JSR110: JWSDL Maintenance Release

Version 1.1

Java™ APIs for WSDL

(JWSDL)
Technical comments to:
jsr110-eg-disc@groups.yahoo.com
JSR-110 under Java Community Process

Version 1.1
Editors:

Matthew J. Duftler (duftler@us.ibm.com)
Paul Fremantle (pzf@uk.ibm.com)
John Kaputin (kaputin@uk.ibm.com) – Version 1.1 Maintenance Lead
Copyright IBM Corporation 2003, 2005 – All rights reserved

January 28, 2005

Table of Contents
30.
What’s new in this release?

31.
Introduction

42.
Requirements

43.
Design Goals

54.
Out of Scope

55.
Syntactic Validity

56.
Factory Mechanism

67.
Reading Definitions

78.
Navigating Definitions

99.
Writing Definitions

910.
Programmatically Creating Definitions

1011.
Extension Architecture

1312.
Extensibility Attributes

1713.
XML Schema Support

2014.
Dependencies

2015.
References

0. What’s new in this release?

New features in the version 1.1 Maintenance Release of the Java™ APIs for WSDL [JWSDL]:

1. Code fixes to the WSDL4J Reference Implementation since the release of JWSDL 1.0 have been rolled up into a new version, WSDL4J 1.5. Details are in the WSDL4J change log in CVS.
2. Support for extensibility elements and extensibility attributes in JWSDL is now consistent with the W3C WSDL 1.1 specification.

3. A lightweight schema capability that provides access to XML Schema elements, including those nested via schema imports, includes and redefines.
1. Introduction

The Web Services Description Language [WSDL] is an XML-based language for describing Web services. WSDL allows developers to describe the inputs and outputs to an operation, the set of operations that make up a service, the transport and protocol information needed to access the service, and the endpoints via which the service is accessible.

Java™ APIs for WSDL [JWSDL] is an API for representing WSDL documents in Java. This document, together with the API JavaDocs, is the formal specification for Java Specification Request 110 (JSR-110). JSR-110 is being developed under the Java Community Process (see http://www.jcp.org/jsr/detail/110.jsp).

The expert group that developed this specification was composed of the following individuals:

	Name
	Company
	E-mail

	Rahul Bhargava
	Netscape Communications
	rahul_technical@yahoo.com

	Tim Blake
	Oracle
	Timothy.Blake@oracle.com

	Roberto Chinnici
	Sun Microsystems, Inc.
	roberto.chinnici@sun.com

	John P Crupi
	Sun Microsystems, Inc.
	John.Crupi@Sun.COM

	*Matthew J. Duftler
	IBM
	duftler@us.ibm.com

	*Paul Fremantle
	IBM
	pzf@uk.ibm.com

	Pierre Gauthier
	Nortel Networks
	yaic@nortelnetworks.com

	Simon Horrell
	Developmentor
	simonh@develop.com

	Oisin Hurley
	IONA Technologies PLC
	ohurley@iona.com

	Tokuhisa Kadonaga
	Fujitsu Limited
	kado@sysrap.cs.fujitsu.co.jp

	Chris Keller
	Silverstream Software
	ckeller@silverstream.com

	Rajesh Raman
	InterKeel
	rraman@interkeel.com

	Adi Sakala
	IONA Technologies PLC
	adi.sakala@iona.com

	Krishna Sankar
	Cisco Systems
	ksankar@cisco.com

	Miroslav Simek
	Systinet
	simek@idoox.com

Note: * indicates specification leads.

We borrowed much of the factory mechanism and the set/getFeature mechanism from the JAXP specification, and we would like to acknowledge the JAXP authors for their quality work. We would also like to thank the authors of the WSDL specification for helping us to work through some of the issues that came up. And lastly, thanks to the many folks who adopted this work early, for their feedback and suggestions.

2. Requirements

JWSDL is intended for use by developers of Web services tools and others who need to utilize WSDL documents in Java.

JWSDL is designed to allow users to read, modify, write, create and re-organize WSDL documents in memory. JWSDL is not designed to validate WSDL documents beyond syntactic validity. One use of JWSDL is to develop a tool that validates WSDL semantically.

JWSDL is designed for use in WSDL editors and tools where a partial, incomplete or incorrect WSDL document may require representation.

Although WSDL incorporates XML Schema expressions, JWSDL is not required to parse and represent the contents of schema or schema types. However, JWSDL is required to retrieve all schemas referred to directly or indirectly and present the org.w3c.dom.Element that represents each schema so that the JWSDL client application can use a suitable parser to manipulate the schema contents.
WSDL supports extensibility elements and extensibility attributes, which allow the language to be extended. JWSDL must fully support extensibility elements and extensibility attributes.

3. Design Goals

The design goals of this JSR are as follows:

· To specify APIs for reading, writing, creating, and modifying WSDL definitions.

· To specify APIs for reading, writing, creating, and modifying extensibility attributes.

· To specify APIs for reading, writing, creating, and modifying extensibility elements (both those defined in the WSDL specification, and those defined by client applications.)

· To specify interfaces for representing the extensibility elements defined in the WSDL specification.

· To define a mechanism that allows reading, writing, and representing extensibility elements for which no serializers and/or deserializers were defined.

· To specify interfaces for representing XML Schemas as org.w3c.dom.Element in a structure that preserves the nesting of schemas within <types>, <import>, <include> and <redefine> tags.
· To define a factory mechanism that allows JWSDL client code to be written independent of any particular JWSDL implementation.

· To specify APIs that are suitable for the building of WSDL tools and runtime infrastructure.

