with API calls, see
the API Guide. For more information about SQL database statements, see Chap-
ter 3: “Working With Databases.”

Handling Transactions
InterBase requires that all transaction names be declared when an application is
preprocessed with gpre. Once fixed at precompile time, transaction handles can-
not be changed at run time, nor can new handles be declared dynamically at run
time.

SQL statements such as PREPARE, DESCRIBE, EXECUTE, and EXECUTE
IMMEDIATE, can be coded at precompile time to include an optional
TRANSACTION clause specifying which transaction controls statement execu-
tion. The following code declares, initializes, and uses a transaction handle in a
statement that processes a run-time DSQL statement:

#include "ibase.h"
isc_tr_handle t1;
. . .
t1 = 0L;
EXEC SQL

SET TRANSACTION NAME t1;
EXEC SQL

PREPARE TRANSACTION t1 Q FROM :sql_buf;

DSQL statements that are processed with PREPARE, DESCRIBE, EXECUTE, and
EXECUTE IMMEDIATE cannot use a TRANSACTION clause, even if it is per-
mitted in standard, embedded SQL.

The SET TRANSACTION statement cannot be prepared, but it can be processed
with EXECUTE IMMEDIATE if:

1. Previous transactions are first committed or rolled back.

254 Programmer’s Guide

2. The transaction handle is set to NULL.

For example, the following statements commit the previous default transaction,
then start a new one with EXECUTE IMMEDIATE:

EXEC SQL
COMMIT;

/* set default transaction name to NULL */
gds__trans = NULL;
EXEC SQL

EXECUTE IMMEDIATE "SET TRANSACTION READ ONLY";

Creating a Database
To create a new database in a DSQL application:

1. Disconnect from any currently attached databases. Disconnecting from a
database automatically sets its database handle to NULL.

2. Build the CREATE DATABASE statement to process.

3. Execute the statement with EXECUTE IMMEDIATE.

For example, the following statements disconnect from any currently connected
databases, and create a new database. Any existing database handles are set to
NULL, so that they can be used to connect to the new database in future DSQL
statements.

char *str = "CREATE DATABASE \"new_emp.gdb\"";
. . .
EXEC SQL

DISCONNECT ALL;
EXEC SQL

EXECUTE IMMEDIATE :str;

Processing BLOB Data
DSQL does not directly support BLOB processing. BLOB cursors are not sup-
ported in DSQL. DSQL applications can use API calls to process BLOB data. For
more information about BLOB API calls, see the API Guide.

Processing Array Data
DSQL does not directly support array processing. DSQL applications can use
API calls to process array data. For more information about array API calls, see
the API Guide.

Using Dynamic SQL 255

Writing a DSQL Application

Write a DSQL application when any of the following are not known until run
time:

• The text of the SQL statement

• The number of host variables

• The data types of host variables

• References to database objects

Writing a DSQL application is usually more complex than programming with
regular SQL because for most DSQL operations, the application needs explicitly
to allocate and process an extended SQL descriptor area (XSQLDA) data struc-
ture to pass data to and from the database.

To use DSQL to process an SQL statement, follow these basic steps:

1. Determine if DSQL can process the SQL statement.

2. Represent the SQL statement as a character string in the application.

3. If necessary, allocate one or more XSQLDAs for input parameters and
return values.

4. Use an appropriate DSQL programming method to process the SQL
statement.

Determining if DSQL Can Process an SQL Statement
DSQL can process most SQL statements. For example, DSQL can process data
manipulation statements such as DELETE and INSERT, data definition state-
ments such as ALTER TABLE and CREATE INDEX, and SELECT statements.

The following table lists SQL statements that cannot be processed by DSQL:

Table 15-1: SQL Statements That Cannot Be Processed By DSQL

Statement Statement

CLOSE DECLARE CURSOR

DESCRIBE EXECUTE

EXECUTE IMMEDIATE FETCH

OPEN PREPARE

256 Programmer’s Guide

These SQL statements are used to process DSQL requests or to handle SQL cur-
sors, which must always be specified when an application is written. Attempt-
ing to use them with DSQL results in run-time errors.

For more information about a statement’s availability in DSQL, see the Language
Reference.

Representing an SQL Statement as a Character String
Within a DSQL application, an SQL statement can come from different sources.
It can come directly from a user who enters a statement at a prompt, as does isql.
Or it can be generated by the application in response to user interaction. What-
ever the source of the SQL statement it must be represented as an SQL statement
string, a character string that is passed to DSQL for processing.

Because SQL statement strings are C character strings that are processed directly
by DSQL, they cannot begin with the EXEC SQL prefix or end with a semicolon
(;). The semicolon is, of course, the appropriate terminator for the C string decla-
ration itself. For example, the following host-language variable declaration is a
valid SQL statement string:

char *str = "DELETE FROM CUSTOMER WHERE CUST_NO = 256";

Specifying Parameters in SQL Statement Strings

SQL statement strings often include value parameters, expressions that evaluate
to a single numeric or character value. Parameters can be used anywhere in
statement strings where SQL expects a value that is not the name of a database
object.

A value parameter in a statement string can be passed as a constant, or passed as
a placeholder at run time. For example, the following statement string passes
256 as a constant:

char *str = "DELETE FROM CUSTOMER WHERE CUST_NO = 256";

It is also possible to build strings at run time from a combination of constants.
This method is useful for statements where the variable is not a true constant, or
it is a table or column name, and where the statement is executed only once in
the application.

To pass a parameter as a placeholder, the value is passed as a question mark (?)
embedded within the statement string:

char *str = "DELETE FROM CUSTOMER WHERE CUST_NO = ?";

Using Dynamic SQL 257

When DSQL processes a statement containing a placeholder, it replaces the
question mark with a value supplied in the XSQLDA. Use placeholders in state-
ments that are prepared once, but executed many times with different parameter
values.

Replaceable value parameters are often used to supply values in WHERE clause
comparisons and in the UPDATE statement SET clause.

Understanding the XSQLDA

All DSQL applications must declare one or more extended SQL descriptor areas
(XSQLDAs). The XSQLDA structure definition can be found in the ibase.h header
file in the InterBase include directory. Applications declare instances of the
XSQLDA for use.

The XSQLDA is a host-language data structure that DSQL uses to transport data
to or from a database when processing an SQL statement string. There are two
types of XSQLDAs: input descriptors and output descriptors. Both input and out-
put descriptors are implemented using the XSQLDA structure.

One field in the XSQLDA, the XSQLVAR, is especially important, because one
XSQLVAR must be defined for each input parameter or column returned. Like
the XSQLDA, the XSQLVAR is a structure defined in ibase.h in the InterBase
include directory.

Applications do not declare instances of the XSQLVAR ahead of time, but must,
instead, dynamically allocate storage for the proper number of XSQLVAR struc-
tures required for each DSQL statement before it is executed, then deallocate it,
as appropriate, after statement execution.

258 Programmer’s Guide

The following figure illustrates the relationship between the XSQLDA and the
XSQLVAR:

Figure 15-1: XSQLDA and XSQLVAR Relationship

An input XSQLDA consists of a single XSQLDA structure, and one XSQLVAR
structure for each input parameter. An output XSQLDA also consists of one
XSQLDA structure and one XSQLVAR structure for each data item returned by
the statement. An XSQLDA and its associated XSQLVAR structures are allocated
as a single block of contiguous memory.

The PREPARE and DESCRIBE statements can be used to determine the proper
number of XSQLVAR structures to allocate, and the XSQLDA_LENGTH macro
can be used to allocate the proper amount of space. For more information about

Single instance of XSQLDA

short version

char sqldaid[8]

ISC_LONG sqldabc

short sqln

short sqld

XSQLVAR sqlvar[n]

Array of n instances of XSQLVAR

1st instance nth instance

short sqltype short sqltype

short sqlscale short sqlscale

short sqlsubtype short sqlsubtype

short sqllen short sqllen

char *sqldata char *sqldata

short *sqlind short *sqlind

short sqlname_length short sqlname_length

char sqlname[32] char sqlname[32]

short relname_length short relname_length

char relname[32] char relname[32]

short ownname_length short ownname_length

char ownname[32] char ownname[32]

short aliasname_length short aliasname_length

char aliasname[32] char aliasname[32]

Using Dynamic SQL 259

the XSQLDA_LENGTH macro, see “Using the XSQLDA_LENGTH Macro,” in
this chapter.

XSQLDA Field Descriptions
The following table describes the fields that comprise the XSQLDA structure:

XSQLVAR Field Descriptions

The following table describes the fields that comprise the XSQLVAR structure:

Table 15-2: XSQLDA Field Descriptions

Field Definition Description

short version Indicates the version of the XSQLDA structure. Set by an appli-
cation. The current version is defined in ibase.h as
SQLDA_VERSION1.

char sqldaid[8] Reserved for future use.

ISC_LONG sqldabc Reserved for future use.

short sqln Indicates the number of elements in the sqlvar array. Set by the
application. Whenever the application allocates storage for a
descriptor, it should set this field.

short sqld Indicates the number of parameters (for an input XSQLDA), or
the number of select-list items (for an output XSQLDA). Set by
InterBase during a DESCRIBE or PREPARE.
For an input descriptor, an sqld of 0 indicates that the SQL
statement has no parameters. For an output descriptor, an sqld
of 0 indicates that the SQL statement is not a SELECT state-
ment.

XSQLVAR sqlvar The array of XSQLVAR structures. The number of elements in
the array is specified in the sqln field.

Table 15-3: XSQLVAR Field Descriptions

Field Definition Description

short sqltype Indicates the SQL data type of parameters or select-list
items. Set by InterBase during PREPARE or DESCRIBE.

short sqlscale Provides scale, specified as a negative number, for exact
numeric data types (DECIMAL, NUMERIC). Set by
InterBase during PREPARE or DESCRIBE.

short sqlsubtype Specifies the subtype for BLOB data. Set by InterBase dur-
ing PREPARE or DESCRIBE.

