Programmer’s Guide

Borland InterBase
Workgroup Server

Version 4.0

Borland International, Inc., 100 Borland Way
P.O. Box 660001, Scotts Valley, CA 95067-0001

Borland may have patents and/or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents.

Copyright © 1992, 1993, 1994 Borland International. All rights reserved. All Borland products are trademarks or
registered trademarks of Borland International, Inc. Other brand and product names are trademarks or registered
trademarks of their respective holders.

Printed in the U.S.A.

1EO0R894
9495969798-987654321
11

Table of Contents

Preface.

Chapter 1: Introduction.

Who Should Use This Guide.
Topics Covered in ThisGuide.
Sample Database and Applications.

Chapter 2: Application Requirements

Requirements for All Applications

Porting Considerations for SQL 10
Porting Considerations for DSQL . . . 10
Declaring Host Variables 10
Section Declarations 11
Using BASED ON to Declare

Variables 11

Host Variables and Host-language
Data Structures 12
Declaring and Initializing Databases . . . 13
Using SET DATABASE 14
Using CONNECT 14
Working With a Single Database. . . . 15
SQL Statements 16
Error Handling and Recovery 16
Closing Transactions 16
AcceptingChanges 17
UndoingChanges 17
Closing Databases. 18
DSQL Requirements 18
Declaringan XSQLDA 19
DSQL Limitations. 20
Using Database Handles 20
Using the Active Database 21
Using Transaction Names. 21
Preprocessing Programs 22
Chapter 3: Working With Databases 23
Declaringa Database 23

Declaring Multiple Databases 24

Using Handles to Differentiate
Table Names 25
Using Handles With CONNECT,
DISCONNECT, COMMIT, and

ROLLBACK. 25
Using Different Databases for
Preprocessing and Run Time 26
Using the COMPILETIME
Clause. 26
Using the RUNTIME Clause 26
Controlling SET DATABASE
Scope 27
Specifying a Character Set for a Client
Connection, 28
OpeningaDatabase 28
Using Simple CONNECT
Statements L 29
Using a Database Handle. 29
Using Host-language Variables
or Hard-coded Strings. 30
Multiple Database
Implementation. 30
Using a Hard-coded Database Name
in a Single-database Program. . . . 31
Using a Hard-coded Database Name
in a Multi-database Program 32
Additional CONNECT Syntax 32
Attaching to Multiple Databases
With a Single CONNECT 33
Handling CONNECT Errors 34
Setting Database Cache Buffers. 34
Setting Buffers For Individual
Databases. 35
Specifying Buffers for All
Databases. 35
Accessing an Open Database 36
Using Database Handles
to Differentiate Table Names 36
Closinga Database. 37
Closing Databases With
DISCONNECT 37

Closing Databases With COMMIT

and ROLLBACK 38
Chapter 4: Working With Transactions. . . 39
Starting the Default Transaction. 40
Starting the Default Transaction
Without SET TRANSACTION 40
Starting the Default Transaction
With SET TRANSACTION 41

Starting a Named Transaction. 42

Naming Transactions 43
Declaring Transaction Names. . . . 44
Initializing Transaction Names . . . 45

Specifying SET TRANSACTION

Behavior. 45
AccessMode 47
Isolation Level. 47

Comparing SNAPSHOT, READ
COMMITTED, and SNAPSHOT

TABLE STABILITY 49
Choosing Between SNAPSHOT
and READ COMMITTED. . . . 50
Starting a Transaction With
SNAPSHOT Isolation Level . . 51
Starting a Transaction With
READ COMMITTED lIsolation
Level. 52
Starting a Transaction With
SNAPSHOT TABLE
STABILITY Isolation Level . . . 52
Isolation Level Interactions. . . . 53
Lock Resolution. 54
RESERVING Clause 54
USINGClause. 56
Using Transaction Names in Data
Statements 57
Endinga Transaction. 58
Using COMMIT 59
Specifying Transaction Names
for COMMIT. 60

Committing Updates Without
Freeing a Transaction
Using ROLLBACK
Working With Multiple
Transactions.
Multi-transaction Programs and
the Default Transaction.
Using Cursors in Multi-transaction
Programs.
A Multi-transaction Example
Working With Multiple Transactions
in DSQL
Modifying Transaction Behavior
With SET TRANSACTION.

Chapter 5: Working With Data
Definition Statements

Creating Metadata.
Creating a Database
Specifying a Default Character Set
for a Database
Creating a Domain
CreatingaTable.
Creating a Computed Column. . . .
Declaring and Creating a Table
CreatingaView.
Creating a View for SELECT
Creating a View for Update
CreatinganiIndex.
Preventing Duplicate Index
Entries.
Specifying Index Sort Order
Creating Generators
Dropping Metadata
Dropping an Index
Dropping a View
Dropping a Table
Altering Metadata
AlteringaTable.
Adding a New Column
to a Table

Dropping an Existing Column
FromaTable.
Modifying a Column
Altering a View
Altering an Index

Chapter 6: Working With Data

Supported Data Types
Understanding SQL Expressions
Using the String Operator
in Expressions
Using Arithmetic Operators
in Expressions
Using Logical Operators
in Expressions
Using Comparison Operators
in Expressions
Using BETWEEN
Using CONTAINING
Using IN
Using LIKE
Using IS NULL
Using STARTING WITH.
Using ALL.
Using ANY and SOME.
Using EXISTS
Using SINGULAR
Determining Precedence
of Operators.
Precedence Among Operators
of Different Types.
Precedence Among Operators
of the Same Type
Changing Evaluation Order
of Operators
Using CAST() for Data Type
Conversions
Using UPPER() on Text Data.
Understanding Data Retrieval With
SELECT.

Listing Columns to Retrieve
With SELECT
Retrieving a List of Columns. . . .
Retrieving All Columns.
Eliminating Duplicate
Columns With DISTINCT . . .
Retrieving Aggregate Column
Information
Qualifying Column Names in
Multi-table SELECT Statements .
Specifying Transaction Names
ina SELECT
Specifying Host Variables
With INTO
Listing Tables to Search
With FROM
Listing a Single Table or View . . .
Listing Multiple Tables
Declaring and Using Correlation

WHERE
Structure of a Search Condition . .
Specifying Collation Order in

a Comparison Operation
Sorting Rows With ORDER BY
Specifying Collation Order in
an ORDER BY Clause
Grouping Rows With GROUP BY . .
Specifying Collation Order in
a GROUPBY Clause.
Limitations of GROUP BY
Restricting Grouped Rows
With HAVING
Specifying a Query Plan
With PLAN
SelectingaSingleRow.
Selecting Multiple Rows
Declaring a Cursor
Permitting Updates Through
Cursors With FOR UPDATE . . .