· To define an API that supports WSDL-equivalence of read and written documents. That is, if a document is read into memory, and then written back out, the two documents should be semantically equivalent. XML Processing Instructions and XML Comments may be lost in this process.

· Specify the conformance criteria for JWSDL implementations.

This version of JWSDL supports WSDL v1.1, based on the submission to the W3C dated 15th March 2001 (http://www.w3.org/TR/2001/NOTE-wsdl-20010315). It is expected that changes in the WSDL specification made by the W3C will be reflected in future versions of the JWSDL specification through the workings of the Java Community Process.

4. Out of Scope

· JWSDL does not provide support for querying/manipulating the contents of XML Schema, other than providing access to the org.w3c.dom.Element that represents the schema.

· JWSDL does not provide for validating WSDL documents beyond syntactic validity (see Section 5). One likely use of JWSDL is to develop a tool that validates WSDL semantically.

5. Syntactic Validity

All the details of WSDL syntax are not explicitly defined in the current proposed WSDL specification. This API specification expects the following behaviour from implementations.

Ordering

Implementations must support parsing WSDL that is in the correct order as specified by the WSDL specification and the schema. Implementations may support reading incorrectly ordered definitions without errors or exceptions. Implementations must write WSDL documents in the order specified by the WSDL specification.

Extensibility Elements

The WSDL specification only allows extensibility elements under certain elements. Any implementation of JWSDL must enforce that, and illegal extensibility elements will cause an exception. JWSDL also defines the type of each extensibility element through the registration process, and so extensibility elements should only be recognized within the scope in which they are defined to the JWSDL implementation. If an extensibility element that is registered in one place (e.g. Port) is found in another where it is not registered (e.g. Binding), then it should be considered an unknown extensibility element and treated as such.

Extensibility Attributes

The WSDL specification allows only certain elements to contain extensibility attributes. Any JWSDL implementation must enforce this and the illegal use of extensibility attributes must cause an exception. JWSDL allows a ‘type’ to be registered for each extensibility attribute so that the attribute value can be parsed into a suitable object representation (details of these types are in section 12 ‘Extensibility Attributes’). If an extensibility attribute type has not been registered, parsing it will not raise a syntax exception – it will simply default to the QName type.

Referential Integrity

Properly formed WSDL documents should be complete - if there is a reference to an element, then that element should exist. However, during tooling and creation, it may be necessary to manage incomplete WSDL documents. Therefore, implementations should not enforce referential integrity.

6. Factory Mechanism

One of the goals of this JSR is to allow applications to write JWSDL client code, without requiring specific knowledge of the particular implementation being used (with the obvious exception of implementation-provided extensions).

An application first obtains a WSDLFactory instance via the static newInstance method of WSDLFactory. The newInstance method uses the following ordered lookup procedure to determine the WSDLFactory implementation class to load:

· Check the javax.wsdl.factory.WSDLFactory system property.

· Check the lib/wsdl.properties file in the JRE directory. The key will have the same name as the above system property.

· Use the platform default value (will vary with implementations).

Note: There is also a static newInstance method that takes the fully-qualified class name of a factory implementation as an argument, in which case the above procedure is not employed.

Once a WSDLFactory instance is obtained, the methods newDefinition, newWSDLReader, newWSDLWriter, or newPopulatedExtensionRegistry can be invoked to create the desired objects.

The next several sections contain examples of using these methods to read, write, and programmatically create WSDL definitions.

7. Reading Definitions

An application invokes the newWSDLReader method on a WSDLFactory to obtain a WSDLReader. Once a WSDLReader is obtained, one of the various readWSDL methods can be used to construct a Definition object from a WSDL document. It is recommended that WSDLReader implementations employ JAXP in the parsing of WSDL documents, so any JAXP-compliant XML parser can be used.

After obtaining a WSDLReader instance, and before invoking readWSDL, any desired features should be enabled or disabled by invoking the setFeature method. All feature names must be fully-qualified, Java package style. All names starting with javax.wsdl. are reserved for features defined by the JWSDL specification. It is recommended that implementation-specific features be fully-qualified to match the package name of that implementation. For example: com.abc.featureName.

The minimum features that must be supported by any implementation are:

	Name
	Description
	Default Value

	javax.wsdl.verbose
	If set to true, status messages will be displayed.
	true

	javax.wsdl.importDocuments
	If set to true, imported WSDL documents will be retrieved and processed.
	true

If the javax.wsdl.verbose feature is enabled, status messages will be sent to the standard output stream (i.e. System.out). It is enabled by default.

If the javax.wsdl.importDocuments feature is enabled, imported documents will be retrieved and processed. It is enabled by default. When imported documents are retrieved and processed, the imported items can be returned by queries on the importing Definition. That is, when querying a Definition, or some item contained in a Definition, the returned item may be from a different Definition, if other Definitions have been imported. Imported Definitions may be navigated to by invoking the getImports method on the importing Definition, and then querying the definition property of the returned javax.wsdl.Import objects (will always be null if the javax.wsdl.importDocuments feature was disabled). Within any particular Definition graph, individual items must only exist once. For example, if multiple Input and Output objects refer to the same Message, all those references must refer to the same Message instance.

JWSDL’s import logic allows WSDL and XML Schema documents to be imported via the WSDL <import> element. JWSDL is capable of retrieving and processing WSDL documents, but while it can retrieve XML Schema documents, it will not fully process them – instead it just stores them as org.w3c.dom.Element.