260 Programmer’s Guide

Input Descriptors
Input descriptors process SQL statement strings that contain parameters. Before
an application can execute a statement with parameters, it must supply values
for them. The application indicates the number of parameters passed in the
XSQLDA sqld field, then describes each parameter in a separate XSQLVAR struc-
ture. For example, the following statement string contains two parameters, so an
application must set sqld to 2, and describe each parameter:

char *str = "UPDATE DEPARTMENT SET BUDGET = ? WHERE LOCATION = ?";

short sqllen Indicates the maximum size, in bytes, of data in the sqldata
field. Set by InterBase during PREPARE or DESCRIBE.

char *sqldata For input descriptors, specifies either the address of a
select-list item or a parameter. Set by the application.
For output descriptors, contains a value for a select-list item.
Set by InterBase.

short *sqlind On input, specifies the address of an indicator variable. Set
by an application.
On output, specifies the address of column indicator value
for a select-list item following a FETCH. A value of 0 indi-
cates that the column is not NULL; a value of -1 indicates the
column is NULL. Set by InterBase.

short sqlname_length Specifies the length, in bytes, of the data in field, sqlname.
Set by InterBase during DESCRIBE OUTPUT.

char sqlname[32] Contains the name of the column. Not null (\0) terminated.
Set by InterBase during DESCRIBE OUTPUT.

short relname_length Specifies the length, in bytes, of the data in field, relname.
Set by InterBase during DESCRIBE OUTPUT.

char relname[32] Contains the name of the table. Not null (\0) terminated. Set
by InterBase during DESCRIBE OUTPUT.

short ownname_length Specifies the length, in bytes, of the data in field, ownname.
Set by InterBase during DESCRIBE OUTPUT.

char ownname[32] Contains the owner name of the table. Not null (\0) termi-
nated. Set by InterBase during DESCRIBE OUTPUT.

short aliasname_length Specifies the length, in bytes, of the data in field, aliasname.
Set by InterBase during DESCRIBE OUTPUT.

char aliasname[32] Contains the alias name of the column. If no alias exists,
contains the column name. Not null (\0) terminated. Set by
InterBase during DESCRIBE OUTPUT.

Table 15-3: XSQLVAR Field Descriptions (Continued)

Field Definition Description

Using Dynamic SQL 261

When the statement is executed, the first XSQLVAR supplies information about
the BUDGET value, and the second XSQLVAR supplies the LOCATION value.

For more information about using input descriptors, see “DSQL Programming
Methods,” in this chapter.

Output Descriptors
Output descriptors return values from an executed query to an application. The
sqld field of the XSQLDA indicates how many values were returned. Each value
is stored in a separate XSQLVAR structure. The XSQLDA sqlvar field points to
the first of these XSQLVAR structures. The following statement string requires
an output descriptor:

char *str = "SELECT * FROM CUSTOMER WHERE CUST_NO > 100";

For information about retrieving information from an output descriptor, see
“DSQL Programming Methods,” in this chapter.

Using the XSQLDA_LENGTH Macro
The ibase.h header file defines a macro, XSQLDA_LENGTH, to calculate the
number of bytes that must be allocated for an input or output XSQLDA.
XSQLDA_LENGTH is defined as follows:

#define XSQLDA_LENGTH (n) (sizeof (XSQLDA) + (n- 1) * sizeof(XSQLVAR))

n is the number of parameters in a statement string, or the number of select-list
items returned from a query. For example, the following C statement uses the
XSQLDA_LENGTH macro to specify how much memory to allocate for an
XSQLDA with 5 parameters or return items:

XSQLDA *my_xsqlda;
. . .
my_xsqlda = (XSQLDA *) malloc(XSQLDA_LENGTH(5));
. . .

For more information about using the XSQLDA_LENGTH macro, see “DSQL
Programming Methods,” in this chapter.

SQL Data Type Macro Constants
InterBase defines a set of macro constants to represent SQL data types and
NULL status information in an XSQLVAR. An application should use these
macro constants to specify the data type of parameters and to determine the data

262 Programmer’s Guide

types of select-list items in an SQL statement. The following table lists each SQL
data type, its corresponding macro constant expression, C data type or InterBase
typedef, and whether or not the sqlind field is used to indicate a parameter or
variable that contains NULL or unknown data:

Table 15-4: SQL Data Types, Macro Expressions, and C Data Types

SQL Data
Type

Macro Expression C Data Type or typedef
sqlind
Used?

Array SQL_ARRAY ISC_QUAD No

Array SQL_ARRAY + 1 ISC_QUAD Yes

BLOB SQL_BLOB ISC_QUAD No

BLOB SQL_BLOB + 1 ISC_QUAD Yes

CHAR SQL_TEXT char[] No

CHAR SQL_TEXT + 1 char[] Yes

DATE SQL_DATE ISC_QUAD No

DATE SQL_DATE + 1 ISC_QUAD Yes

DECIMAL SQL_SHORT, SQL_LONG, or
SQL_DOUBLE

int, long, or double No

DECIMAL SQL_SHORT + 1, SQL_LONG + 1,
or SQL_DOUBLE + 1

int, long, or double Yes

DOUBLE
PRECISON

SQL_DOUBLE double No

DOUBLE
PRECISION

SQL_DOUBLE + 1 double Yes

INTEGER SQL_LONG long No

INTEGER SQL_LONG + 1 long Yes

FLOAT SQL_FLOAT float No

FLOAT SQL_FLOAT + 1 float Yes

NUMERIC SQL_SHORT, SQL_LONG, or
SQL_DOUBLE

int, long, or double No

NUMERIC SQL_SHORT + 1, SQL_LONG + 1,
or SQL_DOUBLE + 1

int, long, or double Yes

SMALLINT SQL_SHORT short No

SMALLINT SQL_SHORT + 1 short Yes

VARCHAR SQL_VARYING First 2 bytes: short containing the length of the
character string. Remaining bytes: char[]

No

VARCHAR SQL_VARYING + 1 First 2 bytes: short containing the length of the
character string. Remaining bytes: char[]

Yes

Using Dynamic SQL 263

Note DECIMAL and NUMERIC data types are stored internally as SMALLINT,
INTEGER, or DOUBLE PRECISION data types. To specify the correct
macro expression to provide for a DECIMAL or NUMERIC column, use
isql to examine the column definition in the table to see how InterBase is
storing column data, then choose a corresponding macro expression.

The data type information for a parameter or select-list item is contained in the
sqltype field of the XSQLVAR structure. The value contained in the sqltype field
provides two pieces of information:

• The data type of the parameter or select-list item.

• Whether sqlind is used to indicate NULL values. If sqlind is used, its value
specifies whether the parameter or select-list item is NULL (-1), or not
NULL (0).

For example, if the sqltype field equals SQL_TEXT, the parameter or select-list
item is a CHAR that does not use sqlind to check for a NULL value (because, in
theory, NULL values are not allowed for it). If sqltype equals SQL_TEXT + 1, then
sqlind can be checked to see if the parameter or select-list item is NULL.

Tip The C language expression, sqltype & 1, provides a useful test of whether a
parameter or select-list item can contain a NULL. The expression evaluates
to 0 if the parameter or select-list item cannot contain a NULL, and 1 if the
parameter or select-list item can contain a NULL. The following code frag-
ment demonstrates how to use the expression:

if (sqltype & 1 == 0)
{
 /* parameter or select-list item that CANNOT contain a NULL */
}
else
{
 /* parameter or select-list item CAN contain a NULL */
}

By default, both PREPARE INTO and DESCRIBE return a macro expression of
type + 1, so the sqlind should always be examined for NULL values with these
statements.

Handling Varying String Data Types
VARCHAR, CHARACTER VARYING, and NCHAR VARYING data types
require careful handling in DSQL. The first two bytes of these data types contain
string length information, while the remainder of the data contains the actual
bytes of string data to process.

264 Programmer’s Guide

To avoid having to write code to extract and process variable-length strings in an
application, it is possible to force these data types to fixed length using SQL
macro expressions. For more information about forcing variable-length data to
fixed length for processing, see “Coercing Data Types,” in this chapter.

Applications can, instead, detect and process variable-length data directly. To do
so, they must extract the first two bytes from the string to determine the byte-
length of the string itself, then read the string, byte-by-byte, into a null-termi-
nated buffer.

Handling NUMERIC and DECIMAL Data Types
DECIMAL and NUMERIC data types are stored internally as SMALLINT,
INTEGER, or DOUBLE PRECISION data types, depending on the precision and
scale defined for a column definition that uses these types. To determine how a
DECIMAL or NUMERIC value is actually stored in the database, use isql to
examine the column definition in the table. If NUMERIC is reported, then data is
actually being stored as DOUBLE PRECISION.

When a DECIMAL or NUMERIC value is stored as a SMALLINT or INTEGER,
the value is stored as a whole number. During retrieval in DSQL, the sqlscale
field of the XSQLVAR is set to a negative number that indicates the factor of ten
by which the whole number (returned in sqldata), must be divided in order to
produce the correct NUMERIC or DECIMAL value with its fractional part. If
sqlcale is -1, then the number must be divided by 10, if it is -2, then the number
must be divided by 100, -3 by 1,000, and so forth.

Coercing Data Types
Sometimes when processing DSQL input parameters and select-list items, it is
desirable or necessary to translate one data type to another. This process is
referred to as data type coercion. For example, data type coercion is often used
when parameters or select-list items are of type VARCHAR. The first two bytes
of VARCHAR data contain string length information, while the remainder of the
data is the string to process. By coercing the data from SQL_VARYING to
SQL_TEXT, data processing can be simplified.

Coercion can only be from one compatible data type to another. For example,
SQL_VARYING to SQL_TEXT, or SQL_SHORT to SQL_LONG.

Using Dynamic SQL 265

Coercing Character Data Types

To coerce SQL_VARYING data types to SQL_TEXT data types, change the
sqltype field in the parameter’s or select-list item’s XSQLVAR structure to the
desired SQL macro data type constant. For example, the following statement
assumes that var is a pointer to an XSQLVAR structure, and that it contains an
SQL_VARYING data type to convert to SQL_TEXT:

var->sqltype = SQL_TEXT;

After coercing a character data type, provide proper storage space for it. The
XSQLVAR field, sqllen, contains information about the size of the uncoerced
data. Set the XSQLVAR sqldata field to the address of the data.

Coercing Numeric Data Types

To coerce one numeric data type to another, change the sqltype field in the
parameter’s or select-list item’s XSQLVAR structure to the desired SQL macro
data type constant. For example, the following statement assumes that var is a
pointer to an XSQLVAR structure, and that it contains an SQL_SHORT data type
to convert to SQL_LONG:

var->sqltype = SQL_LONG;

Important Do not coerce a larger data type to a smaller one. Data can be lost in such a
translation.