108
109

109
109
110
111
112
112
113
113
114
115
115
116

118
118

119
119

120
120

121
122
123
124
124

125

Opening a Cursor
Fetching Rows With a Cursor
Retrieving Indicator Status
Refetching Rows With
a Cursor
ClosingtheCursor.
A Complete Cursor Example
Selecting Rows With NULL
Values
Limitations on NULL Values
Selecting Rows Through a View
Selecting Multiple Rows in DSQL.
Declaringa DSQL Cursor.
Opening a DSQL Cursor
Fetching Rows With a DSQL
Cursor
Joining Tables
Choosing Join Columns
Using InnerJoins.
Creating Equi-joins
Creating Joins Based on
Non-equality Comparison
Operators.
Creating Self-joins
Using Outer Joins
Using a Left Outer Join.
Using a Right Outer Join
Using a Full Outer Join.
Using Nested Joins.
Appending Tables.
Using Subqueries
Simple Subqueries
Correlated Subqueries.
Inserting Data
Inserting Columns
With VALUES
Inserting Columns
With SELECT
Inserting Rows With NULL Column
Values
Ignoring a Column

Assigning a NULL Value
toaColumn.
Using Indicator Variables.
Inserting Data Through a View
Specifying Transaction Names in
an INSERT
Updating Data
Updating Multiple Rows.
Using a Searched Update.
Using a Positioned Update
Setting Column Values to NULL
With UPDATE.
Updating Through a View.
Specifying Transaction Names
in UPDATE
DeletingData.
Deleting Multiple Rows
Using a Searched Delete
Using a Positioned Delete
Deleting Through a View
Specifying Transaction Names
ina DELETE

Chapter 7: Working With Dates

Selecting Dates
Inserting Dates
Updating Dates
Using CAST() to Convert Dates
Using Date Literals

Chapter 8: Working With BLOB Data. . .

BLOB Subtypes
BLOB Database Storage
BLOB Segment Length
Overriding Segment Length.
Accessing BLOB Data With SQL
Selecting BLOB Data
Inserting BLOB Data
UpdatingBLOB Data.

DeletingBLOBData. 177
Accessing BLOB Data With
APICalls 178
FilteringBLOBData 178
Using the Standard InterBase
TextFilters 179
Using an External BLOB Filter 179
Declaring an External Filter
tothe Database 179
Reading and Writing BLOB Data
UsingaFilter 180
Invoking a Filter in
an Application. 180
Writing an External BLOB Filter. 181
Filter Types. 181
Read-only and Write-only Filters . . .181
Defining the Filter Function 181
Defining the BLOB Control
Structure 183
Setting Control Structure
Information Field VValues185
Programming Filter Function
Actions. L. 186
Testing the Filter Function
Status Return Value. 188
Chapter 9: Using Arrays 189
Creating Arrays 189
Multi-dimensional Arrays 190
Specifying Subscript Ranges
for Array Dimensions 190
Accessing Arrays 191
Selecting Data From an Array 192
Inserting Data Intoan Array 193
Selecting From an Array Slice 193
Updating Data in an Array Slice195
Testing an Array Element Value
in a Search Condition 196
Using Host Variables in Array
Subscripts L. 197

Using Arithmetic Expressions
With Arrays

Chapter 10: Working With Security

Overview of SQL Access Privileges . . .
Default Table Security and Access . .
Default Procedure Security

and Access.
Privileges Available

Granting Access to a Table
Granting Multiple Privileges
Granting All Privileges.
Granting Privileges to a List

ofUsers.
Granting Privileges to a List
of Procedures
Granting Privileges to All Users . . .
Granting Users UPDATE Access
to Columns in a Table
Granting Users the Right to Grant
Privileges.
Grant Authority Restrictions. . . .
Grant Authority Implications . . .
Granting Privileges to Execute
Procedures

How GRANT Affects Views
Views That are Subsets of a Table. . .
Views With Joins

Revoking User Access.
REVOKE Restrictions
Revoking Multiple Privileges
Revoking All Privileges
Revoking Privileges for a List

Revoking Privileges for a List
of Procedures
Revoking Privileges for All Users. . .
Revoking Grant Authority.
Using Views to Restrict Data Access. . .
Providing Additional Security

199

199
199

200
200
200
201
202

202

202
203

203

203
204
204

205
206
206
207
207
208
208
209

209

209
210
210
210

Chapter 11: Working With Executing a Procedure in

User-defined Functions 213 a DSQL Application. 229
Creatinga UDF R 213 Chapter 13: Working With Events 231
Writing and Compiling Functions214]

Writing a Function Module. 214 Understanding the Event
Specifying Parameters 216 Mechanism 231
Specifying a Return Value 216 Signaling Event Occurrence With
WritingaBLOBUDF 217 POST_EVENT 232
Creating a BLOB Control Registering Interest in Events
Structure 217 WIthEVENTINIT 233
blob_get segment 217 Registering Interest in Multiple
blob handle 217 Events 234
number_segments. 218 Waiting for Events With EVENT
max_seglen 218 WAIT ... 234
total size. 218 RespondingtoEvents. 235
blob_put_segment. 218 .
A BLOB UDF Example. 218 Chapter 14: Error Handling
Compiling a Function Module 219 andRecovery 237
Creating a UDF Library 219 standard Error Handling 237
Modifying a UDF Library. 220 Handling Errors With WHENEVER
Declaring a UDF to a Database 220 Statements 238
DeclaringaBLOBUDF 222 Scope of WHENEVER
CallingaUDF 222 Statements 239
USlng a UDF With SELECT. 223 Changing Error-hand"ng
Usinga UDF With INSERT. 223 Routines. 239
Using a UDF With UPDATE 223 Limitations of WHENEVER
Using a UDF With DELETE 224 Statements 240
_] . Testing SQLCODE Directly 240
Chapter 12: Working With Stored Combining Error-handling

Procedures 225 Techniques. 249

Using Stored Procedures. 225 Guidelines for Error Handling 243
Procedures and Transactions. 226 Using SQL and Host-language
Security for Procedures 226 Statements 243

Using Select Procedures 226 Nesting Error-handling
Calling a Select Procedure 227 Routines. 243
Using a Select Procedure Handling Unexpected

With cursors 227 and Unrecoverable Errors. 243

Using Executable Procedures 228 Portability 244

Executing a Procedure. 228 Additional InterBase Error Handling . . 244
Indicator Variables 229 Displaying Error Messages 245

Vi

Capturing SQL Error Messages
With isc_sqgl_interprete()
Capturing InterBase Error Messages
With isc_interprete(). 246
Trapping and Handling InterBase

ErrorCodes. 248
Chapter 15: Using Dynamic SQL 251
Overview of the DSQL Programming
Process 251
DSQL Limitations. 251
Accessing Databases. 252
Handling Transactions 253
CreatingaDatabase 254
ProcessingBLOBData. 254
Processing Array Data. 254
Writing a DSQL Application. 255
Determining if DSQL Can Process
an SQL Statement 255
Representing an SQL Statement as
aCharacter String 256
Specifying Parameters in SQL
Statement Strings 256
Understanding the XSQLDA 257
XSQLDA Field Descriptions 259
XSQLVAR Field Descriptions. . . .259
Input Descriptors 260
Output Descriptors 261
Using the XSQLDA LENGTH
Macro 261
SQL Data Type Macro Constants . . .261
Handling Varying String
DataTypes 263
Handling NUMERIC and DECIMAL
DataTypes 264
Coercing Data Types 264