The following is an example of how to use a WSDLReader to construct a Definition that represents the WSDL file named sample.wsdl:

import javax.wsdl.*;

import javax.wsdl.factory.*;

import javax.wsdl.xml.*;

...

 try

 {

 WSDLFactory factory = WSDLFactory.newInstance();

 WSDLReader reader = factory.newWSDLReader();

 reader.setFeature(“javax.wsdl.verbose”, true);

 reader.setFeature(“javax.wsdl.importDocuments”, true);

 Definition def = reader.readWSDL(null, "sample.wsdl");

 }

 catch (WSDLException e)

 {

 e.printStackTrace();

 }

The first argument to readWSDL is an optional context URI, which can be used to resolve the second argument (also a URI), if the second argument is relative.

8. Navigating Definitions

Let’s assume that the sample.wsdl file referred to in the previous section contains the following:

<?xml version="1.0"?>

<definitions name="StockQuoteService"

 targetNamespace="urn:xmltoday-delayed-quotes"

 xmlns:tns="urn:xmltoday-delayed-quotes"

 xmlns="http://schemas.xmlsoap.org/wsdl/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/">

 <message name="getQuoteInput">

 <part name="symbol" type="xsd:string"/>

 </message>

 <message name="getQuoteOutput">

 <part name="quote" type="xsd:float"/>

 </message>

 <portType name="GetQuote">

 <operation name="getQuote">

 <input message="tns:getQuoteInput"/>

 <output message="tns:getQuoteOutput"/>

 </operation>

 </portType>

 <binding name="GetQuoteSoapBinding" type="tns:GetQuote">

 <soap:binding style="rpc"

 transport="http://schemas.xmlsoap.org/soap/http"/>

 <operation name="getQuote">

 <soap:operation soapAction=""/>

 <input>

 <soap:body use="encoded"

 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

 namespace="urn:xmltoday-delayed-quotes"/>

 </input>

 <output>

 <soap:body use="encoded"

 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

 namespace="urn:xmltoday-delayed-quotes"/>

 </output>

 </operation>

 </binding>

 <service name="StockQuoteService">

 <port name="StockQuotePort" binding="tns:GetQuoteSoapBinding">

 <soap:address location="http://www.fremantle.org/soap/servlet/rpcrouter"/>

 </port>

 </service>

</definitions>

The following is an example of navigating the Definition to determine what operations are defined for a particular service:

 Definition def = reader.readWSDL(null, "sample.wsdl");

 String tns = "urn:xmltoday-delayed-quotes";

 Service service = def.getService(new QName(tns, "StockQuoteService"));

 Port port = service.getPort("StockQuotePort");

 Binding binding = port.getBinding();

 PortType portType = binding.getPortType();

 List operations = portType.getOperations();

 Iterator opIterator = operations.iterator();

 while (opIterator.hasNext())

 {

 Operation operation = (Operation)opIterator.next();

 if (!operation.isUndefined())

 {

 System.out.println(operation.getName());

 }

 }

Just “getQuote” should be displayed.

The following is an example of navigating the Definition to determine what messages are defined in a WSDL definition:

 Definition def = reader.readWSDL(null, "sample.wsdl");

 Map messages = def.getMessages();

 Iterator msgIterator = messages.values().iterator();

 while (msgIterator.hasNext())

 {

 Message msg = (Message)msgIterator.next();

 if (!msg.isUndefined())

 {

 System.out.println(msg.getQName());

 }

 }

Both the getQuoteInput and getQuoteOutput messages should be listed, within the urn:xmltoday-delayed-quotes namespace.

The “undefined” property defined on the operation and message objects indicates whether the definition for the particular item was found or not. For example: If, within a WSDL document, an <wsdl:input> element refers to a message whose definition cannot be found, a placeholder message object will be created, and its undefined property will be set to true. A similar property also exists on PortType and Binding. WSDLWriters are required to examine this property when determining which items to write out. The default value for the undefined property of Message, Operation, PortType, and Binding is true; when creating these items programmatically, the property must be set to false.

9. Writing Definitions

An application invokes the newWSDLWriter method on a WSDLFactory to obtain a WSDLWriter. Once a WSDLWriter is obtained, one of the writeWSDL methods can be employed to write a Definition out as a WSDL document to either a java.io.Writer, or a java.io.OutputStream. All WSDLWriter implementations must examine the undefined property of Message, Operation, PortType, and Binding objects to determine which items should be written out. See the previous section for more information on the undefined property.

WSDLWriters are not required to be capable of writing out Definitions created by other JWSDL implementations (although some may have this capability.)

After obtaining a WSDLWriter instance, and before invoking writeWSDL, any desired features should be enabled or disabled by invoking the setFeature method. There are no minimum features that must be supported by implementations.

The following is an example of how to use a WSDLWriter to write a Definition to System.out:

 WSDLFactory factory = WSDLFactory.newInstance();

 WSDLWriter writer = factory.newWSDLWriter();

 writer.writeWSDL(def, System.out);

If the definition was constructed from the sample.wsdl file, the output should look basically the same as the contents of that file. The formatting of the file may be different, but the elements and attributes will be the same (although they may not appear in the same order).

There is also a getDocument method defined on WSDLWriter. This method can be used to generate an org.w3c.dom.Document from the specified Definition.

10. Programmatically Creating Definitions

An application invokes the newDefinition method on a WSDLFactory to obtain a new instance of a javax.wsdl.Definition. Once that definition is obtained, it serves as a factory that can be used to create the rest of the items that will make up the full definition. This specification does not mandate that items be created by the Definition they will eventually be added to. Nor does this specification mandate that any item have precisely one parent Definition (that is, implementations may allow items to be added to more than one Definition.) A particular implementation may choose to require items to be created by the Definition they will be added to, and/or to require that an item be added to only one Definition. If either of these restrictions is imposed by an implementation, it should be clearly spelled out in that implementation’s documentation.