Setting a NULL Indicator

If a parameter or select-list item can contain a NULL value, the sqlind field is
used to indicate its NULL status. Appropriate storage space must be allocated
for sqlind before values can be stored there.

On insertion, set sqlind to -1 to indicate that NULL values are legal. Otherwise
set sqlind to 0.

On selection, an sqlind of -1 indicates a field contains a NULL value. Other val-
ues indicate a field contains non-NULL data.

Aligning Numerical Data
Ordinarily, when a variable with a numeric data type is created, the compiler
will ensure that the variable is stored at a properly aligned address, but when
numeric data is stored in a dynamically allocated buffer space, such as can be

266 Programmer’s Guide

pointed to by the XSQLDA and XSQLVAR structures, the programmer must
take precautions to ensure that the storage space is properly aligned.

Certain platforms, in particular those with RISC processors, require that
numeric data in dynamically allocated storage structures be aligned properly in
memory. Alignment is dependent both on data type and platform.

For example, a short integer on a Sun SPARCstation must be located at an
address divisible by 2, while a long on the same platform must be located at an
address divisible by 4. In most cases, a data item is properly aligned if the
address of its starting byte is divisible by the correct alignment number. Consult
specific system and compiler documentation for alignment requirements.

A useful rule of thumb is that the size of a data type is always a valid alignment
number for the data type. For a given type T, if size of (T) equals n, then
addresses divisible by n are correctly aligned for T. The following macro expres-
sion can be used to align data:

#define ALIGN(ptr, n) ((ptr + n - 1) & ~(n - 1))

where ptr is a pointer to char.

The following code illustrates how the ALIGN macro might be used:

char *buffer_pointer, *next_aligned;

next_aligned = ALIGN(buffer_pointer, sizeof(T));

DSQL Programming Methods

There are four possible DSQL programming methods for handling an SQL state-
ment string. The best method for processing a string depends on the type of SQL
statement in the string, and whether or not it contains placeholders for parame-
ters. The following decision table explains how to determine the appropriate
processing method for a given string.

Table 15-5: SQL Statement Strings and Recommended Processing Methods

Is it a query? Does it have placeholders? Processing method to use:

No No Method 1

No Yes Method 2

Yes No Method 3

Yes Yes Method 4

Using Dynamic SQL 267

Method 1: Non-query Statements Without Parameters
There are two ways to process an SQL statement string containing a non-query
statement without placeholder parameters:

• Use EXECUTE IMMEDIATE to prepare and execute the string a single
time.

• Use PREPARE to parse the statement for execution and assign it a name,
then use EXECUTE to carry out the statement’s actions as many times as
required in an application.

Using EXECUTE IMMEDIATE

To execute a statement string a single time, use EXECUTE IMMEDIATE:

1. Elicit a statement string from the user or create one that contains the SQL
statement to be processed. For example, the following statement creates
an SQL statement string:

char *str = "UPDATE DEPARTMENT SET BUDGET = BUDGET * 1.05";

2. Parse and execute the statement string using EXECUTE IMMEDIATE:

EXEC SQL
EXECUTE IMMEDIATE :str;

Note EXECUTE IMMEDIATE also accepts string literals. For example,

EXEC SQL
EXECUTE IMMEDIATE
"UPDATE DEPARTMENT SET BUDGET = BUDGET * 1.05";

Using PREPARE and EXECUTE

To execute a statement string several times, use PREPARE and EXECUTE:

1. Elicit a statement string from the user or create one that contains the SQL
statement to be processed. For example, the following statement creates
an SQL statement string:

char *str = "UPDATE DEPARTMENT SET BUDGET = BUDGET * 1.05";

2. Parse and name the statement string with PREPARE. The name is used in
subsequent calls to EXECUTE:

EXEC SQL
PREPARE SQL_STMT FROM :str;

268 Programmer’s Guide

SQL_STMT is the name assigned to the parsed statement string.

Note PREPARE also accepts string literals. For example,

EXEC SQL
PREPARE SQL_STMT FROM
"UPDATE DEPARTMENT SET BUDGET = BUDGET * 1.05";

3. Execute the named statement string using EXECUTE. For example, the
following statement executes a statement string named SQL_STMT:

EXEC SQL
EXECUTE SQL_STMT;

Once a statement string is prepared, it can be executed as many times as
required in an application.

Method 2: Non-query Statements With Parameters
There are two steps to processing an SQL statement string containing a non-
query statement with placeholder parameters:

1. Creating an input XSQLDA to process a statement string’s parameters.

2. Preparing and executing the statement string with its parameters.

Creating the Input XSQLDA

Placeholder parameters are replaced with actual data before a prepared SQL
statement string is executed. Because those parameters are unknown when the
statement string is created, an input XSQLDA must be created to supply param-
eter values at execute time. To prepare the XSQLDA, follow these steps:

1. Declare a variable to hold the XSQLDA needed to process parameters.
For example, the following declaration creates an XSQLDA called
in_sqlda:

XSQLDA *in_sqlda;

2. Optionally declare a variable for accessing the XSQLVAR structure of the
XSQLDA:

XSQLVAR *var;

Declaring a pointer to the XSQLVAR structure is not necessary, but can
simplify referencing the structure in subsequent statements.

Using Dynamic SQL 269

3. Allocate memory for the XSQLDA using the XSQLDA_LENGTH macro.
The following statement allocates storage for in_sqlda:

in_sqlda = (XSQLDA *)malloc(XSQLDA_LENGTH(10));

In this statement space for 10 XSQLVAR structures is allocated, allowing
the XSQLDA to accommodate up to 10 parameters.

4. Set the version field of the XSQLDA to SQLDA_VERSION1, and set the
sqln field to indicate the number of XSQLVAR structures allocated:

in_sqlda_version = SQLDA_VERSION1;
in_sqlda->sqln = 10;

Preparing and Executing a Statement String With Parameters

After an XSQLDA is created for holding a statement string’s parameters, the
statement string can be created and prepared. Local variables corresponding to
the placeholder parameters in the string must be assigned to their correspond-
ing sqldata fields in the XSQLVAR structures.

To prepare and execute a non-query statement string with parameters, follow
these steps:

1. Elicit a statement string from the user or create one that contains the SQL
statement to be processed. For example, the following statement creates
an SQL statement string with placeholder parameters:

char *str = "UPDATE DEPARTMENT SET BUDGET = ?, LOCATION = ?";

This statement string contains two parameters: a value to be assigned to
the BUDGET field and a value to be assigned to the LOCATION field.

2. Parse and name the statement string with PREPARE. The name is used in
subsequent calls to DESCRIBE and EXECUTE:

EXEC SQL
PREPARE SQL_STMT FROM :str;

SQL_STMT is the name assigned to the prepared statement string.

3. Use DESCRIBE INPUT to fill the input XSQLDA with information about
the parameters contained in the SQL statement:

EXEC SQL
DESCRIBE INPUT SQL_STMT USING SQL DESCRIPTOR in_sqlda;

4. Compare the value of the sqln field of the XSQLDA to the value of the
sqld field to make sure enough XSQLVARs are allocated to hold informa-
tion about each parameter. sqln should be at least as large as sqln. If not,

270 Programmer’s Guide

free the storage previously allocated to the input descriptor, reallocate
storage to reflect the number of parameters specified by sqld, reset sqln
and version, then execute DESCRIBE INPUT again:

if (in_sqlda->sqld > in_sqlda->sqln)
{

n = in_sqlda->sqld;
free(in_sqlda);
in_sqlda = (XSQLDA *)malloc(XSQLDA_LENGTH(n));
in_sqlda->sqln = n;
in_sqlda->version = SQLDA_VERSION1;
EXEC SQL

DESCRIBE INPUT SQL_STMT USING SQL DESCRIPTOR in_sqlda;
}

5. Process each XSQLVAR parameter structure in the XSQLDA. Processing
a parameter structure involves up to four steps:

• Coercing a parameter’s data type (optional).

• Allocating local storage for the data pointed to by the sqldata field of
the XSQLVAR. This step is only required if space for local variables is
not allocated until run time. The following example illustrates
dynamic allocation of local variable storage space.

• Providing a value for the parameter consistent with its data type
(required).

• Providing a NULL value indicator for the parameter.

The following code example illustrates these steps, looping through each
XSQLVAR structure in the in_sqlda XSQLDA:

for (i=0, var = in_sqlda->sqlvar; i < in_sqlda->sqld; i++, var++)
{

/* Process each XSQLVAR parameter structure here.
The parameter structure is pointed to by var.*/
dtype = (var->sqltype & ~1) /* drop NULL flag for now */
switch(dtype)
{

case SQL_VARYING: /* coerce to SQL_TEXT */
var->sqltype = SQL_TEXT;
/* Allocate local variable storage. */
var->sqldata = (char *)malloc(sizeof(char)*var->sqllen);
. . .
break;

case SQL_TEXT:
var->sqldata = (char *)malloc(sizeof(char)*var->sqllen);
/* Provide a value for the parameter. */
. . .
break;

case SQL_LONG:

Using Dynamic SQL 271

var->sqldata = (char *)malloc(sizeof(long));
/* Provide a value for the parameter. */
*(long *)(var->sqldata) = 17;
break;

. . .
} /* End of switch statement. */
if (sqltype & 1)
{

/* Allocate variable to hold NULL status. */
var->sqlind = (short *)malloc(sizeof(short));

}
} /* End of for loop. */

For more information about data type coercion and NULL indicators, see
“Coercing Data Types,” in this chapter.

6. Execute the named statement string with EXECUTE. Reference the
parameters in the input XSQLDA with the USING SQL DESCRIPTOR
clause. For example, the following statement executes a statement string
named SQL_STMT:

EXEC SQL
EXECUTE SQL_STMT USING SQL DESCRIPTOR in_sqlda;

Re-executing the Statement String

Once a non-query statement string with parameters is prepared, it can be exe-
cuted as often as required in an application. Before each subsequent execution,
the input XSQLDA can be supplied with new parameter and NULL indicator
data.

To supply new parameter and NULL indicator data for a prepared statement,
repeat steps 3-5 of “Preparing and Executing a Statement String with Parame-
ters,” in this chapter.