Coercing Character Data Types. . .265

Coercing Numeric Data Types . . .265
Setting a NULL Indicator 265
Aligning Numerical Data. 265
DSQL Programming Methods. 266

Method 1: Non-query Statements
Without Parameters.
Using EXECUTE IMMEDIATE . .
Using PREPARE and EXECUTE. .
Method 2: Non-query Statements
With Parameters.
Creating the Input XSQLDA
Preparing and Executing
a Statement String With
Parameters
Re-executing the Statement
String
Method 3: Query Statements
Without Parameters.
Preparing the Output XSQLDA . .
Preparing a Query
Statement String
Executing a Statement String
Within the Context of a Cursor. .
Re-executing a Query Statement
String Without Parameters
Method 4: Query Statements
With Parameters.
Preparing the Input XSQLDA . . .
Preparing the Output XSQLDA . .
Preparing a Query Statement
String With Parameters
Executing a Query Statement
String Within the Context
of a Cursor
Re-executing a Query Statement
String With Parameters

Chapter 16: Preprocessing, Compiling,
and Linking

Preprocessing.
Usinggpre.
Language Switches
Option Switches
Examples

Vii

267
267

268

268

269

271

271
272

272

274

276

276

276
277

Using a File Extension to Specify
Language
Specifying the Source File.
Using a Language Switch and
No Input File Extension
Using No Language Switch and
an Input File With Extension

Viii

Using Neither a Language

Switch Nor a File Extension. . . . 288
Compiling and Linking 288
Compiling an Ada Program. 289
Linking. 289
Index 291

Tables and Figures

1: InterBase Core Documentation
2: InterBase Client Documentation
3: Text Conventions.
4: Syntax Conventions
1-1: Programmer’s Guide Chapters
3-1: CONNECT Syntax Summary.
4-1: SQL Transaction Management
Statements
4-2: Default Transaction Default
Behavior
4-3: SET TRANSACTION Parameters . .
4-4: ISOLATION LEVEL Options
4-5: InterBase Management of Classic
Transaction Conflicts
4-6: Isolation Level Interaction
with Read (SELECT) and WRITE
(UPDATE)
4-7: Table Reservation Options for
the RESERVING Clause
5-1: Data Definition Statements
Supported for Embedded
Applications
6-1: Data Types Supported
by InterBase
6-2: Elements of SQL Expressions.
6-3: Arithmetic Operators
6-4: InterBase Comparison Operators
Requiring Subqueries
6-5: Operator Precedence By
Operator Type
6-6: Mathematical Operator
Precedence
6-7: Comparison Operator
Precedence
6-8: Logical Operator Precedence
6-9: Compatible Data Types
for CAST()

6-10: SELECT Statement Clauses.
6-11: Aggregate Functions in SQL
6-12: Elements of WHERE Clause
SEARCH Conditions.
8-1: Relationship of a BLOB ID to
BLOB Segments in a Database
8-1: API BLOB Calls
8-2: Filtering from Lowercase
to Uppercase
8-3: Filtering from Uppercase
to Lowercase
8-4: Filter Interaction with
an Application and a Database
8-2: isc_blob_ctl Structure Field
Descriptions.
8-3: BLOB Access Operations.
8-4: BLOB Filter Status Values
10-1: SQL Access Privileges.
11-1: DECLARE EXTERNAL
FUNCTION Parameters.
14-1: Possible SQLCODE Values
15-1: SQL Statements That Cannot
Be Processed By DSQL.
15-1: XSQLDA and XSQLVAR
Relationship.
15-2: XSQLDA Field Descriptions
15-3: XSQLVAR Field Descriptions . . .
15-4: SQL Data Types, Macro
Expressions, and C Data Types.
15-5: SQL Statement Strings
and Recommended Processing
Methods.
16-1: gpre Language Switches
16-2: Additional gpre Language
Switches
16-3: gpre Option Switches
16-4: Language-specific gpre Option
Switches
16-5: File Extensions for Language
Specification

110

116

171
178

180
180
182
184
186
188
200

221
237

255
258

259
259

Preface

This preface describes the documentation set, the printing conventions used to
display information in text and in code examples, and the conventions a user
should employ when specifying database objects and files by name in applica-

tions.

The InterBase Documentation Set

The InterBase documentation set is an integrated package designed for all levels
of users. The InterBase server documentation consists of a five-book core set and
a platform-specific installation guide. Information on the InterBase Client for
Windows is provided in a single book.

The InterBase core documentation set consists of the following books:

Table 1: InterBase Core Documentation

Book

Description

Getting Started

Data Definition Guide

Language Reference
Programmer’s Guide

API Guide

Installing and Running on . . .

Provides a basic introduction to InterBase and roadmap for using the
documentation and a tutorial for learning basic SQL through isql .
Introduces more advanced topics such as creating stored procedures
and triggers.

Explains how to create, alter, and delete database objects through
isql .

Describes SQL and DSQL syntax and usage.

Describes how to write embedded SQL and DSQL database applica-
tions in a host language, precompiled through gpre .

Explains how to write database applications using the InterBase API.
Platform-specific information on installing and running InterBase.

Preface

Additional documentation includes the following book:

Table 2: InterBase Client Documentation

Book Description

InterBase Windows Client User’s Installing and using the InterBase PC client. Using Windows isqgl and
Guide the InterBase Server Manager.

Printing Conventions

The InterBase documentation set uses different fonts to distinguish various
kinds of text and syntax.

Text Conventions

The following table describes font conventions used in text, and provides exam-
ples of their use:

Table 3: Text Conventions

Convention Purpose Example

UPPERCASE SQL keywords, names of all The following SELECT statement
database objects such as retrieves data from the CITY column in
tables, columns, indexes, the CITIES table.
stored procedures, and SQL

functions.
italic Introduces new terms, and The isc4.gdb security database is not
emphasizes words. Also accessible without a valid username and

used for file names and host- password.
language variables.

bold Utility names, user-defined To back up and restore a database, use
and host-language function gbak or the server manager.

names. Function names are The datediff() function can be used to

always followed by paren- calculate the number of days between two
theses to distinguish them gates.

from utility names.

2 Programmer’s Guide

Syntax Conventions

The following table describes the conventions used in syntax statements and
sample code, and offers examples of their use:

Table 4: Syntax Conventions

Convention Purpose Example

UPPERCASE Keywords that must be SET TERM II;
typed exactly as they appear
when used.

italic Parameters that cannotbe CREATE TABLE name
broken into smaller units. (<col> [, <col>...]);

For example, a table name
cannot be subdivided.

<italic> Parameters in angle brack- CREATE TABLE name
ets that can be broken into (<col> [, <col> ...]);
smaller syntactic units.

For example, column defini- <col>= name <datatype>
tions (<col>) can be subdi- [CONSTRAINT name <type>]|
vided into a name, data type

and constraint definition.

[1 Square brackets enclose <col>[, <col> ...]
optional syntax.

Closely spaced ellipses indi- (<col> [, <col> ...]);
cate that a clause within

brackets can be repeated as

many times as necessatry.

The pipe symbol indicates SET TRANSACTION

that either of two syntax {SNAPSHOT [TABLE STABILITY]
clauses that it separates | READ COMMITTEDY};

may be used, but not both.