The following is an example that programmatically constructs a definition containing two messages and a portType with one operation that uses those two messages:

 WSDLFactory factory = WSDLFactory.newInstance();

 Definition def = factory.newDefinition();

 String tns = "urn:xmltoday-delayed-quotes";

 String xsd = "http://www.w3.org/2001/XMLSchema";

 Part part1 = def.createPart();

 Part part2 = def.createPart();

 Message msg1 = def.createMessage();

 Message msg2 = def.createMessage();

 Input input = def.createInput();

 Output output = def.createOutput();

 Operation operation = def.createOperation();

 PortType portType = def.createPortType();

 def.setQName(new QName(tns, "StockQuoteService"));

 def.setTargetNamespace(tns);

 def.addNamespace("tns", tns);

 def.addNamespace("xsd", xsd);

 part1.setName("symbol");

 part1.setTypeName(new QName(xsd, "string"));

 msg1.setQName(new QName(tns, "getQuoteInput"));

 msg1.addPart(part1);

 msg1.setUndefined(false);

 def.addMessage(msg1);

 part2.setName("quote");

 part2.setTypeName(new QName(xsd, "float"));

 msg2.setQName(new QName(tns, "getQuoteOutput"));

 msg2.addPart(part2);

 msg2.setUndefined(false);

 def.addMessage(msg2);

 input.setMessage(msg1);

 output.setMessage(msg2);

 operation.setName("getQuote");

 operation.setInput(input);

 operation.setOutput(output);

 operation.setUndefined(false);

 portType.setQName(new QName(tns, "GetQuote"));

 portType.addOperation(operation);

 portType.setUndefined(false);

 def.addPortType(portType);

The items created in the above example should match those read from the sample.wsdl file in the earlier examples.

11. Extension Architecture

The extension architecture is designed to allow an application to perform the same basic functions with extensibility elements, as with native WSDL elements. That is, applications are able to read extensions into memory, write extensions back out, query in-memory extensions, and programmatically create extensions. This is made possible by a combination of javax.wsdl.extensions.* interfaces and classes:

· The ElementExtensible interface is used to represent WSDL elements that may contain extensibility elements.

· The ExtensibilityElement interface is used to represent extensions in memory.

· The ExtensionDeserializer interface is used to read extensions into memory.

· The ExtensionSerializer interface is used to write extensions out.

· The ExtensionRegistry class is used to hold the configuration information necessary to determine which serializers and deserializers are to be used for handling which extensions.
Note: The terms “extensibility element” and “extension” are used interchangeably throughout this document.

The WSDL specification describes which WSDL elements may contain extensibility elements (see WSDL 1.1 Schema at http://schemas.xmlsoap.org/wsdl/). All JWSDL implementations are required to support these extensions for the WSDL elements that can contain them and to prohibit the use of extensions in elements that cannot. For every WSDL element capable of containing extensibility elements, its corresponding javax.wsdl.* interface extends the ElementExtensible interface. This interface has two methods to handle the extensions: addExtensibilityElement and getExtensibilityElements. The addExtensibilityElement method takes an instance of an ExtensibilityElement, and the getExtensibilityElements method returns a List whose items are of type ExtensibilityElement.

All JWSDL implementations are required to support the WSDL specification-defined extensions. That is, all JWSDL implementations are required to support the “SOAP”, “HTTP”, and “MIME” extensions. Implementations of the ExtensibilityElement interface are provided for each of the WSDL specification-defined extensions in javax.wsdl.extensions.soap.*, javax.wsdl.extensions.http.*, and javax.wsdl.extensions.mime.*. In order to provide support for the specification-defined extensions, implementations are required to implement the newPopulatedExtensionRegistry method of WSDLFactory. This method must return an instance of an ExtensionRegistry with serializers/deserializers registered, and Java types mapped, for all the WSDL specification-defined extensions. The particular serializers and deserializers that each implementation will use to handle these specification-defined extensions are not mandated by this document.

An ExtensionRegistry can be set/retrieved on/from a Definition, and set/retrieved on/from a WSDLReader. To add support for additional extensions, an application must configure the ExtensionRegistry. If the ExtensionRegistry is being configured for the purpose of reading a document that contains extensibility elements, the configured ExtensionRegistry should be set on the WSDLReader prior to reading the document. If an ExtensionRegistry is set on the WSDLReader, the Definition constructed by that WSDLReader will have that ExtensionRegistry set as the value of its extensionRegistry property. In other words, whatever value is assigned to the extensionRegistry property of a WSDLReader will be assigned as the value of the extensionRegistry property of all Definitions constructed by that WSDLReader.

If the ExtensionRegistry is being configured for the purpose of writing out a programmatically constructed definition that contains extensions, the configured ExtensionRegistry must be set as the value of the extensionRegistry property of the Definition prior to handing it off to a WSDLWriter.

There are three different types of configuration that can be done on an ExtensionRegistry:

· Registering a deserializer for a particular extension.

· Registering a serializer for a particular extension.

· Mapping an implementation class to a particular extension.

In most cases, all three types of configuration will be done for every extension. Every JWSDL implementation is required to do this for all the WSDL specification-defined extensions, when the newPopulatedExtensionRegistry method is invoked. If an ExtensionRegistry is retrieved by simply invoking ExtensionRegistry’s zero-argument constructor (i.e. new ExtensionRegistry()), it will not have serializers, deserializers, or Java implementation classes mapped for any extensions.