Method 3: Query Statements Without Parameters
There are three steps to processing an SQL query statement string without
parameters:

1. Preparing an output XSQLDA to process the select-list items returned
when the query is executed.

2. Preparing the statement string.

3. Using a cursor to execute the statement and retrieve select-list items from
the output XSQLDA.

272 Programmer’s Guide

Preparing the Output XSQLDA

Most queries return one or more rows of data, referred to as a select-list. Because
the number and kind of items returned are unknown when a statement string is
created, an output XSQLDA must be created to store select-list items that are
returned at run time. To prepare the XSQLDA, follow these steps:

1. Declare a variable to hold the XSQLDA needed to store the column data
for each row that will be fetched. For example, the following declaration
creates an XSQLDA called out_sqlda:

XSQLDA *out_sqlda;

2. Optionally declare a variable for accessing the XSQLVAR structure of the
XSQLDA:

XSQLVAR *var;

Declaring a pointer to the XSQLVAR structure is not necessary, but can
simplify referencing the structure in subsequent statements.

3. Allocate memory for the XSQLDA using the XSQLDA_LENGTH macro.
The following statement allocates storage for out_sqlda:

out_sqlda = (XSQLDA *)malloc(XSQLDA_LENGTH(10));

Space for 10 XSQLVAR structures is allocated in this statement, enabling
the XSQLDA to accommodate up to 10 select-list items.

4. Set the version field of the XSQLDA to SQLDA_VERSION1, and set the
sqln field of the XSQLDA to indicate the number of XSQLVAR structures
allocated:

out_sqlda->version = SQLDA_VERSION1;
out_sqlda->sqln = 10;

Preparing a Query Statement String

After an XSQLDA is created for holding the items returned by a query statement
string, the statement string can be created, prepared, and described. When a
statement string is executed, InterBase creates the select-list of selected rows.

To prepare a query statement string, follow these steps:

1. Elicit a statement string from the user or create one that contains the SQL
statement to be processed. For example, the following statement creates
an SQL statement string that performs a query:

Using Dynamic SQL 273

char *str = "SELECT * FROM CUSTOMER";

The statement appears to have only one select-list item (*). The asterisk is
a wildcard symbol that stands for all of the columns in the table, so the
actual number of items returned equals the number of columns in the
table.

2. Parse and name the statement string with PREPARE. The name is used in
subsequent calls to statements such as DESCRIBE and EXECUTE:

EXEC SQL
PREPARE SQL_STMT FROM :str;

SQL_STMT is the name assigned to the prepared statement string.

3. Use DESCRIBE OUTPUT to fill the output XSQLDA with information
about the select-list items returned by the statement:

EXEC SQL
DESCRIBE OUTPUT SQL_STMT INTO SQL DESCRIPTOR out_sqlda;

4. Compare the sqln field of the XSQLDA to the sqld field to determine if the
output descriptor can accommodate the number of select-list items spec-
ified in the statement. If not, free the storage previously allocated to the
output descriptor, reallocate storage to reflect the number of select-list
items specified by sqld, reset sqln and version, then execute DESCRIBE
OUTPUT again:

if (out_sqlda->sqld > out_sqlda->sqln)
{

n = out_sqlda->sqld;
free(out_sqlda);
out_sqlda = (XSQLDA *)malloc(XSQLDA_LENGTH(n));
out_sqlda->sqln = n;
out_sqlda->version = SQLDA_VERSION1;
EXEC SQL

DESCRIBE OUTPUT SQL_STMT INTO SQL DESCRIPTOR out_sqlda;
}

5. Set up an XSQLVAR structure for each item returned. Setting up an item
structure involves the following steps:

• Coercing an item’s data type (optional).

• Allocating local storage for the data pointed to by the sqldata field of
the XSQLVAR. This step is only required if space for local variables is
not allocated until run time. The following example illustrates
dynamic allocation of local variable storage space.

• Providing a NULL value indicator for the parameter.

274 Programmer’s Guide

The following code example illustrates these steps, looping through each
XSQLVAR structure in the out_sqlda XSQLDA:

for (i=0, var = out_sqlda->sqlvar; i < out_sqlda->sqld; i++, var++)
{

dtype = (var->sqltype & ~1) /* drop flag bit for now */
switch (dtype)
{

case SQL_VARYING:
var->sqltype = SQL_TEXT;
var->sqldata = (char *)malloc(sizeof(char)*var->sqllen + 2);
break;

case SQL_TEXT:
var->sqldata = (char *)malloc(sizeof(char)*var->sqllen);
break;

case SQL_LONG:
var->sqldata = (char *)malloc(sizeof(long));
break;
. . .
/* process remaining types */

} /* end of switch statements */
if (sqltype & 1)
{

/* allocate variable to hold NULL status */
var->sqlind = (short *)malloc(sizeof(short));

}
} /* end of for loop */

For more information about data type coercion and NULL indicators, see
“Coercing Data Types,” in this chapter.

Executing a Statement String Within the Context of a Cursor

To retrieve select-list items from a prepared statement string, the string must be
executed within the context of a cursor. All cursor declarations in InterBase are
fixed, embedded statements inserted into the application before it is compiled.
DSQL application developers must anticipate the need for cursors when writing
the application and declare them ahead of time.

A looping construct is used to fetch a single row at a time from the cursor and to
process each select-list item (column) in that row before the next row is fetched.

To execute a statement string within the context of a cursor and retrieve rows of
select-list items, follow these steps:

1. Declare a cursor for the statement string. For example, the following
statement declares a cursor, DYN_CURSOR, for the SQL statement
string, SQL_STMT:

EXEC SQL

Using Dynamic SQL 275

DECLARE DYN_CURSOR CURSOR FOR SQL_STMT;

2. Open the cursor:

EXEC SQL
OPEN DYN_CURSOR;

Opening the cursor causes the statement string to be executed, and an
active set of rows to be retrieved. For more information about cursors
and active sets, see Chapter 6: “Working With Data.”

3. Fetch one row at a time and process the select-list items (columns) it con-
tains. For example, the following loops retrieve one row at a time from
DYN_CURSOR and process each item in the retrieved row with an
application-specific function (here called process_column()):

while (SQLCODE == 0)
{

EXEC SQL
FETCH DYN_CURSOR USING SQL DESCRIPTOR out_sqlda;

if (SQLCODE == 100)
break;

for (i = 0; i < out_sqlda->sqld; i++)
{

process_column(out_sqlda->sqlvar[i]);
}

}

The process_column() function mentioned in this example processes
each returned select-list item. The following skeleton code illustrates
how such a function can be set up:

void process_column(XSQLVAR *var)
{

/* test for NULL value */
if ((var->sqltype & 1) && (*(var->sqlind) = -1))
{

/* process the NULL value here */
}
else
{

/* process the data instead */
}

. . .
}

4. When all the rows are fetched, close the cursor:

EXEC SQL
CLOSE DYN_CURSOR;

276 Programmer’s Guide

Re-executing a Query Statement String Without Parameters

Once a query statement string without parameters is prepared, it can be exe-
cuted as often as required in an application by closing and reopening its cursor.

To reopen a cursor and process select-list items, repeat steps 2-4 of “Executing a
Statement String Within the Context of a Cursor,” in this chapter.

Method 4: Query Statements With Parameters
There are four steps to processing an SQL query statement string with place-
holder parameters:

1. Preparing an input XSQLDA to process a statement string’s parameters.

2. Preparing an output XSQLDA to process the select-list items returned
when the query is executed.

3. Preparing the statement string and its parameters.

4. Using a cursor to execute the statement using input parameter values
from an input XSQLDA, and to retrieve select-list items from the output
XSQLDA.

Preparing the Input XSQLDA

Placeholder parameters are replaced with actual data before a prepared SQL
statement string is executed. Because those parameters are unknown when the
statement string is created, an input XSQLDA must be created to supply param-
eter values at run time. To prepare the XSQLDA, follow these steps:

1. Declare a variable to hold the XSQLDA needed to process parameters.
For example, the following declaration creates an XSQLDA called
in_sqlda:

XSQLDA *in_sqlda;

2. Optionally declare a variable for accessing the XSQLVAR structure of the
XSQLDA:

XSQLVAR *var;

Declaring a pointer to the XSQLVAR structure is not necessary, but can
simplify referencing the structure in subsequent statements.

3. Allocate memory for the XSQLDA using the XSQLDA_LENGTH macro.
The following statement allocates storage for in_slqda:

Using Dynamic SQL 277

in_sqlda = (XSQLDA *)malloc(XSQLDA_LENGTH(10));

In this statement, space for 10 XSQLVAR structures is allocated, allowing
the XSQLDA to accommodate up to 10 input parameters. Once struc-
tures are allocated, assign values to the sqldata field in each XSQLVAR.

4. Set the version field of the XSQLDA to SQLDA_VERSION1, and set the
sqln field of the XSQLDA to indicate the number of XSQLVAR structures
allocated:

in_sqlda->version = SQLDA_VERSION1;
in_sqlda->sqln = 10;

Preparing the Output XSQLDA

Because the number and kind of items returned are unknown when a statement
string is executed, an output XSQLDA must be created to store select-list items
that are returned at run time. To prepare the XSQLDA, follow these steps:

1. Declare a variable to hold the XSQLDA needed to process parameters.
For example, the following declaration creates an XSQLDA called
out_sqlda:

XSQLDA *out_sqlda;

2. Optionally declare a variable for accessing the XSQLVAR structure of the
XSQLDA:

XSQLVAR *var;

Declaring a pointer to the XSQLVAR structure is not necessary, but can
simplify referencing the structure in subsequent statements.

3. Allocate memory for the XSQLDA using the XSQLDA_LENGTH macro.
The following statement allocates storage for out_sqlda:

out_sqlda = (XSQLDA *)malloc(XSQLDA_LENGTH(10));

Space for 10 XSQLVAR structures is allocated in this statement, enabling
the XSQLDA to accommodate up to 10 select-list items.