Inside curly braces, the pipe
symbol separates multiple
choices, one of which must
be used.

{} Curly braces indicate that ~ SET TRANSACTION
one of the enclosed options {SNAPSHOT [TABLE STABILITY]
must be included in actual | READ COMMITTED},
statement use.

Preface

Database Object-naming Conventions

InterBase database objects, such as tables, views, and column names, appear in
text and code in uppercase in the InterBase documentation set because this is the
way such information is stored in a database’s system tables.

When an applications programmer or end user creates a database object or refers
to it by name, case is unimportant. The following limitations on naming data-
base objects must be observed:

= Start each name with an alphabetic character (A-Z or a-z).

= Restrict object names to 31 characters, including dollar signs ($), under-
scores (_),0t0 9, Ato Z, and a to z. Some objects, such as constraint
names, are restricted to 27 bytes in length.

= Keep object names unique. In all cases, objects of the same type, for
example, tables and views, must be unique. In most cases, object names
must also be unique within the database.

For more information about naming database objects with CREATE or
DECLARE statements, see the Language Reference.

File-naming Conventions

InterBase is available on a wide variety of platforms. In most cases users in a het-
erogenous networking environment can access their InterBase database files
regardless of platform differences between client and server machines if they
know the target platform’s file naming conventions.

Because file-naming conventions differ widely from platform to platform, and
because the core InterBase documentation set is the same for each of these plat-
forms, all file names in text and in examples are restricted to a base name with a
maximum of eight characters, with a maximum extension length of three charac-
ters. For example, the example database on all servers is referred to as
employee.gdb.

Generally, InterBase fully supports each platform’s file-naming conventions,
including the use of node and path names. InterBase, however, recognizes two
categories of file specification in commands and statements that accept more
than one file name. The first file specification is called the primary file specification.
Subsequent file specifications are called secondary file specifications. Some com-
mands and statements place restrictions on using node names with secondary
file specifications.

4 Programmer’s Guide

In syntax, file specification is denoted as follows:

" <filespec>

Primary File Specifications

InterBase syntax always supports a full file specification, including optional
node name and full path, for primary file specifications. For example, the syntax
notation for CREATE DATABASE appears as follows:

CREATE {DATABASE | SCHEMA}" <filespec>
[USER " username " [PASSWORD " password "]
[PAGE_SIZE[F] int]

[LENGTH [5] int [PAGE[S]]]
[DEFAULT CHARACTER SET charset]

In this syntax, the <filespec> that follows CREATE DATABASE supports a node
name and path specification, including a platform-specific drive or volume spec-
ification.

Secondary File Specifications

For InterBase syntax that supports multiple file specification, such as CREATE
DATABASE, all file specifications after the first are secondary. Secondary file
specifications generally cannot include a node name, but may specify a full path
name. For example, the syntax notation for CREATE DATABASE appears as fol-
lows:

CREATE {DATABASE | SCHEMA} " <filespec>
[USER " username " [PASSWORD " password "]
[PAGE_SIZE[F] int]

[LENGTH [5] int [PAGE[S]]]
[DEFAULT CHARACTER SET charset]
[<secondary_file>]

<secondary _file> =FILE" <filespec> "[<fileinfo> 1[<secondary _file>]

<fileinfo> =LENGTH[=] int [PAGE[S]] | STARTING [AT [PAGE]] int
[<fileinfo>]

In the secondary file specification, <filespec> does not support specification of a
node name.

Preface 5

Programmer’s Guide

CHAPTER 1
Introduction

The InterBase Programmer’s Guide is a task-oriented explanation of how to write,
preprocess, compile, and link embedded SQL and DSQL database applications
using InterBase and a host programming language, either C or C++. This chapter
describes who should read this book, and provides a brief overview of its chap-
ters.

Who Should Use This Guide

The InterBase Programmer’s Guide is intended for database applications pro-
grammers. It assumes a general knowledge of:

< SQL.

= Relational database programming.

= C programming.

The Programmer’s Guide assumes little or no previous experience with InterBase.

For an introduction to InterBase and SQL, see Getting Started.

Topics Covered in This Guide

The following table lists the task-oriented chapters in the Programmer’s Guide,
and provides a brief description of them:

Table 1-1: Programmer’s Guide Chapters

Chapter Description

1: Introduction Introduces the structure of the book and describes its
intended audience.

Introduction 7

Table 1-1: Programmer’s Guide Chapters (Continued)

Chapter

Description

2: Application Requirements

w

: Working With Databases
: Working With Transactions

D

(9]

: Working With Data Definition Statements

[e2]

: Working With Data

~

: Working With Dates

(o]

: Working With BLOB Data

9: Using Arrays

10: Working With Security

11: Working With User-defined Functions

12: Working With Stored Procedures

13: Working With Events

14: Error Handling and Recovery

15: Using Dynamic SQL
16: Preprocessing, Compiling, and Linking

Describes elements common to programming all SQL and
DSQL applications.

Describes using SQL statements that deal with databases.

Explains how to use and control transactions with SQL
statements.

Describes how to embed SQL data definition statements in
applications.

Explains how to select, insert, update, and delete standard
SQL data in applications.

Describes how to select, insert, update, and delete DATE
data in applications.

Describes how to select, insert, update, and delete BLOB
data in applications.

Describes how to select, insert, update, and delete array
data in applications.

Explains how to grant and revoke table and procedure privi-
leges in applications.

Describes how to write UDFs, how to call UDFs in applica-
tions, how to write BLOB filters, and how to create BLOB fil-
ter libraries.

Explains how to call stored procedures in applications.

Explains how triggers interact with applications. Describes
how to register interest in events, wait on them, and
respond to them in applications.

Describes how to trap and handle SQL statement errors in
applications.

Describes how to write DSQL applications.

Describes how to convert source code into an executable
application.

Sample Database and Applications

A sample database and sample application source code can be found in the
InterBase examples subdirectory. The Programmer’s Guide makes use of the sam-
ple database and source code for its examples wherever possible.

Programmer’s Guide

CHAPTER 2
Application Requirements

This chapter describes programming requirements for InterBase SQL and
dynamic SQL (DSQL) applications. Many of these requirements may also affect
developers moving existing applications to InterBase.

Requirements for All Applications

All embedded applications must include certain declarations and statements to

ensure proper handling by the InterBase preprocessor, gpre, and to enable com-
munication between SQL and the host language in which the application is writ-
ten. Every application must:

Declare host variables to use for data transfer between SQL and the
application.

Declare and set the databases accessed by the program.

Create transaction handles for each non-default transaction used in the
program.

Include SQL (and, optionally, DSQL) statements.
Provide error handling and recovery.

Close all transactions and databases before ending the program.

Dynamic SQL applications, those applications that build SQL statements at run
time, or enable users to build them, have additional requirements. For more
information about DSQL requirements, see “DSQL Requirements,” in this chap-

ter.

For more information about using gpre, see Chapter 16: “Preprocessing, Com-
piling, and Linking.”

