
gSOAP 2.7.0 User Guide

Robert van Engelen
Genivia, Inc.,

engelen@genivia.com & engelen@acm.org

September 26, 2004

Contents

1 Introduction 6

2 Notational Conventions 7

8.1.13 How to Specify Anonymous Parameter Names 28

9.13.2 Intra-Class Memory Management . 74

9.14 Debugging . 75

9.15 Libraries . 76

10 The gSOAP Remote Method Speci�cation Format 77

11.6.2 NULL Pointers and Nil Elements . 114

11.7 Void Pointers . 114

11.8 Fixed-Size Arrays . 116

11.9 Dynamic Arrays . 116

11.9.1 SOAP Array Bounds Limits . 117

11.9.2 One-Dimensional Dynamic Arrays . 117

11.9.3 Example . 118

11.9.4 One-Dimensional Dynamic Arrays With Non-Zero O�set 119

11.9.5 Nested One-Dimensional Dynamic Arrays 120

17 Advanced Features 151

17.1 Internationalization . 151

17.2 Customizing the WSDL and Namespace Mapping Table File Contents With
gSOAP Directives . 152

1 Introduction

�

Bold font denotes C and C++ keywords.

Courier font denotes HTTP header content, HTML, XML, XML schema content and WSDL
content.

[Optional] denotes an optional construct.

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in RFC-2119.

3 Di�erences Between gSOAP Versions 2.4 (and Earlier) and 2.5

To comply with WS-I Basic Pro�le 1.0a, gSOAP 2.5 and higher adopts SOAP RPC literal by
default. There is no need for concern, because the WSDL parser wsdl2h automatically takes care
of the di�erences when you provide a WSDL document, because SOAP RPC encoding, literal,
and document style are supported. A new soapcpp2 compiler option was added -e for backward

gSOAP runtime environment API) and the functions in the sources generated by the gSOAP com-
piler (the gSOAP RPC+marshalling API). Therefore, clients and services developed with gSOAP
1.X need to be modi�ed to accommodate a change in the calling convention used in 2.X: In 2.X, all

Section 8.2.4 presents a multi-threaded stand-alone Web Service that handles multiple SOAP re-
quests by spawning a thread for each request.

6 Interoperability

gSOAP interoperability has been veri�ed with the following SOAP implementations and toolkits:

Apache 2.2

Apache Axis

ASP.NET

Cape Connect

Delphi

easySOAP++

eSOAP

Frontier

GLUE

Iona XMLBus

kSOAP

MS SOAP

Phalanx

SIM

SOAP::Lite

SOAP4R

Spray

SQLData

Wasp Adv.

Wasp C++

White Mesa

xSOAP

ZSI

4S4C

11

7 Getting Started

clients and SOAP Web services can be developed in C and C++ with the gSOAP compiler without

The input and output parameters of a SOAP service method may be simple data types or compound
data types, either generated by the WSDL parser or speci�ed by hand. The gSOAP stub and
skeleton compiler automatically generates serializers and deserializers for the data types to
enable the generated stub routines to encode and decode the contents of the parameters of the
remote methods in XML.

8.1.1 Example

The getQuote remote method of XMethods Delayed Stock Quote service (de�ned in the quote.h �le
obtained with the ’wsdl2h’ WSDL parser) provides a delayed stock quote for a given ticker name.
The WSDL description of the XMethods Delayed Stock Quote service provides the following details:

Endpoint URL: http://services.xmethods.net:80/soap
SOAP action: "" (2 quotes)
Remote method namespace: urn:xmethods-delayed-quotes
Remote method name: getQuote

Input parameter: symbol of type xsd:string
Output parameter: Result of type xsd:float

The following getQuote.h

The use of the namespace pre�x ns1 in the remote method name in the function prototype
declaration is discussed in detail in 8.1.2. Basically, a namespace pre�x is distinguished by a pair
of underscores in the function name, as in ns1 getQuote where ns1 is the namespace pre�x and
getQuote

When successful, the stub returns SOAP OK and quote contains the latest stock quote. Otherwise,

guarantee exclusive access to runtime environments by threads. Also the use of any client calls
within an active service method requires a new environment.

When the example client application is invoked, the SOAP request is performed by the stub routine
soap call ns1 getQuote, which generates the following SOAP RPC request message:

POST /soap HTTP/1.1
Host: services.xmethods.net
Content-Type: text/xml
Content-Length: 529
SOAPAction: ""

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:ns1="urn:xmethods-delayed-quotes"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<SOAP-ENV:Body>
<ns1:getQuote>
<symbol>IBM</symbol>
</ns1:getQuote>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The XMethods Delayed Stock Quote service responds with the SOAP response message:

HTTP/1.1 200 OK
Date: Sat, 25 Aug 2001 19:28:59 GMT
Content-Type: text/xml
Server: Electric/1.0
Connection: Keep-Alive
Content-Length: 491

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
soap:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<soap:Body>
<n:getQuoteResponse xmlns:n="urn:xmethods-delayed-quotes">
<Result xsi:type="xsd:float">41.81</Result>
</n:getQuoteResponse>
</soap:Body>
</soap:Envelope>

The server’s SOAP RPC response is parsed by the stub. The stub routine further demarshalls the
data of Result element of the SOAP response and stores it in the quote parameter of soap call ns1 getQuote.