4. Set the version field of the XSQLDA to SQLDA_VERSION1, and set the
sqln field of the XSQLDA to indicate the number of XSQLVAR structures
allocated:

out_sqlda->version = SQLDA_VERSION1;
out_sqlda->sqln = 10;

278 Programmer’s Guide

Preparing a Query Statement String With Parameters

After an input and an output XSQLDA are created for holding a statement
string’s parameters, and the select-list items returned when the statement is exe-
cuted, the statement string can be created and prepared. When a statement
string is prepared, InterBase replaces the placeholder parameters in the string
with information about the actual parameters used. The information about the
parameters must be assigned to the input XSQLDA (and perhaps adjusted)
before the statement can be executed. When the statement string is executed,
InterBase stores select-list items in the output XSQLDA.

To prepare a query statement string with parameters, follow these steps:

1. Elicit a statement string from the user or create one that contains the SQL
statement to be processed. For example, the following statement creates
an SQL statement string with placeholder parameters:

char *str = "SELECT * FROM DEPARTMENT WHERE BUDGET = ?, LOCATION = ?";

This statement string contains two parameters: a value to be assigned to
the BUDGET field and a value to be assigned to the LOCATION field.

2. Prepare and name the statement string with PREPARE. The name is used
in subsequent calls to DESCRIBE and EXECUTE:

EXEC SQL
PREPARE SQL_STMT FROM :str;

SQL_STMT is the name assigned to the prepared statement string.

3. Use DESCRIBE INPUT to fill the input XSQLDA with information about
the parameters contained in the SQL statement:

EXEC SQL
DESCRIBE INPUT SQL_STMT USING SQL DESCRIPTOR in_sqlda;

4. Compare the sqln field of the XSQLDA to the sqld field to determine if the
input descriptor can accommodate the number of parameters contained
in the statement. If not, free the storage previously allocated to the input
descriptor, reallocate storage to reflect the number of parameters speci-
fied by sqld, reset sqln and version, then execute DESCRIBE INPUT again:

if (in_sqlda->sqld > in_sqlda->sqln)
{

n = in_sqlda->sqld;
free(in_sqlda);
in_sqlda = (XSQLDA *)malloc(XSQLDA_LENGTH(n));
in_sqlda->sqln = n;
in_sqlda->version = SQLDA_VERSION1;
EXEC SQL

Using Dynamic SQL 279

DESCRIBE INPUT SQL_STMT USING SQL DESCRIPTOR in_sqlda;
}

5. Process each XSQLVAR parameter structure in the input XSQLDA. Pro-
cessing a parameter structure involves up to four steps:

• Coercing a parameter’s data type (optional).

• Allocating local storage for the data pointed to by the sqldata field of
the XSQLVAR. This step is only required if space for local variables is
not allocated until run time. The following example illustrates
dynamic allocation of local variable storage space.

• Providing a value for the parameter consistent with its data type
(required).

• Providing a NULL value indicator for the parameter.

These steps must be followed in the order presented. The following code
example illustrates these steps, looping through each XSQLVAR struc-
ture in the in_sqlda XSQLDA:

for (i=0, var = in_sqlda->sqlvar; i < in_sqlda->sqld; i++, var++)
{

/* Process each XSQLVAR parameter structure here.
The parameter structure is pointed to by var.*/
dtype = (var->sqltype & ~1) /* drop flag bit for now */
switch (dtype)
{

case SQL_VARYING: /* coerce to SQL_TEXT */
var->sqltype = SQL_TEXT;
/* allocate proper storage */
var->sqldata = (char *)malloc(sizeof(char)*var->sqllen);
/* provide a value for the parameter. See case SQL_LONG */
. . .
break;

case SQL_TEXT:
var->sqldata = (char *)malloc(sizeof(char)*var->sqllen);
/* provide a value for the parameter. See case SQL_LONG */
. . .
break;

case SQL_LONG:
var->sqldata = (char *)malloc(sizeof(long));
/* provide a value for the parameter */
*(long *)(var->sqldata) = 17;
break;

. . .
} /* end of switch statement */
if (sqltype & 1)
{

/* allocate variable to hold NULL status */
var->sqlind = (short *)malloc(sizeof(short));

280 Programmer’s Guide

}
} /* end of for loop */

For more information about data type coercion and NULL indicators, see
“Coercing Data Types,” in this chapter.

6. Use DESCRIBE OUTPUT to fill the output XSQLDA with information
about the select-list items returned by the statement:

EXEC SQL
DESCRIBE OUTPUT SQL_STMT INTO SQL DESCRIPTOR out_sqlda;

7. Compare the sqln field of the XSQLDA to the sqld field to determine if the
output descriptor can accommodate the number of select-list items spec-
ified in the statement. If not, free the storage previously allocated to the
output descriptor, reallocate storage to reflect the number of select-list
items specified by sqld, reset sqln and version, and execute DESCRIBE
OUTPUT again:

if (out_sqlda->sqld > out_sqlda->sqln)
{

n = out_sqlda->sqld;
free(out_sqlda);
out_sqlda = (XSQLDA *)malloc(XSQLDA_LENGTH(n));
out_sqlda->sqln = n;
out_sqlda->version = SQLDA_VERSION1;
EXEC SQL

DESCRIBE OUTPUT SQL_STMT INTO SQL DESCRIPTOR out_sqlda;
}

8. Set up an XSQLVAR structure for each item returned. Setting up an item
structure involves the following steps:

• Coercing an item’s data type (optional).

• Allocating local storage for the data pointed to by the sqldata field of
the XSQLVAR. This step is only required if space for local variables is
not allocated until run time. The following example illustrates
dynamic allocation of local variable storage space.

• Providing a NULL value indicator for the parameter (optional).

The following code example illustrates these steps, looping through each
XSQLVAR structure in the out_sqlda XSQLDA:

for (i=0, var = out_sqlda->sqlvar; i < out_sqlda->sqld; i++, var++)
{

dtype = (var->sqltype & ~1) /* drop flag bit for now */
switch (dtype)
{

Using Dynamic SQL 281

case SQL_VARYING:
var->sqltype = SQL_TEXT;

break;
case SQL_TEXT:

var->sqldata = (char *)malloc(sizeof(char)*var->sqllen);
break;

case SQL_LONG:
var->sqldata = (char *)malloc(sizeof(long));
break;
/* process remaining types */

} /* end of switch statements */
if (sqltype & 1)
{

/* allocate variable to hold NULL status */
var->sqlind = (short *)malloc(sizeof(short));

}
} /* end of for loop */

For more information about data type coercion and NULL indicators, see
“Coercing Data Types,” in this chapter.

Executing a Query Statement String Within the Context of a Cursor

To retrieve select-list items from a statement string, the string must be executed
within the context of a cursor. All cursor declarations in InterBase are fixed,
embedded statements inserted into the application before it is compiled. DSQL
application developers must anticipate the need for cursors when writing the
application and declare them ahead of time.

A looping construct is used to fetch a single row at a time from the cursor and to
process each select-list item (column) in that row before the next row is fetched.

To execute a statement string within the context of a cursor and retrieve rows of
select-list items, follow these steps:

1. Declare a cursor for the statement string. For example, the following
statement declares a cursor, DYN_CURSOR, for the prepared SQL state-
ment string, SQL_STMT:

EXEC SQL
DECLARE DYN_CURSOR CURSOR FOR SQL_STMT;

2. Open the cursor, specifying the input descriptor:

EXEC SQL
OPEN DYN_CURSOR USING SQL DESCRIPTOR in_sqlda;

Opening the cursor causes the statement string to be executed, and an
active set of rows to be retrieved. For more information about cursors
and active sets, see Chapter 6: “Working With Data.”

282 Programmer’s Guide

3. Fetch one row at a time and process the select-list items (columns) it con-
tains. For example, the following loops retrieve one row at a time from
DYN_CURSOR and process each item in the retrieved row with an
application-specific function (here called process_column()):

while (SQLCODE == 0)
{

EXEC SQL
FETCH DYN_CURSOR USING SQL DESCRIPTOR out_sqlda;

if (SQLCODE == 100)
break;

for (i = 0; i < out_sqlda->sqld; i++)
{

process_column(out_sqlda->sqlvar[i]);
}

}

4. When all the rows are fetched, close the cursor:

EXEC SQL
CLOSE DYN_CURSOR;

Re-executing a Query Statement String With Parameters

Once a query statement string with parameters is prepared, it can be used as
often as required in an application. Before each subsequent use, the input
XSQLDA can be supplied with new parameter and NULL indicator data. The
cursor must be closed and reopened before processing can occur.

To provide new parameters to the input XSQLDA, follow steps 3-5 of “Preparing
a Query Statement String with Parameters,” in this chapter.

To provide new information to the output XSQLDA, follow steps 6-8 of “Prepar-
ing a Query Statement String with Parameters,” in this chapter.

To reopen a cursor and process select-list items, repeat steps 2-4 of “Executing a
Query Statement String Within the Context of a Cursor,” in this chapter.

Preprocessing, Compiling, and Linking 283

CHAPTER 16

16Preprocessing, Compiling,
and Linking

This chapter describes how to preprocess a program by using gpre, and how to
compile and link it for execution.

Preprocessing

After coding an SQL or dynamic SQL (DSQL) program, the program must be
preprocessed with gpre before it can be compiled. gpre translates SQL and
DSQL commands into statements the host-language compiler accepts by gener-
ating InterBase library function calls. gpre translates SQL and DSQL database
variables into ones the host-language compiler accepts and declares these vari-
ables in host-language format. gpre also declares certain variables and data
structures required by SQL, such as the SQLCODE variable and the extended
SQL descriptor area (XSQLDA) used by DSQL.

Using gpre
The syntax for gpre is:

gpre [-language] [-options] infile [outfile]

The infile argument specifies the name of the input file.

The optional outfile argument specifies the name of the output file. If no file is
specified, gpre sends its output to a file with the same name as the input file,
with an extension depending on the language of the input file.

Switches include specification for language and options, described in the fol-
lowing sections. The switches can come either before or after the input and out-
put file specification. Each switch must include at least a hyphen (preceded by a
space) and a unique character specifying the switch.