Application Requirements 9

10

Porting Considerations for SQL

When porting existing SQL applications to InterBase, other considerations may
be necessary. For example, many SQL variants require that host variables be
declared between BEGIN DECLARE SECTION and END DECLARE SECTION
statements; InterBase has no such requirements, but gpre can correctly handle
section declarations from ported applications. For additional portability, declare
all host-language variables within sections.

Porting Considerations for DSQL

When porting existing DSQL applications to InterBase, statements that use
another vendor’s SQL descriptor area (SQLDA) must be modified to accommo-
date the extended SQLDA (XSQLDA) used by InterBase.

Declaring Host Variables

A host variable is a standard host-language variable used to hold values read
from a database, to assemble values to write to a database, or to store values
describing database search conditions. SQL uses host variables in the following
situations:

= During data retrieval, SQL moves the values in database fields into host
variables where they can be viewed and manipulated.

= When a user is prompted for information, host variables are used to hold
the data until it can be passed to InterBase in an SQL INSERT or
UPDATE statement.

= When specifying search conditions in a SELECT statement, conditions
can be entered directly, or in a host variable. For example, both of the fol-
lowing SQL statement fragments are valid WHERE clauses. The second
uses a host-language variable, country, for comparison with a column,
COUNTRY:

... WHERE COUNTRY = "Mexico";
... WHERE COUNTRY = :country;

One host variable must be declared for every column of data accessed in a data-
base. Host variables may either be declared globally like any other standard
host-language variable, or may appear within an SQL section declaration with
other global declarations. For more information about reading from and writing
to host variables in SQL programs, see Chapter 6: “Working With Data.”

Programmer’s Guide

Host variables used in SQL programs are declared just like standard language
variables. They follow all standard host-language rules for declaration, initial-
ization, and manipulation. For example, in C, variables must be declared before
they can be used as host variables in SQL statements:

int empno; char fname[26], Iname[26];

For compatibility with other SQL variants, host variables can also be declared
between BEGIN DECLARE SECTION and END DECLARE SECTION state-
ments.

Section Declarations

Many SQL implementations expect host variables to be declared between
BEGIN DECLARE SECTION and END DECLARE SECTION statements. For
portability and compatibility, InterBase supports section declarations using the
following syntax:

EXEC SQL
BEGIN DECLARE SECTION;
<hostvar >;

EXEC SQL
END DECLARE SECTION;

For example, the following C code fragment declares three host variables, empno,
fname, and Iname, within a section declaration:

EXEC SQL
BEGIN DECLARE SECTION;
int empno;
char fname[26];
char Iname[26];
EXEC SQL
END DECLARE SECTION;

Additional host-language variables not used in SQL statements can be declared
outside DECLARE SECTION statements.

Using BASED ON to Declare Variables

InterBase supports a declarative clause, BASED ON, for creating C language
character variables based on column definitions in a database. Using BASED ON
ensures that the resulting host-language variable is large enough to hold the
maximum number of characters in a CHAR or VARCHAR database column,
plus an extra byte for the null-terminating character expected by most C string
functions.

Application Requirements 11

12

BASED ON uses the following syntax:
BASED ON <dbcolumn> hostvar

For example, the following statements declare two host variables, fname, and
Iname, based on two column definitions, FIRSTNAME, and LASTNAME, in an
employee database:

BASED ON EMP.FIRSTNAME fname;
BASED ON EMP.LASTNAME Iname;

Embedded in a C or C++ program, these statements generate the following host-
variable declarations during preprocessing:

char fname[26];
char Iname[26];

To use BASED ON, follow these steps:

1. Use SET DATABASE to specify the database from which column defini-
tions are to be drawn.

2. Use CONNECT to attach to the database.
3. Declare a section with BEGIN DECLARE SECTION.

4. Use the BASED ON statement to declare a string variable of the appro-
priate type.

The following statements show the previous BASED ON declarations in context:

EXEC SQL
SET DATABASE EMP = "employee.gdb";
EXEC SQL
CONNECT EMP;
EXEC SQL
BEGIN DECLARE SECTION;
int empno;
BASED ON EMP.FIRSTNAME fname;
BASED ON EMP.LASTNAME Iname;
EXEC SQL
END DECLARE SECTION;

Host Variables and Host-language Data Structures

If a host language supports data structures, data fields within a structure can
correspond to a collection of database columns. For example, the following C
declaration creates a structure, BILLING_ADDRESS, that contains six variables,
or data members, each of which corresponds to a similarly named column in a
table:

Programmer’s Guide

struct

{
char fname[25];
char Iname[25];
char street[30];
char city[20];
char state[3];
char zip[11];

} billing_address;

SQL recognizes data members in structures, but information read from or writ-
ten to a structure must be read from or written to individual data members in
SQL statements. For example, the following SQL statement reads data from a
table into variables in the C structure, BILLING_ADDRESS:

EXEC SQL
SELECT FNAME, LNAME, STREET, CITY, STATE, ZIP
INTO :billing_address.fname, :billing_address.Iname,
:billing_address.street, :billing_address.city,
:billing_address.state, :billing_address.zip
FROM ADDRESSES WHERE CITY = "Brighton";

Declaring and Initializing Databases

An SQL program can access multiple InterBase databases at the same time. Each
database used in a multiple-database program must be declared and initialized
before it can be accessed in SQL transactions. Programs that access only a single
database need not declare the database or assign a database handle if, instead,
they specify a database on the gpre command line.

Important DSQL programs cannot connect to multiple databases.

InterBase supports the following SQL statements for handling databases:

< SET DATABASE declares the name of a database to access, and assigns it
to a database handle.

< CONNECT opens a database specified by a handle, and allocates it sys-
tem resources.

Database handles replace database names in CONNECT statements. They can
also be used to qualify table names within transactions. For a complete discus-
sion of database handling in SQL programs, see Chapter 3: “Working With Data-
bases.”

Application Requirements 13

14

Note

Using SET DATABASE
The SET DATABASE statement is used to:

= Declare a database handle for each database used in an SQL program.

= Associate a database handle with an actual database name. Typically, a
database handle is a mnemonic abbreviation of the actual database
name.

SET DATABASE instantiates a host variable for the database handle without
requiring an explicit host variable declaration. The database handle contains a
pointer used to reference the database in subsequent SQL statements. To include
a SET DATABASE statement in a program, use the following syntax:

EXEC SQL
SET DATABASE handle ="< dbname>";

A separate statement should be used for each database. For example, the follow-
ing statements declare a handle, DB1, for the employee.gdb database, and another
handle, DB2, for employee2.gdb:

EXEC SQL

SET DATABASE DB1 = "employee.gdb";
EXEC SQL

SET DATABASE DB2 ="employee2.gdb";

Once a database handle is created and associated with a database, the handle
can be used in subsequent SQL database and transaction statements that require
it, such as CONNECT.

SET DATABASE also supports user name and password options. For a
complete discussion of SET DATABASE options, see Chapter 3: “Working
With Databases.”