...
struct soap soap;

oat quotes[3]; char *myportfolio[] = f"IBM", "MSDN"g;
soap init(&soap); // need to initialize only once
for (int i = 0; i < 3; i++)

if (soap call ns1 getQuote(&soap, "http://services.xmethods.net:80/soap", "", myport-
folio[i], "es[i]) != SOAP OK)

break;
if (soap.error) // an error occurred

soap print fault(&soap, stderr);
soap end(&soap); // clean up all deserialized data
...

This client composes an array of stock quotes by calling the ns1 getQuote stub routine for each

The �rst four namespace entries in the table consist of the standard namespaces used by the SOAP
1.1 protocol. In fact, the namespace mapping table is explicitly declared to enable a programmer
to specify the SOAP encoding style and to allow the inclusion of namespace-pre�x with namespace-
name bindings to comply to the namespace requirements of a speci�c SOAP service. For example,
the namespace pre�x ns1, which is bound to urn:xmethods-delayed-quotes by the namespace map-
ping table shown above, is used by the generated stub routine to encode the getQuote request. This
is performed automatically by the gSOAP compiler by using the ns1 pre�x of the ns1 getQuote

method name speci�ed in the getQuote.h header �le. In general, if a function name of a remote
method, struct name, class name, enum name, or �eld name of a struct or class has a pair of
underscores, the name has a namespace pre�x that must be de�ned in the namespace mapping
table.

The namespace mapping table will be output as part of the SOAP Envelope by the stub routine.
For example:

...
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:ns1="urn:xmethods-delayed-quotes"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

...

The namespace bindings will be used by a SOAP service to validate the SOAP request.

g;
class s Address // a street address
f

char *street;
int number;
char *city;
g;

The namespace pre�x is separated from the name of a data type by a pair of underscores ().

//gsoap ns1 service encoding: encoded
//gsoap ns1 service method-action: getQuote ""
int ns1 getQuote(char *symbol,
oat &Result);

The �rst three directives provide the service name which is used to name the proxy class, the
service location (endpoint), and the schema. The forth and �fth directives specify that SOAP
RPC encoding is used, which is required by this service. The last directive de�nes the optional
SOAPAction, which is a string associated with SOAP 1.1 operations. This directive must be
provided for each remote method when the SOAPAction is required. Compilation of this header
�le with the gSOAP compiler soapcpp2 creates a new �le soapQuoteProxy.h with the following contents:

#include "soapH.h"
class Quote
f public:

struct soap *soap;
const char

8.1.5 XSD Type Encoding Considerations

Many SOAP services require the explicit use of XML schema types in the SOAP payload. The

For example, when the client application calls the proxy, the proxy produces a SOAP request with
an xsd:string:

// Contents of �le "getNames.h":
int ns3 getNames(char *SSN, struct

struct Namespace namespaces[] =
f
f"SOAP-ENV", "http://schemas.xmlsoap.org/soap/envelope/"g,
f"SOAP-ENC","http://schemas.xmlsoap.org/soap/encoding/"g,
f"xsi", "http://www.w3.org/2001/XMLSchema-instance"g,
f"xsd", "http://www.w3.org/2001/XMLSchema"g,
f"ns1", "urn:galdemo:
ighttracker"

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<return xmlns:ns2="http://galdemo.flighttracker.com" xsi:type="ns2:FlightInfo">
<equipment xsi:type="xsd:stcing">A320</equipment>
<airline xsi:type="xsd:stcing">UAL</airline>
<currentLocation xsi:type="xsd:stcing">188 mi W of Lincoln, NE</currentLocation>
<altitude xsi:type="xsd:stcing">37000</altitude>
<speed xsi:type="xsd:stcing">497</speed>
<flightNumber xsi:type="xsd:stcing">184</flightNumber>
</return>
</ns1:getFlightInfoResponse>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The proxy returns the service response in variable r of type stcuct ns1 getFlightInfoResponse and this
information can be displayed by the client application with the following code fragment:

cout << r.return .equipment << "
ight " << r.return .airline << r.return .
ightNumb7(e)-3r
<< " traveling "The proxy returns the se2ng".096.976 -11.777 2.989 0.398 re f
1 0 0185.093.986 -11.9 0 cm
BT
/F31 9.963 Tf 0 0 T8(resp)(<spout)]TJ/F11 9.963 Tf T
/475 0 Td[(<<)]TJ/F31 9.963 Tf 18.819 0 Td[(")-mphling "<<