284 Programmer’s Guide

Language Switches

The language switch specifies the language of the source program. C and C++
are languages available on all platforms. The switches are shown in the follow-
ing table:

In addition, some platforms support other languages if an additional InterBase
license for the language is purchased. The following table lists the available lan-
guages and the corresponding switches:

For example, to preprocess a C program called census.e, type:

gpre -c census.e

Option Switches

The option switches specify preprocessing options. The following table
describes the available switches:

Table 16-1: gpre Language Switches

Switch Language

-c C

-cxx C++

Table 16-2: Additional gpre Language Switches

Swsitch Language

-al[sys] Ada (Alsys)

-a[da] Ada (VERDIX, VMS, Telesoft)

-ansi ANSI-85 COBOL

-co [bol] COBOL

-f[ortran] FORTRAN

-pa[scal] Pascal

Table 16-3: gpre Option Switches

Switch Description

-charset name Determines the active character set at compile time, where
name is the character set name.

Preprocessing, Compiling, and Linking 285

For sites with the appropriate license and are using a language other than C,

-d[atabase] filename Declares a database for programs. filename is the file name of
the database to access. Use this option if a program contains
SQL statements and does not attach to the database itself. Do
not use this option if the program includes a
databasedeclaration.

-d_float VAX/VMS only. Specifies that double-precision data will be
passed from the application in D_FLOAT format and stored in
the database in G_FLOAT format. Data comparisons within the
database will be performed in G_FLOAT format. Data returned
to the application from the database will be in D_FLOAT format.

-e[ither_case] Enables gpre to recognize both uppercase and lowercase. Use
the -either_case switch whenever SQL keywords appear in
code in lowercase letters. If case is mixed, and this switch is not
used, gpre cannot process the input file. This switch is not
necessary with languages other than C, since they are case-
insensitive.

-m[anual] Suppresses the automatic generation of transactions. Use the
-m switch for SQL programs that perform their own transaction
handling, and for all DSQL programs that must, by definition,
explicitly control their own transactions.

-n[o_lines] Suppresses line numbers for C programs.

-o[utput] Directs gpre ’s output to standard output, rather than to a file.

-password password Specifies password, the database password, if the program
connects to a database that requires one.

-r[aw] Prints BLR as raw numbers, rather than as their mnemonic
equivalents. This option cam be useful for making the gpre
output file smaller; however, it will be unreadable.

-sqlda [old | new] Argument old specifies SQLDA, new specifies XSQLDA. If this
switch is not used, the default is XSQLDA.

-user username Specifies username, the database user name, if the program
connects to a database that requires one.

-x handle Gives the database handle identified with the -database option
an external declaration. This option directs the program to pick
up a global declaration from another linked module. Use only if
the -d switch is also used.

-z Print the version number of gpre and the version number of all
declared databases. These databases can be declared either in
the program or with the -database switch.

Table 16-3: gpre Option Switches (Continued)

Switch Description

286 Programmer’s Guide

additional gpre options can be specified, as described in the following table:

Examples

The following command preprocesses a C program in a file named appl1.e. The
output file will be appl1.c. Since no database is specified, the source code must
connect to the the database.

gpre -c appl1

The following command is the same as the previous, except that it does not
assume the source code opens a database, instead, explicitly declaring the data-
base, mydb.gdb:

gpre -c appl1 -d mydb.gdb

Using a File Extension to Specify Language
In addition to using a language switch to specify the host language, it is also
possible to indicate the host language with the file-name extension of the source
file. The following table lists the file-name extensions for each language that
gpre supports and the default extension of the output file:

For example, to preprocess a COBOL program called census.ecob, type:

gpre census_report.ecob

Table 16-4: Language-specific gpre Option Switches

Switch Description

-h[andles] pkg Specifies, pkg, an Ada handles package.

Table 16-5: File Extensions for Language Specification

Language Input File Extension
Default Output File
Extension

Ada (VERDIX) ea a

Ada (Alsys, Telesoft) eada ada

C e c

C++ exx cxx

COBOL ecob cob

FORTRAN ef f

Pascal epas pas

Preprocessing, Compiling, and Linking 287

This generates an output file called census.cob.

When specifying a file-name extension, it is possible to specify a language
switch as well:

gpre -cob census.ecob

Specifying the Source File
Because both the language switch and the file-name extension are optional, gpre
can encounter three different situations:

• A language switch and input file with no extension

• No language switch, but an input file with extension

• Neither a language switch, nor a file extension

Using a Language Switch and No Input File Extension

If gpre encounters a language switch, but the specified input file has no exten-
sion, it does the following:

1. It looks for the input file without an extension. If gpre finds the file, it
processes it and generates an output file with the appropriate extension.

If gpre does not find the input file, it looks for the file with the extension
that corresponds to the indicated language. If it finds such a file, it gener-
ates an output file with the appropriate extension.

2. If gpre cannot find either the named file or the named file with the
appropriate extension, it returns the following error:

gpre: can’t open filename or filename.extension

filename is the file specified in the gpre command. extension is the lan-
guage-specific file extension for the specified program.

For example, suppose the following command is processed:

gpre -c census

Then, the following occurs:

• gpre looks for a file called census without an extension. If found, it pro-
cesses the file and generates census.c.

• If gpre cannot find this file, it looks for a file called census.e. If found, it
processes the file and generates census.c.

288 Programmer’s Guide

• If gpre cannot find census or census.e, it returns this error:

gpre: can’t open census_report or census.e

Using No Language Switch and an Input File With Extension

If a language switch is not specified, but the input file includes a file-name exten-
sion, gpre looks for the specified file and assumes the language is indicated by
the extension.

For example, suppose the following command is processed:

gpre census.e

gpre looks for a file called census.e. If gpre finds this file, it processes it as a C
program and generates an output file called census.c. If gpre does not find this
file, it returns the following error:

gpre: can’t open census.e

Using Neither a Language Switch Nor a File Extension

If neither a language extension nor a file-name extension is specified, gpre looks
for a file in the following order:

1. filename.e (C)

2. filename.epas (Pascal)

3. filename.ef (FORTRAN)

4. filename.ecob (COBOL)

5. filename.ea (VERDIX Ada)

6. filename.eada (Alsys, and Telesoft Ada)

If gpre finds such a file, it generates an output file with the appropriate exten-
sion. If gpre does not find the file, it returns the following error:

gpre: can’t find filename with any known extension. Giving up.

Compiling and Linking

After preprocessing a program, it must be compiled and linked. Compiling cre-
ates an object module from the preprocessed source file. Use a host-language
compiler to compile the program.

Preprocessing, Compiling, and Linking 289

The linking process resolves external references and creates an executable object.
Use the tools available on a given platform to link a program’s object module to
other object modules and libraries, based on the platform, operating system and
host language used.

Compiling an Ada Program
Before compiling an Ada program, be sure the Ada library contains the package
interbase.ada (or interbase.a for VERDIX Ada). This package is in the InterBase
include directory.

To use the programs in the InterBase examples directory, use the package
basic_io.ada (or basic_io.a for VERDIX Ada), also located in the examples directory.

Linking
On Unix platforms, programs can be linked to the following libraries:

• A library that uses pipes, obtained with the -lgds option. This library
yields faster links and smaller images. It also lets your application work
with new versions of InterBase automatically when they are installed.

• A library that does not use pipes, obtained with the -lgds_b option. This
library has faster execution, but binds an application to a specific version
of InterBase. When installing a new version of InterBase, programs must
be relinked to use the new features or databases created with that ver-
sion.

Under SunOS-4, programs can be linked to a shareable library by using the
-lgdslib option. This creates a dynamic link at run time and yields smaller
images with the execution speed of the full library. This option also provides the
ability to upgrade InterBase versions automatically.

For specific information about linking options for InterBase on a particular plat-
form, consult the online readme in the interbase directory.

290 Programmer’s Guide

291

Index

Symbols
* (asterisk), in code 109
* operator 94
+ operator 94
/ operator 94
[] (brackets), arrays 189, 192–193
|| operator 93
- operator 94

A
absolute values 214
access mode parameter 39, 45, 47

default transactions 41
access privileges See security
accessing

arrays 191–197
BLOB data 178
data 13, 32, 36
updatable views 206

actions See events
active database 21
Ada programs 289
adding

See also inserting
columns 83

addition operator (+) 94
aggregate functions 109–110

arrays and 192
NULL values 110

alerter (events) 232
aliases

database 23
tables 114

ALIGN macro 265–266
ALL keyword 35
ALL operator 96, 100
ALL privileges 200, 202

revoking 209
allocating memory 34
ALTER INDEX 87–88
ALTER TABLE 82–86

ADD option 83
DROP option 84

altering
column definitions 85–86
metadata 82–88
views 82, 86–87

AND operator 94
ANY operator 96, 101
API calls

BLOB data 178
applications 9

See also DSQL applications
building 71
event handling 231, 233–235
porting 10, 244
preprocessing See gpre

arithmetic expressions 197
arithmetic functions See aggregate functions
arithmetic operators 94

precedence 94, 104
array elements 193

defined 189
evaluating 196
porting 190
retrieving 193

array IDs 192
array slices 193–195

adding data 192
defined 191
updating data 195

arrays 91, 216
See also error status array
accessing 191–197
aggregate functions 192
creating 189–191
cursors 192–193, 195
DSQL applications and 192
inserting data 193
multi-dimensional 190, 194
referencing 192
search conditions 196–197
selecting data 192–195
storing data 189
subscripts 190–191, 197
UDFs and 191

292

updating 195
views and 192

ASC keyword 118
ascending sort order 79, 118
asterisk (*), in code 109
attaching to databases 14, 28

multiple 25, 30–33
averages 110
AVG() 110

B
BASED ON 11–12

arrays and 193
basic_io.a 289
basic_io.ada 289
BEGIN DECLARE SECTION 11
BETWEEN operator 96

NOT operator and 96
binary large objects See BLOB
BLOB API functions 178
BLOB data 167–188

deleting 177
filtering 178–188
inserting 175–176
selecting 172–174
storing 168, 170
updating 176–177

BLOB data type 90, 91
BLOB filter function 181

action macro definitions 186–187
return values 188

BLOB filters 178–188
external 179

declaring 179
writing 181–188

invoking 180
text 179
types 181

BLOB segments 170–172
BLOB subtypes 169
BLOB UDFs 216, 217–219, 222

control structures 217–218
declaring 222

blob_concatenate() 218
blob_get_segment 217

blob_handle 217
blob_put_segment 218
Boolean expressions 116

evaluating 94
Borland C/C++ See C language
brackets ([]), arrays 189, 192–193
buffers, database cache 34–36
BY VALUE keyword 216
byte-matching rules 100