The following examples are concerning a fictitious extensibility element named <abc:myExt>, where the prefix “abc” is associated with the namespace URI “urn:def”. The Java class created to represent this extension in memory is called ghi.Abc, and it implements the ExtensibilityElement interface (as it is required to do, in order to be considered an extension). The <abc:myExt> extensibility element may only exist as an immediate child of a <wsdl:service> element. There is a ghi.AbcDeserializer class which implements the ExtensionDeserializer interface, and is capable of reading an <abc:myExt> element, and populating a new instance of a ghi.Abc with the relevant information. There is also a ghi.AbcSerializer class which implements the ExtensionSerializer interface, and is capable of querying an instance of a ghi.Abc and serializing the relevant information in the form of a <abc:myExt> extensibility element.

 // Create a new ExtensionRegistry.

 ExtensionRegistry extReg = new ExtensionRegistry();

 // Register the deserializer.

 extReg.registerDeserializer(Service.class,

 new QName("urn:def", "myExt"),

 new ghi.AbcDeserializer());

 // Register the serializer.

 extReg.registerSerializer(Service.class,

 new QName("urn:def", "myExt"),

 new ghi.AbcSerializer());

 // Map the implementation class to the extension type.

 extReg.mapExtensionTypes(Service.class,

 new QName("urn:def", "myExt"),,

 ghi.Abc.class);

Note that in all three of the above ExtensionRegistry method invocations, the Service.class argument indicates that the extension can exist as a child of a <wsdl:service> element.

If a WSDL document containing a <wsdl:service> element was read in, and the <wsdl:service> element contained an <abc:myExt> element as an immediate child, the list returned from an invocation of the getExtensibilityElements method on that Service object would contain one item: a instance of a ghi.Abc.

The following is an example of retrieving this ghi.Abc object:

 Definition def = ...

 Service svc = def.getService(...);

 List extElements = svc.getExtensibilityElements();

 ghi.Abc = (ghi.Abc)extElements.get(0);

The following is an example of programmatically creating an instance of a ghi.Abc, and adding it to a Service object:

 Service svc = def.createService();

 ghi.Abc anExt = (ghi.Abc)extReg.createExtension(Service.class,

 new QName("urn:def", "myExt"));

 // Now configure the Abc instance…

 // Then add it to the Service object.

 svc.addExtensibilityElement(anExt);

The createExtension method is used to programmatically create extensions so that applications can create extensions without knowing the implementing class. This is particularly relevant when dealing with extensions that have well-known interfaces to represent them, such as the WSDL specification-defined extensions.

The following is an example of programmatically creating an instance of a class which implements the SOAPBinding interface, without knowing the implementing class:

 SOAPBinding soapBinding =

 (SOAPBinding)extReg.createExtension(Binding.class,

 new QName("http://schemas.xmlsoap.org/wsdl/soap/",

 "binding"));

Since all JWSDL implementations are required to support the WSDL specification-defined extensions, the above SOAPBinding example must work, exactly as shown, with any implementation.

There is one additional item, with respect to extensibility elements, which must be considered: How are unexpected extensibility elements handled when they are encountered?

An “unexpected extensibility element” is an extensibility element for which there are no serializers/deserializers registered. To handle this case, the ExtensionRegistry has two properties: defaultSerializer, and defaultDeserializer.

The value of the defaultDeserializer property is an ExtensionDeserializer that is to be used to deserialize unexpected extensibility elements. Its default value is an instance of an UnknownExtensionDeserializer. The UnknownExtensionDeserializer simply wraps the org.w3c.dom.Element representing the extensibility element in a new instance of an UnknownExtensibilityElement. If the defaultDeserializer property of an ExtensionRegistry is set to null, an exception will be thrown when an unexpected extensibility element is encountered.

The value of the defaultSerializer property is an ExtensionSerializer that is to be used to serialize unexpected extensions that are encountered while writing out definitions. Its default value is an instance of an UnknownExtensionSerializer. The UnknownExtensionSerializer simply serializes the org.w3c.dom.Element that is wrapped in an instance of an UnknownExtensibilityElement. If the defaultSerializer property of an ExtensionRegistry is set to null, an exception will be thrown when an unexpected extension is encountered.

12. Extensibility Attributes

The extension architecture described previously for extensibility elements is also designed to allow an application to perform the same basic functions with extensibility attributes of WSDL elements, as with the native WSDL attributes of those elements. That is, applications are able to read extensibility attributes into memory, write them back out, query them in-memory, and programmatically create them. This is made possible by a combination of javax.wsdl.extensions.* interfaces and classes:

· The AttributeExtensible interface is used to represent WSDL elements that may contain extensibility attributes.

· The ExtensionRegistry class is used to hold the configuration information necessary to determine the type of the extension attributes for each parent WSDL element.
Note: ‘extensibility attribute’ and ‘extension attribute’ are used interchangeably.