Using CONNECT

The CONNECT statement attaches to a database, opens the database, and allo-
cates system resources for it. A database must be opened before its tables can be
used. To include CONNECT in a program, use the following syntax:

EXEC SQL
CONNECThandle ;

A separate statement can be used for each database, or a single statement can
connect to multiple databases. For example, the following statements connect to
two databases:

Programmer’s Guide

EXEC SQL
CONNECT DB1;

EXEC SQL
CONNECT DB2;

The next example uses a single CONNECT to establish both connections:

EXEC SQL
CONNECT DB1, DB2;

Once a database is connected, its tables can be accessed in subsequent transac-
tions. Its handle can qualify table names in SQL applications, but not in DSQL
applications. For a complete discussion of CONNECT options and using data-
base handles, see Chapter 3: “Working With Databases.”

Working With a Single Database

In single-database programs preprocessed without the gpre -m switch, SET
DATABASE and CONNECT are optional. The -m switch suppresses automatic
generation of transactions. Using SET DATABASE and CONNECT is strongly
recommended, however, especially as a way to make program code as self-docu-
menting as possible. If you omit these statements, take the following steps:

1. Insert a section declaration in the program code where global variables
are defined. Use an empty section declaration if no host-language vari-
ables are used in the program. For example, the following declaration
illustrates an empty section declaration:

EXEC SQL

BEGIN DECLARE SECTION;
EXEC SQL

END DECLARE SECTION;

2. Specify a database name on the gpre command line at precompile time.
A database need not be specified if a program contains a CREATE
DATABASE statement.

For more information about working with a single database in an SQL program,
see Chapter 3: “Working With Databases.”

Application Requirements 15

SQL Statements

An SQL application consists of a program written in a host language, like C or
C++, into which SQL and dynamic SQL (DSQL) statements are embedded. Any
SQL or DSQL statement supported by InterBase can be embedded in a host lan-
guage. Each SQL or DSQL statement must be:

< Preceded by the keywords EXEC SQL.

= Ended with the statement terminator expected by the host language. For
example, in C and C++, the host terminator is the semicolon (;).

For a complete list of SQL and DSQL statements supported by InterBase, see the
Language Reference.

Error Handling and Recovery

Every time an SQL statement is executed, it returns an error code in the
SQLCODE variable. SQLCODE is declared automatically for SQL programs
during preprocessing with gpre. To catch run-time errors and recover from them
when possible, SQLCODE should be examined after each SQL operation.

SQL provides the WHENEVER statement to monitor SQLCODE and direct pro-
gram flow to recovery procedures. Alternatively, SQLCODE can be tested
directly after each SQL statement executes. For a complete discussion of SQL
error handling and recovery, see Chapter 14: “Error Handling and Recovery.”

Closing Transactions

16

Every transaction should be closed when it completes its tasks, or when an error
occurs that prevents it from completing its tasks. Failure to close a transaction
before a program ends can cause limbo transactions, where records are entered
into the database, but are neither committed or rolled back. Limbo transactions
can be cleaned up using the database administration tools provided with
InterBase.

Programmer’s Guide

Accepting Changes

The COMMIT statement ends a transaction, makes the transaction’s changes
available to other users, and closes cursors. A COMMIT is used to preserve
changes when all of a transaction’s operations are successful. To end a transac-
tion with COMMIT, use the following syntax:

EXEC SQL
COMMIT TRANSACTIONname,

For example, the following statement commits a transaction named MYTRANS:

EXEC SQL
COMMIT TRANSACTION MYTRANS;

For a complete discussion of SQL transaction control, see Chapter 4: “Working
With Transactions.”

Undoing Changes

The ROLLBACK statement undoes a transaction’s changes, ends the current
transaction, and closes open cursors. Use ROLLBACK when an error occurs that
prevents all of a transaction’s operations from being successful. To end a transac-
tion with ROLLBACK, use the following syntax:

EXEC SQL
ROLLBACK TRANSACTIOName,

For example, the following statement rolls back a transaction named
MYTRANS:

EXEC SQL
ROLLBACK TRANSACTION MYTRANS;

To roll back an unnamed transaction (i.e., the default transaction), use the fol-
lowing statement:

EXEC SQL
ROLLBACK;

For a complete discussion of SQL transaction control, see Chapter 4: “Working
With Transactions.”

Application Requirements 17

Closing Databases

Once a database is no longer needed, close it before the program ends, or subse-
guent attempts to use the database may fail or result in database corruption.
There are two ways to close a database:

« Use the DISCONNECT statement to detach a database and close files.
= Use the RELEASE option with COMMIT or ROLLBACK in a program.

DISCONNECT, COMMIT RELEASE, and ROLLBACK RELEASE perform the
following tasks:

= Close open database files.
« Close remote database connections.

= Release the memory that holds database descriptions and InterBase
engine-compiled requests.

Note Closing databases with DISCONNECT is preferred for compatibility with
the SQL-92 standard.
For a complete discussion of closing databases, see Chapter 3: “Working With
Databases.”
DSQL Requirements

18

DSQL applications must adhere to all the requirements for all SQL applications
and meet additional requirements as well. DSQL applications enable users to
enter ad hoc SQL statements for processing at run time. To handle the wide vari-
ety of statements a user might enter, DSQL applications require the following
additional programming steps:

= Declare as many extended SQL descriptor areas (XSQLDAS) as are
needed in the application; typically a program must use one or two of
these structures. Complex applications may require more.

= Declare all transaction names and database handles used in the program
at compile time; names and handles are not dynamic, so enough must be
declared to accommodate the anticipated needs of users at run time.

< Provide a mechanism to get SQL statements from a user.

= Prepare each SQL statement received from a user for processing.
PREPARE loads statement information into the XSQLDA.

Programmer’s Guide

= EXECUTE each prepared statement.

EXECUTE IMMEDIATE combines PREPARE and EXECUTE in a single state-
ment. For more information, see the Language Reference.

In addition, the syntax for cursors involving BLOB data differs from that of cur-
sors for other data types. For more information about BLOB cursor statements,
see the Language Reference.

Declaring an XSQLDA

The extended SQL descriptor area (XSQLDA) is used as an intermediate staging
area for information passed between an application and the InterBase engine.
The XSQLDA is used for either of the following tasks:

= Pass input parameters from a host-language program to SQL.

= Pass output, from a SELECT statement or stored procedure, from SQL to
the host-language program.

A single XSQLDA can be used for only one of these tasks at a time. Many appli-
cations declare two XSQLDAs, one for input, and another for output.

The XSQLDA structure is defined in the InterBase header file, ibase.h, that is
automatically included in programs when they are preprocessed with gpre.

Note DSQL applications written using versions of InterBase prior to 3.3 use an
older SQL descriptor area, the SQLDA. For backward compatibility, the
SQLDA continues to be supported. You can examine its structure in ibase.h.
The new structure, XSQLDA, is used automatically when preprocessing an
application with gpre. To use the old structure, specify the gpre -sqlda old
switch. As convenient, older applications should be modified to use the
XSQLDA.

To create an XSQLDA for a program, a host-language data type of the appropri-
ate type must be set up in a section declaration. For example, the following state-
ment creates two XSQLDA structures, inxsglda, and outxsglda:

EXEC SQL
BEGIN DECLARE SECTION;
XSQLDA inxsqlda;
XSQLDA outxsglda;

EXEC SQL
END DECLARE SECTION,;

Application Requirements 19

When an application containing XSQLDA declarations is preprocessed, gpre
automatically includes the header file, ibase.h, which defines the XSQLDA as a
host-language data type. For a complete discussion of the structure of the
XSQLDA, see Chapter 15: “Using Dynamic SQL.”