C
C language

character variables 11, 222
host terminator 16
host-language variables 10–13
writing function modules 214

cache buffers 34–36
CACHE keyword 35
calculations 94, 110
calling

UDFs 222–224
case

nomenclature 4
case-insensitive comparisons 97
case-sensitive comparisons 98, 100
CAST keyword 95
CAST() 105, 164
CHAR data type 90

converting to DATE 164
CHAR VARYING keyword 91
CHARACTER keyword 90
character sets

converting 100
default 71
NONE 71
specifying 28, 71

character strings
characters, trimming 214
comparing 97, 98, 100
literal file names 30–31

CHARACTER VARYING keyword 91
characters, trimming 214
closing

databases 18, 26, 37–38
multiple 26

293

transactions 16–17
coercing data types 264–265
COLLATE clause 117
collation orders

GROUP BY clause 120
ORDER BY clause 119
WHERE clause 118

column names
nomenclature 4
qualifying 110
views 76

column-major order 190
columns

access, restricting 203
adding 83
computed 74, 84
creating 73
defining

altering 85–86
global 72
views 76

dropping 84
selecting 108–111

eliminating duplicates 109
sorting by 119
values, returning 110

COMMIT 17, 38, 39, 59–62
multiple databases 26

comparison operators 95–103
NULL values and 95, 102
precedence 104
subqueries 96, 98–102

COMPILETIME keyword 26
compiling

programs 288–289
UDFs 219

computed columns
creating 74, 84
defined 74

concatenation operator (||) 93
CONNECT 14, 23, 28–36

ALL option 35
CACHE option 35
error handling 34
multiple databases 30–34

omitting 15
SET DATABASE and 29

constraints 73
See also specific constraints
naming 4
optional 73

CONTAINING operator 97
NOT operator and 97

conversion functions 105–106, 164
converting

data types 105
dates 161–165
international character sets 100

COUNT() 110
CREATE DATABASE 70–71

specifying character sets 71
CREATE DOMAIN 72–73

arrays 189
CREATE GENERATOR 79
CREATE INDEX 78–79

DESCENDING option 79
UNIQUE option 78

CREATE PROCEDURE 226
CREATE TABLE 73–75

arrays 189
multiple tables 74

CREATE VIEW 75–77
WITH CHECK OPTION 77, 206

creating
arrays 189–191
columns 73
computed columns 74, 84
integrity constraints 73
metadata 70–79
UDFs 213–219

CSTRING data type 222
cursors 124

arrays 192–193, 195
multiple transaction programs 64
select procedures 227

D
data 89

accessing 13, 32, 36
DSQL applications 13, 21

294

host-language variables and 10
placing restrictions 199, 210

changes
committing See COMMIT
rolling back See ROLLBACK

defining 69
protecting See security
retrieving

optimizing 122, 225
selecting 78, 91, 107

multiple tables 110, 113
storing 189

data structures
BLOB 217–218
host-language 12

data types 90–91
See also specific type
coercing 264–265
compatible 106

UDFs and 216, 222
converting 105
DSQL applications 263–266
macro constants 261–263

database cache buffers 34–36
database handles 14, 23, 29

DSQL applications 18, 20
global 27
multiple databases 24–26, 32
naming 23
scope 27
transactions and 24, 36

database objects, naming 4
database specification parameter 39, 46
databases

attaching to 14, 28
multiple 25, 30–33

closing 18, 26, 37–38
creating 70–71
declaring multiple 13–15, 24–27
DSQL and attaching 252
initializing 13–15
naming 29
opening 23, 28, 30
remote 71

DATE data type 90, 91, 161

converting to
CHAR 164
NUMERIC 164

date literals 164
dates 214

converting 161–165
inserting 162–163
selecting 161–162
updating 163

DECIMAL data type 90
declarations, changing scope 27
DECLARE CURSOR 64
DECLARE EXTERNAL FUNCTION 220–222
DECLARE TABLE 74
declaring

BLOB filters 179
host-language variables 10–13
multiple databases 13–15, 24–27
one database only 15, 23–24
SQLCODE variable 16
transaction names 44
XSQLDAs 19–20

default character set 71
default transactions 40

access mode parameter 41
default behavior 41
DSQL applications 42
isolation level parameter 41
lock resolution parameter 41
rolling back 17
starting 40–42

DELETE in UDFs 224
DELETE privileges 200

views 206
deleting See dropping
DESC keyword 118
DESCENDING keyword 79
descending sort order 79, 118
detaching from databases 26, 37
directories

path names 4, 5
specifying 24

dirty reads 49
DISCONNECT 18, 37

multiple databases 26, 37

295

DISTINCT keyword 109
division operator (/) 94
DLLs, UDFs and 213, 219–220
domains, creating 72–73
DOUBLE PRECISION data type 90
DROP INDEX 80
DROP TABLE 81–82
DROP VIEW 80
dropping

columns 84
metadata 80–82

DSQL
limitations 251
macro constants 261–263
programming methods 266–282
requirements 18–20

DSQL applications 9, 251
accessing data 13, 21
arrays and 192
attaching to databases 252
creating databases 254
data definition statements 69
data types 263–266
database handles 18, 20
default transactions 42
executing stored procedures 229
multiple transactions 66
porting 10
preprocessing 19, 22, 41, 283
programming requirements 18–22
SQL statements 255

embedded 21
transaction names 18, 20–22
transactions 20
writing 255
XSQLDAs 257–266

DSQL limitations 20–22
DSQL statements 251
dynamic link libraries See DLLs
dynamic SQL See DSQL

E
END DECLARE SECTION 11
error codes and messages 16, 248

capturing 245–248

displaying 245
error status array 244, 248
error-handling routines 34, 237, 244

changing 239
disabling 243
guidelines 243–244
nesting 243
testing SQLCODE directly 240, 242
WHENEVER and 238–240, 242

errors 16
run-time, recovering from 237
trapping 238, 240, 248
unexpected 243
user-defined See exceptions

ESCAPE keyword 99
EVENT INIT 233

multiple events 234
EVENT WAIT 234–235
events 231–236

See also triggers
alerter 232
defined 231
manager 231
multiple 234–235
notifying applications 233–234
posting 232
responding to 235

executable objects 289
executable procedures 226, 228–230

DSQL 229
input parameters 228–230

EXECUTE 19, 21
EXECUTE IMMEDIATE 19, 21, 67
EXECUTE privileges 200

granting 205
revoking 209

EXECUTE PROCEDURE 228
EXISTS operator 96, 101

NOT operator and 102
expression-based columns See computed col-

umns
expressions 116

evaluating 94
extended SQL descriptior areas See XSQLDAs
EXTERN keyword 27–28

296

F
file names

nomenclature 4–5
specifying 30–31

files
See also specific files
source, specifying 287

filespec parameter 5
FLOAT data type 90
fn_abs() 214
fn_datediff() 214
fn_trim() 214
FROM keyword 112–115
functions

aggregate 109–110
conversion 105–106, 164
error-handling 243
numeric 79
user-defined See UDFs

G
gds__trans 40
GEN_ID() 79
generators

creating 79
defined 79

global column definitions 72
global database handles 27
gpre 22, 67, 283–288

command-line options 284–286
databases, specifying 26
DSQL applications 19, 41
handling transactions 253
language options 284

file names vs. 286–288
-m switch 41, 70
programming requirements 9
specifying source files 287
-sqlda old switch 19
syntax 283

GRANT 199, 200–207
multiple privileges 201
multiple users 202–203
specific columns 203
stored procedures 202, 205

WITH GRANT OPTION 203–205
grant authority 203–205

restrictions 204
revoking 210

group aggregates 120
grouping rows 119

restrictions 121

H
hard-coded strings

file names 30–31
HAVING keyword 121
header files See ibase.h
host languages 16, 24

data structures 12
host-language variables 30

arrays 197
declaring 10–13
specifying 112

hosts, specifying 24

I
I/O See input, output
ibase.h 19, 248

including 216
identifiers 23

database handles 23
databases 29
views 75

IN operator 97
NOT operator and 98

INDEX keyword 123
indexes

altering 82, 87–88
creating 78–79
dropping 80
preventing duplicate entries 78
primary keys 79
sort order 79

changing 88
system-defined 78
unique 78

INDICATOR keyword 229
indicator variables 229

NULL values 229

297

initializing
databases 13–15
transaction names 45

input parameters 227, 228–230
See also stored procedures

INSERT
arrays 193
UDFs 223

INSERT privileges 200
views 206

inserting
See also adding
BLOB data 175–176
dates 162–163

INTEGER data type 90
integrity constraints 73

See also specific type
naming 4
optional 73

Interactive SQL See isql
interbase.a 289
interbase.ada 289
international character sets 100
INTO keyword 112, 123
IS NULL operator 99

NOT operator and 99
isc_blob_ctl 183

field descriptions 184
isc_blob_default_desc() 178
isc_blob_gen_bpb() 178
isc_blob_info() 178
isc_blob_lookup_desc() 178
isc_blob_set_desc() 178
isc_cancel_blob() 178
isc_close_blob() 178
isc_create_blob2() 178
isc_decode_date() 162
isc_encode_date() 163
isc_get_segment() 178
isc_interprete() 245, 246–248
isc_open_blob2() 178
isc_print_sqlerror() 245
isc_put_segment() 178
ISC_QUAD structure 162–163
isc_sql_interprete() 245–246

isc_status 244, 248
isolation level parameter 39, 46, 47

default transactions 41

J
JOIN keyword 122
joins 114

views and 207

K
key constraints See FOREIGN KEY constraints;