The WSDL specification describes which WSDL elements may contain extensibility attributes (see WSDL 1.1 Schema at http://schemas.xmlsoap.org/wsdl/). All JWSDL implementations are required to support these extensibility attributes in the WSDL elements that can contain them and to prohibit the use of extensibility attributes in elements that cannot. For every WSDL element capable of containing extensibility attributes, its corresponding javax.wsdl.* interface extends the AttributeExtensible interface.
The AttributeExtensible interface has four methods:
· setExtensionAttribute(QName, Object) - stores an extensibility attribute of the WSDL element. The QName represents the attribute name and acts as a key to the attribute value represented by the Object.
· getExtensionAttribute(QName) – retrieves an extensibility attribute of the WSDL element. It returns an Object containing the attribute value using the QName argument as the key.
· getExtensionAttributes – returns all of the extensibility attributes for the WSDL element. It returns a Map of attribute value Objects keyed by attribute QName.
· getNativeAttributeNames – returns all of the WSDL-defined attributes for the WSDL element (that is, its standard WSDL attributes not its extensibility attributes).
The AttributeExtensible interface also defines several ‘types’ of extensibility attribute values:

· STRING_TYPE
· QNAME_TYPE
· LIST_OF_STRINGS_TYPE
· LIST_OF_QNAMES_TYPE
· NO_DECLARED_TYPE.
For JWSDL to be able to parse extensibility attributes into suitable in-memory representations, a JWSDL client application must first configure the ExtensionRegistry with one of these AttributeExtensible types for each extensibility attribute. JWSDL can then determine the correct in-memory representation (String, QName or List) to store the extensibility attribute’s value. If an attribute’s type is not registered in the ExtensionRegistry a default representation of QName will be used to store the attribute value and the JWSDL client application may need to further parse the QName into a more useful format. Registration of extensible attribute types places the responsibility for this further parsing with JWSDL, rather than with the JWSDL client. If an extensibility attribute is registered as NO_DECLARED_TYPE its object representation will also default to QName.

The ExtensionRegistry class provides two configuration methods for extensibility attributes:

· registerExtensionAttributeType(Class parentType, QName attrName, int attrType) – is used to associate an attribute’s QName with its AttributeExtensible type for a given parent WSDL element.

· queryExtensionAttributeType(Class parentType, QName attrName) – returns the AttributeExtensible type for the attribute identified by QName within the parent WSDL element.

To further understand these features, consider the following WSDL fragment containing the WSDL <part> element named symbol. The WSDL specification declares that the WSDL <part> element can contain extensibility attributes. name and type are native WSDL attributes of the <part> element and xyz:extattr is an extensibility attribute of <part>.
<?xml version="1.0" encoding="UTF-8"?>
<definitions name="StockQuoteService"
 targetNamespace="http://wsdl/StockQuoteService/"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://wsdl/StockQuoteService/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:foo="http://foo.bar">
 xmlns:xyz="http://xyz.namespace">
 <message name="getQuoteRequest">
 <part name="symbol" type="xsd:string" xyz:extattr="quick brown fox"/>
 <myMsgExtElement/>
 </message>

</definitions>
The JWSDL client application should first configure the ExtensionRegistry with an AttributeExtensible type for extattr. For example, to register a string type:

//register the extensibility attribute type

extReg.registerExtensionAttributeType(

Part.class,

new QName("http://xyz.namespace", "extattr"),

AttributeExtensible.STRING_TYPE);
JWSDL implementations of javax.wsdl.xml.WSDLReader should query the ExtensionRegistry to determine the type of objects required when parsing extensibility attributes:

 int attrType = extReg.queryExtensionAttributeType(
 Part.class,
 new QName("http://xyz.namespace", "extattr"));
 if (attrType == AttributeExtensible.QNAME_TYPE)

 {

 //instantiate extattr as a QName
 }

 else if (attrType == AttributeExtensible.LIST_OF_STRINGS_TYPE)

 {

 //instantiate extattr as a List of String
 }

 else if (attrType == AttributeExtensible.LIST_OF_QNAMES_TYPE)

 {

 //instantiate extattr as a List of QName
 }

 else if (attrType == AttributeExtensible.STRING_TYPE)

 {

 //instantiate extattr as a String
 }

 else

 {

 //instantiate a QName by default
JWSDL will represent the value “quick brown fox” in memory in different ways depending on the type registered in the ExtensionRegistry.

If the WSDL is parsed without an AttributeExtensible type registered in the ExtensionRegistry for extattr, or if it has been registered as QNAME_TYPE or NO_DECLARED_TYPE, extattr will be represented as a QName:
{http://xyz.namespace}extattr={http://schemas.xmlsoap.org/wsdl/}quick brown fox
If extattr has been registered as STRING_TYPE, it will be represented as a String:
{http://xyz.namespace}extattr= “quick brown fox”
If extattr has been registered as LIST_OF_STRINGS_TYPE, it will be represented as a list of Strings:
{http://xyz.namespace}extattr=[“quick”, “brown”, “fox”]
If extattr has been registered as LIST_OF_QNAMES_TYPE, it will be represented as a list of QNames:

{http://xyz.namespace}extattr=
[{http://schemas.xmlsoap.org/wsdl/}quick,
{http://schemas.xmlsoap.org/wsdl/}brown,
{http://schemas.xmlsoap.org/wsdl/}fox]
Note that in these examples the WSDL document’s default namespace, {http://schemas.xmlsoap.org/wsdl/}, is used for the QName representations of extattr‘s value because the attribute value was not qualified with a namespace in the WSDL. If we had written the WSDL as say,

<part name="symbol" type="xsd:string" xyz:extattr="foo:quick brown fox"/>
the attribute value QNames would have been qualified with the corresponding namespace:

{http://xyz.namespace}extattr={http://foo.bar/}quick brown fox
The javax.wsdl.Part interface is declared as:

public interface Part extends java.io.Serializable, AttributeExtensible
WSDLReader implementations and JWSDL client applications should use the AttributeExtensible methods on Part to manipulate its extensibility attributes. The following code examples assume partElement is an instance of Part, qname is the qualified name of the extensibility attribute (eg: {http://xyz.namespace}extattr) and parsedValue is a String, QName or List that represents “quick brown fox”:
//Get the native WSDL-defined attributes of <part> (ie: ‘name’ and ‘type’)

List nativeAttributeNames = partElement.getNativeAttributeNames();
//After parsing ‘extattr’ into a String, QName or List, store it in the Part

partElement.setExtensionAttribute(qname, parsedValue);
//Retrieve ‘extattr’ from the Part, assuming parsedValue was a String
String extattrValue = (String) partElement.getExtensionAttribute(qname);
//Get all extensibility attributes for the Part

Map extAttributes = partElement.getExtensionAttributes();
The ExtensionRegistry is not used to serialize extensibility attributes. Strings, QNames and Lists of Strings or QNames can be easily serialized programmatically, so JWSDL implementations of javax.wsdl.xml.WSDLWriter just need to examine the type of object that represents the extensibility attribute in-memory and convert it to a string accordingly. The following code sample assumes attrValue is an Object reference to the extensibility attribute value:
 if (attrValue instanceof String)

 {

 //serialize it as is
 }

 else if (attrValue instanceof QName)

 {

 //serialize the QName value to a string
 }

 else if (attrValue instanceof List)

 {

 //If it contains Strings, concatenate them with spaces as appropriate

 //If it contains QName, convert their values to strings then concatenate

 {

JWSDL client applications can create elements with extensibility attributes programmatically simply by instantiating the attributes as Strings, QNames or Lists of Strings or QNames, setting them on the parent element, then letting the WSDLWriter.writeWSDL method handle the serialization into WSDL. If the extensibility attributes are just being created programmatically (that is, they are not being parsed from existing WSDL) there is no need to register their types in the ExtensionRegistry.

13. XML Schema Support

JWSDL has a ‘lightweight’ schema architecture designed to access schema elements, including schemas that have been defined in-line in the WSDL <types> element and those that have been nested using WSDL <import> tags or Schema <import>, <include> or <redefine> tags. As stated previously in the Requirements and Design Goals sections, JWSDL is not a schema parser and this mechanism does not provide full access to or manipulation of the schema contents. It is simply a schema navigation mechanism that allows a JWSDL client application to access the org.w3c.dom.Element that represents each schema in the nested schema tree. The client application must then use a suitable parser to access the contents of the schema Element.
JWSDL defines three interfaces in javax.wsdl.extensions.schema.*:

· Schema - represents a schema element. It provides access to the org.w3c.dom.Element representation of the schema and references to any direct child schemas nested via Schema <import>, <include> or <redefine> tags.
· SchemaReference - represents the ‘link’ from the parent schema to an immediate child schema. It provides a reference to the child schema, which in turn is represented as a Schema. The schema <include> and <redefine> elements have an id and a schemaLocation attribute and both elements are represented as a SchemaReference.
· SchemaImport – is an extension of SchemaReference that adds a namespace property and is used to represent schema <import> elements, which include a namespace attribute as well as id and schemaLocation.
JWSDL implementations must parse all schemas nested within or below a WSDL document into a ‘linked chain’ of Schemas and SchemaReferences or SchemaImports that mirrors the nested schema tree in the WSDL and schema documents. Although this not a full schema parsing capability, JWSDL implementations must still access the <import>, <include> and <redefine> tags within the schema Element to build up this in-memory representation of the nested schema tree.
Schema has methods to support five properties; documentBaseURI, the org.w3c.dom.Element and schema imports, includes and redefines:

· getDocumentBaseURI and setDocumentBaseURI handle the full location URI of the schema

· getElement and setElement handle the org.w3c.dom.Element that represents the schema
· createImport returns a SchemaImport
· createInclude and createRedefine both return a SchemaReference
· addImport, addInclude and addRedefine are used to store SchemaImport or SchemaReference objects

· getImports returns a Map of SchemaImport objects keyed by the namespace attribute of the <import> tag

· getIncludes and getRedefines both return a List of SchemaReference objects
SchemaReference has methods to support three properties; id, schemaLocation and referencedSchema:
· getId and setId handle the id attribute used on the import, include or redefine

· getSchemaLocationURI and setSchemaLocationURI handle the schema URI specified in the schemaLocation attribute on the import, include or redefine

· getReferencedSchema and setReferencedSchema handle the schema referred to by the import, include or redefine
SchemaImport adds methods to support the namespace property:

· getNamespaceURI and setNamespaceURI handle the namespace attribute used on the import.

The schema support in JWSDL is defined using the same extension architecture described previously for the standard WSDL extensions; Soap, HTTP and MIME. So, Schema is an ExtensibilityElement:

Schema extends ExtensibilityElement, Serializable
and it is stored, retrieved and manipulated in JWSDL in the same way as SOAP, HTTP and MIME extensions. In addition to registering these standard extensions, the ExtensionRegistry returned by the newPopulatedExtensionRegistry method of WSDLFactory must also have a schema serializer /deserializer registered and a Java type mapped for the Schema implementation. As with the standard extensions, the particular serializer and deserializer are not mandated by this document.
Schema can only be referred to in WSDL using the <types> and <import> elements. Within <types>, <schema> is used as an extensibility element, so javax.wsdl.Types extends ElementExtensible which provides the methods for storing and retrieving the Schema objects as ExtensibilityElements (see section 11. ‘Extension Architecture’ for more details). Within a WSDL <import> the schema is referred to by the location attribute, not as an extensibility element. JWSDL handles this using the same in-memory representation used for importing WSDL documents; that is, javax.wsdl.Import refers a Definition which in the case if a WSDL-imported schema will contain a Types object with a Schema object in its list of extensibility elements.