DSQL Limitations

DSQL enables programmers to create flexible applications that are capable of
handling a wide variety of user requests. Even so, not every SQL statement can
be handled in a completely dynamic fashion. For example, database handles and
transaction names must be specified when an application is written, and cannot
be changed or specified by users at run time. Similarly, while InterBase supports
multiple databases and multiple simultaneous transactions in an application,
the following limitations apply:

< Only asingle database can be accessed at a time.
= Transactions can only operate on the currently active database.

= Users cannot specify transaction names in DSQL statements; instead,
transaction names must be supplied and manipulated when an applica-
tion is coded.

Using Database Handles

Database handles are always static, and can only be declared when an applica-
tion is coded. Enough handles must be declared to satisfy the expected needs of
users. Once a handle is declared, it can be assigned to a user-specified database
at run time with SET DATABASE, as in the following C code fragment:

EXEC SQL

SET DATABASE DB1 = "dummydb.gdb";
EXEC SQL

SET DATABASE DB2 = "dummydb.gdb";

printf("Specify first database to open: ");
gets(fnamel);
printf("\nSpecify second database to open: ");
gets(fname?2);
EXEC SQL

SET DATABASE DBl = :fnamel;
EXEC SQL

SET DATABASE DB2 = :fname2;

20 Programmer’s Guide

For a complete discussion of SET DATABASE, see Chapter 3: “Working With
Databases.”

Using the Active Database

A DSQL application can only work with one database at a time, even if the
application attaches to multiple databases. All DSQL statements operate only on
the currently active database, the last database associated with a handle in a SET
DATABASE statement.

Embedded SQL statements within a DSQL application can operate on any open
database. For example, all DSQL statements entered by a user at run time might
operate against a single database specified by the user, but the application might
also contain non-DSQL statements that record user entries in a log database.

For a complete discussion of SET DATABASE, see Chapter 3: “Working With
Databases.”

Using Transaction Names

Many SQL statements support an optional transaction name parameter, used to
specify the controlling transaction for a specific statement. Transaction names
can be used in DSQL applications, too, but must be set up when an application is
compiled. Once a name is declared, it can be directly inserted into a user state-
ment only by the application itself.

After declaration, use a transaction name in an EXECUTE or EXECUTE
IMMEDIATE statement to specify the controlling transaction, as in the following
C code fragment:

EXEC SQL
BEGIN DECLARE SECTION:
long first, second; /* declare transaction names */
EXEC SQL
END DECLARE SECTION;

first = second = OL; /* initialize names to zero */

EXEC SQL
SET TRANSACTION first; /* start transaction 1 */
EXEC SQL
SET TRANSACTION second; /* start transaction 2 */
printf("\nSQL> ");
gets(userstatement);
EXEC SQL
EXECUTE IMMEDIATE TRANSACTION first userstatement;

Application Requirements 21

For complete information about named transactions, see Chapter 4: “Working
With Transactions.”

Preprocessing Programs

22

After an SQL or DSQL program is written, and before it is compiled and linked,
it must be preprocessed with gpre, the InterBase preprocessor. gpre translates
SQL statements and variables into statements and variables that the host-lan-
guage compiler accepts. For complete information about preprocessing with
gpre, see Chapter 16: “Preprocessing, Compiling, and Linking.”

Programmer’s Guide

CHAPTER 3

Working With Databases

This chapter describes how to use SQL statements in embedded applications to
control databases. There are three database statements that set up and open
databases for access:

< SET DATABASE declares a database handle, associates the handle with
an actual database file, and optionally assigns operational parameters for
the database.

= SET NAMES optionally specifies the character set a client application
uses for CHAR, VARCHAR, and text BLOB data. The server uses this
information to transliterate from a database’s default character set to the
client’s character set on SELECT operations, and to transliterate from a
client application’s character set to the database character set on INSERT
and UPDATE operations.

< CONNECT opens a database, allocates system resources for it, and
optionally assigns operational parameters for the database.

All databases must be closed before a program ends. A database can be closed
by using DISCONNECT, or by appending the RELEASE option to the final
COMMIT or ROLLBACK in a program.

Declaring a Database
Before a database can be opened and used in a program, it must first be declared
with SET DATABASE to:

« Establish a database handle.

= Associate the database handle with a database file stored on a local or
remote node.

A database handle is a unique, abbreviated alias for an actual database name.
Database handles are used in subsequent CONNECT, COMMIT RELEASE, and
ROLLBACK RELEASE statements to specify which databases they should affect.

Working With Databases 23

24

Note

Except in dynamic SQL (DSQL) applications, database handles can also be used
inside transaction blocks to qualify, or differentiate, table names when two or
more open databases contain identically named tables.

Each database handle must be unique among all variables used in a program.
Database handles cannot duplicate host-language reserved words, and cannot
be InterBase reserved words.

The following statement illustrates a simple database declaration:

EXEC SQL
SET DATABASE DB1 = "employee.gdb";

This database declaration identifies the database file, employee.gdb, as a database
the program uses, and assigns the database a handle, or alias, DB1.

If a program runs in a directory different from the directory that contains the
database file, then the file name specification in SET DATABASE must include a
full path name, too. For example, the following SET DATABASE declaration
specifies the full path to employee.gdb:

EXEC SQL
SET DATABASE DBL1 = "/usr/interbase/examples/employee.gdb”;

If a program and a database file it uses reside on different hosts, then the file
name specification must also include a host name. The following declaration
illustrates how a Unix host name is included as part of the database file specifi-
cation:

EXEC SQL
SET DATABASE DB1 = "vega:usr/interbase/examples/employee.gdb";

Host syntax is specific to each server platform on which InterBase runs. For
the correct host syntax for a particular server, see the server’s documenta-
tion.

Declaring Multiple Databases

An SQL program, but not a DSQL program, can access multiple databases at the
same time. In multi-database programs, database handles are required. A han-
dle is used to:

« Reference individual databases in a multi-database transaction.
= Qualify table names.
= Specify databases to open in CONNECT statements.

Programmer’s Guide

Important

« |ndicate databases to close with DISCONNECT, COMMIT RELEASE,
and ROLLBACK RELEASE.

DSQL programs can access only a single database at a time, so database handle
use is restricted to connecting to and disconnecting from a database.

In multi-database programs, each database must be declared in a separate SET
DATABASE statement. For example, the following code contains two SET
DATABASE statements:

EXEC SQL

SET DATABASE DB2 = "employee2.gdb";
EXEC SQL

SET DATABASE DB1 = "employee.gdb";

Using Handles to Differentiate Table Names

When the same table name occurs in more than one simultaneously accessed
database, a database handle must be used to differentiate one table name from
another. The database handle is used as a prefix to table names, and takes the
form <handle>.<table>.