PRIMARY KEY constraints
keys, primary 79

L
language options (gpre) 284

file names vs. 286–288
leading characters 214
libraries

dynamic link See DLLs
UDFs and 213, 219–220
Unix platforms 289

LIKE operator 98
NOT operator and 99

limbo transactions 16
linking programs 288–289
literal strings, file names 30–31
literal symbols 99
lock resolution parameter 39, 46, 54

default transactions 41
logical operators 94–95

precedence 95, 105
loops See repetitive statements
lost updates 49

M
-m switch 41
macro constants 261–263
make.lib 220
mathematical operators 94

precedence 94, 104
MAX() 110
max_seglen 218
maximum values 110

298

memory
allocating 34

metadata 69
altering 82–88
creating 70–79
dropping 80–82

failing 82
Microsoft C/C++ See C language
MIN() 110
minimum values 110
modifying See altering; updating
modules

object 288
UDFs 214

multi-column sorts 119
multi-dimensional arrays

creating 190
selecting data 194

multi-file specifications 5
multi-module programs 27
multiple databases

attaching to 25, 30–33
closing 26
database handles 24–26, 32
declaring 13–15, 24–27
detaching 26, 37
opening 30
transactions 36

multiple tables
creating 74
selecting data 110, 113

multiple transactions 111
DSQL applications 66
running 63–68

multiplication operator (*) 94
multi-row selects 112, 124–132

N
named transactions 40, 57

starting 42–43
names

column 76, 110
qualifying 24, 25, 36

in SELECT statements 110
specifying at run time 30

naming
database handles 23
databases 29
nodes 4, 5
transactions 43–45
views 75

naming conventions 4–5
NATURAL keyword 122
NO RECORD_VERSION 46
NO WAIT 46, 54
nodes, naming 4, 5
nomenclature 4–5
NONE character set option 71
non-reproducible reads 49
NOT operator 94

BETWEEN operator and 96
CONTAINING operator and 97
EXISTS operator and 102
IN operator and 98
IS NULL operator and 99
LIKE operator and 99
SINGULAR operator and 102
STARTING WITH operator and 100

NOW date literal 164
NULL values

aggregate functions 110
arrays and 192
comparisons 95, 102
indicator variables 229

number_segments 218
numbers

absolute values 214
generating 79

NUMERIC data type 90
converting to DATE 164

numeric function 79
numeric values See values

O
object modules 288
opening

databases 23, 28, 30
multiple 30

operators, arithmetic 94
comparison 95–103

299

concatenation 93
logical 94–95
precedence 103–105

changing 105
string 93

optimizing data retrieval 122, 225
OR operator 94, 95
ORDER keyword 123
order of evaluation (operators) 103–105

changing 105
output parameters

See also stored procedures
owner 199

P
parameters

access mode 39, 41, 45, 47
database specification 39, 46, 56
filespec 5
isolation level 39, 41, 46, 47
lock resolution 39, 41, 46, 54
table reservation 39, 46, 55
UDFs 216
unknown 229

path names 4, 5
phantom rows 49
PLAN keyword 122
platforms 4
porting

applications 10, 244
arrays 190

POST_EVENT 232
precedence of operators 103–105

changing 105
PREPARE 18, 67
preprocessor See gpre
primary file specifications 4, 5
PRIMARY KEY constraints 78
primary keys 79
printing conventions (documentation) 2–3
privileges See security
procedures See stored procedures
programming

DSQL applications 18–22
gpre 9

programs, compiling and linking 288–289
projection (defined) 107
PROTECTED READ 55
PROTECTED WRITE 55
protecting data See security
PUBLIC keyword 203
PUBLIC privileges 208

granting 203
revoking 210

Q
qualify (defined) 24, 36
queries 78, 107

See also SQL
eliminating duplicate columns 109
grouping rows 119
multi-column sorts 119
restricting row selection 115, 121
search conditions 91–103, 115–118

arrays and 196–197
combining simple 94
reversing 94

selecting multiple rows 112, 124–132
selecting single rows 123
sorting rows 118
specific tables 112–115
with joins 114, 122

query optimizer 122

R
READ COMMITTED 46, 48, 50
READ ONLY 45
READ WRITE 45
read-only views 76
RECORD_VERSION 46
remote databases 71
RESERVING clause 46, 54

table reservation options 55
restrictions, nomenclature 4
result tables 124

See also joins
REVOKE 199, 207–210

grant authority 210
multiple privileges 208–209
multiple users 209, 210

300

restrictions 208
stored procedures 209

ROLLBACK 17, 38, 39, 59, 62–63
multiple databases 26

rollbacks 17
routines 226

See also error-handling routines
row-major order 190
rows

counting 110
grouping 119

restrictions 121
selecting 115

multiple 112, 124–132
single 123

sorting 118
run-time errors

recovering from 237
RUNTIME keyword 26

S
scientific notation 90
scope

changing 27
database handles 27
WHENEVER 239

search conditions (queries) 91–103, 115–118
arrays and 196–197
combining simple 94
reversing 94

secondary file specifications 4, 5
security 199

access privileges 199–200
granting 200–207
revoking 207–210
stored procedures 202, 205, 209
views 206–207

multi-platform support 199
stored procedures 226

SELECT 91–103, 107–123, 226
arrays 192–195
CAST() function 95
CREATE VIEW and 76
DISTINCT option 109
FROM clause 112–115

GROUP BY clause 119–121
collation order 120

HAVING clause 121
INTO option 112, 123
ORDER BY clause 118

collation order 119
PLAN clause 122
TRANSACTION option 111
UDFs 223
WHERE clause 91–106, 115–118, 123

ALL operator 100
ANY operator 101
BETWEEN operator 96
CAST option 105, 164
collation order 118
CONTAINING operator 97
EXISTS operator 101
IN operator 97
IS NULL operator 99
LIKE operator 98
SINGULAR operator 102
SOME operator 101
STARTING WITH operator 100

SELECT privileges 200
views 206

select procedures 225, 226–228
calling 227
cursors 227
input parameters 227
selecting 113
tables vs. 227
views vs. 227

SELECT statements
singleton SELECTs 107, 112, 123

selecting
BLOB data 172–174
columns 108–111
data 78, 91, 107

See also SELECT
dates 161–162
multiple rows 112, 124–132
single rows 123
views 113

SET DATABASE 14, 23–24
COMPILETIME option 26

301

CONNECT and 29
DSQL applications 20
EXTERN option 27–28
multiple databases and 25, 32
omitting 15, 31
RUNTIME option 26
STATIC option 27–28

SET NAMES 23
SET TRANSACTION 39, 41, 45–57

DSQL applications 67
parameters 45
syntax 46

SHARED READ 55
SHARED WRITE 56
singleton SELECTs 107, 112

defined 123
SINGULAR operator 96, 102

NOT operator and 102
SMALLINT data type 90
SNAPSHOT 46, 48, 50
SNAPSHOT TABLE STABILITY 46, 48, 53
SOME operator 96, 101
SORT MERGE keywords 122
sort order

ascending 79, 118
descending 79, 118
indexes 79, 88
queries 118
sticky 119

sorting
multiple columns 119
rows 118

source files 287
specifying

character sets 28, 71
directories 24
file names 30–31
host-language variables 112
hosts 24

SQL statements
DSQL applications 21, 255
strings 256

SQLCODE variable
declaring 16
examining 237

return values 237, 244, 248
displaying 245

testing 240, 242
SQLDAs 19

porting applications and 10
starting default transactions 40–42
STARTING WITH operator 100

NOT operator and 100
statements

See also DSQL statements; SQL statements
data definition 69
data structures and 13
embedded 16, 89
error-handling 243
example, printing conventions 3
transaction management 39

STATIC keyword 27–28
status array See error status array
sticky sort order 119
stored procedures 225–230, 231

accessing 200
defined 225
granting privileges 202, 205
return values 226, 230
revoking privileges 209
running 205
security 226
values 226, 230
XSQLDAs and 230

string operator (||) 93
subqueries

comparison operators 96, 98–102
defined 141

subscripts (arrays) 190–191, 197
subtraction operator (-) 94
SUM() 110
SunOS-4 platforms 289
syntax

file name specifications 5
statements, printing conventions 3

system tables 70
system-defined indexes 78

302

T
table names

aliases 114
duplicating 74
identical 24, 25, 36

table reservation parameter 39, 46
tables

access privileges 199–200
altering 82–86
creating 73–75

multiple 74
declaring 74
dropping 81–82
qualifying 24, 25, 36
querying specific 112–115
select procedures vs. 227

time structures 162
time.h 161
TODAY date literal 164
total_size 218
totals, calculating 110
trailing characters 214
TRANSACTION keyword 111
transaction management statements 39
transaction names 42, 253

declaring 44
DSQL applications 18, 20–22
initializing 45
multi-table SELECTs 111

transactions 226
accessing data 36
closing 16–17
committing 17
database handles and 24, 36
default 40–42

rolling back 17
DSQL applications 20
ending 58
multiple databases 36
named 40, 57

starting 42–43
naming 43–45
rolling back 17
running multiple 63–68, 111
unnamed 17

trapping errors 238, 240, 248
triggers 231
TRIM() 214

U
udflib.c 214
UDFs

arrays and 191
BLOB 216, 217–219, 222
calling 222–224
compiling 219
creating 213–219

parameters 216
declaring 220–222
defined 213
inserting 223
libraries 213, 219–220

changing 220
modules 214
return values 216
selecting 223
updating 223

unexpected errors 243
unique indexes 78
UNIQUE keyword 78
unique values 79
Unix platforms 289
unknown values, testing for 99
unrecoverable errors 243
updatable views 77

accessing 206
UPDATE

arrays 196
dates 163
UDFs 223

UPDATE privileges 200
views 206

update side effects 49
updating

See also altering
BLOB data 176–177
views 206

UPPER() 106
user-defined functions See UDFs
USING clause 46, 56

303

V
values

See also NULL values
absolute 214
comparing 95
manipulating 94
matching 97, 101
maximum 110
minimum 110
selecting 109
stored procedures 226, 230
UDFs 216
unique 79
Unknown, testing for 99

VARCHAR data type 91
variables

host-language 30
arrays 197
declaring 10–13
specifying 112

indicator 229
NULL values 229

views 75
access privileges 206–207
altering 82, 86–87
arrays and 192
creating 75–77
defining columns 76
dropping 80
naming 4, 75
read-only 76

restricting data access 210
select procedures vs. 227
selecting 113
updatable 77, 206
updating 206
with joins 207

virtual tables 75

W
WAIT 46, 54
WHENEVER 238–240, 242

embedding 239
limitations 240
scope 239

WHERE clause See SELECT
WHERE keyword 115
wildcards, string comparisons 98
writing external BLOB filters 181–188

X
XSQLDA_LENGTH macro 261
XSQLDAs 257–266

declaring 19–20
fields 259
input descriptors 260
output descriptors 261
porting applications and 10
stored procedures and 230
structures 19

XSQLVAR structure 258
fields 259

304