JWSDL implementations are required to provide the XML Schema parsing described in this section, however they may also add their own schema parsing behaviour to provide full XML Schema parsing capability or to support other types of schema. However, this would be implementation specific and is not part of the JWSDL specification. To do this, implementations could either extend the Schema interface or provide a new interface by extending ExtensibilityElement directly.
As an example of these features, consider a WSDL file called TravelCo.wsdl with an in-line schema that imports Flight.xsd, includes Hotel.xsd and redefines Address.xsd. The schema defined in Flight.xsd includes Address.xsd and the schema defined in Hotel.xsd imports Address.xsd. This WSDL document also has a WSDL import of Address.xsd.

The WSDL fragment for TravelCo.wsdl is:

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="TravelCo"
 targetNamespace="http://travelco.com"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://travelco.com"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://travelco.com/schema/Flight">
 <!-- 'types' contains an inline Schema with nested Schemas -->
 <types>
 <xsd:schema>
 <xsd:element name="Custname" type="xsd:string"/>
 <xsd:element name="Response" type="xsd:string"/>
 <xsd:import schemaLocation="Flight.xsd"
 namespace="http://travelco.com/schema/Flight"/>
 <xsd:include schemaLocation="Hotel.xsd"/>
 <xsd:redefine schemaLocation="Address.xsd">
 <xsd:complexType name="address_struct">
 <xsd:complexContent>
 <xsd:extension base="address_struct">
 <xsd:sequence>
 <xsd:element name="Country" type="string"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 </xsd:redefine>
 </xsd:schema>
 </types>
 ...

 <!-- A WSDL import of a Schema, as opposed to a Schema import -->
 <import location="Address.xsd" namespace="http://travelco.com/schema/Address"/>

 ...
 ...

</definitions>
The Flight.xsd fragment is:
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns="http://travelco.com/schema/Flight"
 targetNamespace="http://travelco.com/schema/Flight">

<xs:include schemaLocation="Address.xsd"/>

<xs:element name="FlightResRQ">

...

</xs:element>
 <xs:element name="FlightResRS" type="xsd:string"/>
</xs:schema>
The Hotel.xsd fragment is:
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns="http://travelco.com/schema/Hotel"
 targetNamespace="http://travelco.com">

<xs:import schemaLocation="Address.xsd"
 namespace="http://travelco.com/schema/Address"/>

<xs:element name="HotelResRQ">

...

</xs:element>
</xs:schema>
Address.xsd does not have any child schemas.
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns="http://travelco.com/schema/Address">

<xs:complexType name="address_struct">

...

</xs:complexType>

<xs:element name="Address" type="address_struct"/>
</xs:schema>
The graph of javax.wsdl.* and javax.wsdl.extensions.schema.* objects is depicted by this diagram:

>Definition <<< TravelCo.wsdl
 |
 |--->Types (the <types> element)
 | |

 | --->Schema (the in-line <schema> within <types>)
 | |
 | |--->SchemaImport (the schema <import> of Flight.xsd)
 | | |

 | | --->Schema <<< Flight.xsd
 | | |

 | | --->SchemaReference (the schema <include> of Address.xsd)
 | | |

 | | --->Schema <<< Address.xsd
 | |

 | |--->SchemaReference (the schema <include> of Hotel.xsd)
 | | |

 | | --->Schema <<< Hotel.xsd
 | | |
 | | --->SchemaImport (the schema <import> of Address.xsd)
 | | |

 | | --->Schema <<< Address.xsd

 | |
 | --->SchemaReference (the schema <redefine> of Address.xsd)
 | |

 | --->Schema <<< Address.xsd
 |
 |--->Import (the WSDL <import> of Address.xsd)
 |
 --->Definition (a dummy definition)
 |
 --->Types (a dummy <types> to hold the schema)

 |
 --->Schema <<< Address.xsd
Note, JWSDL handles WSDL imports by having javax.wsdl.Import refer to a Definition which in turn contains the instantiation of the imported WSDL. In this case, it is a Schema being imported, not a WSDL definition, but the Import interface still expects a Definition, so JWSDL creates a ‘dummy’ Definition and Types to store the Schema.

14. Dependencies

JWSDL requires Java 1.2 or greater, and the org.w3c.dom interfaces.

JWSDL also depends on the javax.xml.namespace.QName class. It has been recognized by the various concerned groups that a common representation of qualified names is necessary. As with JAX-RPC [JAX-RPC], this specification temporarily employs the javax.xml.namespace.QName class because no common QName representation is specified as of yet. It is expected that when a common QName representation is defined, JWSDL will become dependent on the new definition.

References

This is the Specification for the version 1.1 Maintenance Release of the Java™ APIs for WSDL (28 January 2005). It is an update of the version 1.0 Final Release (21 March 2003).

[WSDL] � HYPERLINK "http://www.w3.org/TR/wsdl" ��http://www.w3.org/TR/wsdl�

[WSDL Schema] � HYPERLINK "http://schemas.xmlsoap.org/wsdl/" �http://schemas.xmlsoap.org/wsdl/�

[JAX-RPC] � HYPERLINK "http://www.jcp.org/jsr/detail/101.jsp" ��http://www.jcp.org/jsr/detail/101.jsp�

PAGE
Page 1 of 20