For example, in the following code, the database handles, TEST and EMP, are
used to distinguish between two tables, each named EMPLOYEE:

EXEC SQL
DECLARE IDMATCH CURSOR FOR
SELECT TESTNO INTO :matchid FROM TEST.EMPLOYEE
WHERE TESTNO > 100;
EXEC SQL
DECLARE EIDMATCH CURSOR FOR
SELECT EMPNO INTO :empid FROM EMP.EMPLOYEE
WHERE EMPNO = :matchid;

This use of database handles applies only to embedded SQL applications.
DSQL applications cannot access multiple databases simultaneously.

Using Handles With CONNECT, DISCONNECT, COMMIT, and ROLLBACK

In multi-database programs, database handles must be specified in CONNECT
statements to identify which databases among several to open and prepare for
use in subsequent transactions.

Working With Databases 25

Important

26

Database handles can also be used with DISCONNECT, COMMIT RELEASE,
and ROLLBACK RELEASE to specify a subset of open databases to close.

To open and prepare a database with CONNECT, see “Opening a Database,” in
this chapter. To close a database with DISCONNECT, COMMIT RELEASE, or
ROLLBACK RELEASE, see “Closing a Database,” in this chapter. To learn more
about using database handles in transactions, see “Accessing an Open Data-
base,” in this chapter.

Using Different Databases for Preprocessing and Run Time

Normally, each SET DATABASE statement specifies a single database file to
associate with a handle. When a program is preprocessed, gpre uses the speci-
fied file to validate the program’s table and column references. Later, when a
user runs the program, the same database file is accessed. Different databases
can be specified for preprocessing and run time when necessary.

Using the COMPILETIME Clause

Sometimes a program may be designed to run against any one of several identi-
cally structured databases, or the actual database that a program will use at run
time is not available when a program is preprocessed and compiled. In these
cases, SET DATABASE can include a COMPILETIME clause to specify a data-
base for gpre to test against during preprocessing. For example, the following
SET DATABASE statement declares that employee.gdb is to be used by gpre dur-
ing preprocessing:

EXEC SQL
SET DATABASE EMP = COMPILETIME "employee.gdb";

The file specification that follows the COMPILETIME keyword must
always be a hard-coded, quoted string.

When SET DATABASE uses the COMPILETIME clause, but no RUNTIME
clause, and does not specify a different database file specification in a subse-
guent CONNECT statement, the same database file is used both for preprocess-
ing and run time. To specify different preprocessing and run-time databases
with SET DATABASE, use both the COMPILETIME and RUNTIME clauses.

Using the RUNTIME Clause

When a database file is specified for use during preprocessing, SET DATABASE
can specify a different database to use at run time by including the RUNTIME
keyword and a run-time file specification:

Programmer’s Guide

Note

EXEC SQL
SET DATABASE EMP = COMPILETIME "employee.gdb"
RUNTIME "employee2.gdb";

The file specification that follows the RUNTIME keyword can be either a hard-
coded, quoted string, or a host-language variable. For example, the following C
code fragment prompts the user for a database name, and stores the name in a
variable that is used later in SET DATABASE:

char db_name[125];

printf("Enter the desired database name, including node and path):\n");
gets(db_name);
EXEC SQL

SET DATABASE EMP = COMPILETIME "employee.gdb" RUNTIME :db_name;

Host-language variables in SET DATABASE must be preceded, as always,
by a colon.

Controlling SET DATABASE Scope

By default, SET DATABASE creates a handle that is global to all modules in an
application. A global handle is one that may be referenced in all host-language
modules comprising the program. SET DATABASE provides two optional key-
words to change the scope of a declaration:

= STATIC limits declaration scope to the module containing the SET
DATABASE statement. No other program modules can see or use a data-
base handle declared STATIC.

= EXTERN notifies gpre that a SET DATABASE statement in a module
duplicates a globally-declared database in another module. If the
EXTERN keyword is used, then another module must contain the actual
SET DATABASE statement, or an error occurs during compilation.

The STATIC keyword is used in a multi-module program to restrict database
handle access to the single module where it is declared. The following example
illustrates the use of the STATIC keyword:

EXEC SQL
SET DATABASE EMP = STATIC "employee.gdb";

The EXTERN keyword is used in a multi-module program to signal that SET
DATABASE in one module is not an actual declaration, but refers to a declara-
tion made in a different module. gpre uses this information during preprocess-
ing. The following example illustrates the use of the EXTERN keyword:

Working With Databases 27

EXEC SQL
SET DATABASE EMP = EXTERN "employee.gdb";

If an application contains an EXTERN reference, then when it is used at run
time, the actual SET DATABASE declaration must be processed first, and the
database connected before other modules can access it.

A single SET DATABASE statement can contain either the STATIC or EXTERN
keyword, but not both. A scope declaration in SET DATABASE applies to both
COMPILETIME and RUNTIME databases.

Specifying a Character Set for a Client Connection

When a client application connects to a database, it may have its own character
set requirements. The server providing database access to the client does not
know about these requirements unless the client specifies them. The client appli-
cation specifies its character set requirement using the SET NAMES statement
before it connects to the database.

SET NAMES specifies the character set the server should use when translating
data from the database to the client application. Similarly, when the client sends
data to the database, the server translates the data from the client’s character set
to the database’s default character set (or the character set for an individual col-
umn if it differs from the database’s default character set).

For example, the following statements specify that the client is using the
DOS437 character set, then connect to the database:

EXEC SQL
SET NAMES DOS437;
EXEC SQL
CONNECT "europe.gdb” USER "JAMES" PASSWORD "U4EEAH";

For more information about character sets, see the Data Definition Guide. For the
complete syntax of SET NAMES and CONNECT, see the Language Reference.

Opening a Database

28

After a database is declared, it must be attached with a CONNECT statement
before it can be used. CONNECT:

= Allocates system resources for the database.

Programmer’s Guide

« Determines if the database file is local, residing on the same host where
the application itself is running, or remote, residing on a different host.

= Opens the database and examines it to make sure it is valid.

InterBase provides transparent access to all databases, whether local or remote.
If the database structure is invalid, the on-disk structure (ODS) number does not
correspond to the one required by InterBase, or if the database is corrupt,
InterBase reports an error, and permits no further access.

Optionally, CONNECT can be used to specify:

= A user name and password combination that is checked against the serv-
er’s security database before allowing the connect to succeed. User
names can be up to 31 characters. Passwords are restricted to 8 charac-
ters.

= The size of the database buffer cache to allocate to the application when
the default cache size is inappropriate.

Using Simple CONNECT Statements

In its simplest form, CONNECT requires one or more database parameters, each
specifying the name of a database to open. The name of the database can be a:

= Database handle declared in a previous SET DATABASE statement.
= Host-language variable.

e Hard-coded file name.

Using a Database Handle

If a program uses SET DATABASE to provide database handles, those handles
should be used in subsequent CONNECT statements instead of hard-coded
names. For example,

EXEC SQL

SET DATABASE DB1 = "employee.gdb";
EXEC SQL

SET DATABASE DB2 = "employee2.gdb";
EXEC SQL

CONNECT DB1;
EXEC SQL

CONNECT DB2;

Working With Databases 29

30

Tip

There are sever