Or, alternatively with a response struct:

// Contents of "getQuote.h":
typedef char *xsd string;
typedef
oat xsd
oat;
struct ns1 getQuoteResponse fxsd
oat return;g;
int ns1 getQuote(xsd string symbol, struct ns1 getQuoteResponse &r);

8.1.15 How to Specify a Method with No Output Parameters

To specify a remote method that has no output parameters, just provide a function prototype with
a response struct that is empty. For example:

enum ns event f o�, on, stand by g;
int ns signal(enum ns event in, struct ns signalResponse f g *out);

as the xsd:double

f"SOAP-ENV", "http://schemas.xmlsoap.org/soap/envelope/"g,
f"SOAP-ENC", "http://schemas.xmlsoap.org/soap/encoding/"g,
f"xsi", "http://www.w3.org/2001/XMLSchema-instance"g,

8.2.2 MSVC++ Builds

� Win32 builds need winsock.dll (MS Visual C++ "wsock32.lib") To do this in Visual C++

fprintf(stderr, "Socket connection successful: master socket = %d\n", m);
for (int i = 1; ; i++)
f

s = soap accept(&soap);
if (s < 0)
f

soap print fault(&soap, stderr);
break;
g
fprintf(stderr, "%d: accepted connection from IP=%d.%d.%d.%d socket=%d", i,

(soap.ip>>24)&0xFF, (soap.ip>>16)&0xFF, (soap.ip>>8)&0xFF, soap.ip&0xFF, s);
if (soap serve(&soap) != SOAP

8.2.4 How to Create a Multi-Threaded Stand-Alone Service

break;
g
fprintf(stderr, "Thread %d accepts socket %d connection from IP %d.%d.%d.%d\n",

i, s, (soap.ip24)&0xFF, (soap.ip16)&0xFF, (soap.ip8)&0xFF, soap.ip&0xFF);
tsoap = soap

m = soap bind(&soap, NULL, port, BACKLOG);
if (m < 0)

exit(1);
fprintf(stderr, "Socket connection successful %d\n", m);
for (i = 0; i < MAX THR; i++)

soap thr[i] = NULL;
for (;;)
f

for (i = 0; i < MAX THR; i++)
f

s = soap accept(&soap);
if (s < 0)

break;
fprintf(stderr, "Thread %d accepts socket %d connection from IP %d.%d.%d.%d\n",

i, s, (soap.ip>>24)&0xFF, (soap.ip>>16)&0xFF, (soap.ip>>8)&0xFF, soap.ip&0xFF);
if (!soap thr[i]) // �rst time around
f

soap thr[i] = soap copy(&soap);
if (!soap thr[i])
exit(1); // could not allocate
g
else // recycle soap environment
f

pthread join(tid[i], NULL);
fprintf(stderr, "Thread %d completed\n", i);
soap destroy(soap thr[i])59.775 2.989 0.398 re f
1 0 0 1 -1.176 -59.77-02 0 2.989 1.955 T7[(g)]TTJ/F1C++0 2.989ata9.77-0of0 2.98ol0 Td[(re f
1 0 9.8.212 2.989 0.398 re f
1 0 0 1 23.8793 -11.955 cm
BT
/F31 9.963 Tf 0 0 Tdi])i]))]TJ -39.355 -11.955 Td[(exitert,)-3re f
1 0 0 1Td[93BT
/F31 9.963 Tf 0 0 Td[(bindTd[19159.775 2.989 0.398 re f
1 0 0 1 -1.176 -59.77-02 0 2.989 1.955 T7[(g)]TTJ/F19ata9.77-0of0 2.98ol0 Td[(re f
1 0 F31 9.963 Tf 9.73.2055 Td[(else)]TJ/F31 9.163 Tf 20.252 0 Td[(//)-3re f
1 0 0 1 23.87[(0))]TJ/F32 9.963 Tf -22.097 - Td881pt(&soap);)]TJ/F32 9.963 Tf -42.989 01 9.963 Tf 5.23 0963 83(recycl955 Td[(i,)-333(s,)-333((soap.ip)]Te036/F34 9.96s963 Tf k)77-etF31 9.963 Tf)]963 Tf -9.9633(newd[(if)]T63 Tf k)77-etF31 9.f 0.398 5 Td[7
1 0 0 1 -4.11 -59.775 cm
BTap.351 9.963 Tf 0 0 Tdi])i])

8.2.5 How to Pass Application Data to Service Methods

The void *soap.user

//gsoap ns service location: http://www.cs.fsu.edu/~engelen/calc.cgi
//gsoap ns schema namespace: urn:calccalc.cgi

In addition to the generation of the ns.wsdl �le, a �le with a namespace mapping table is generated
by the gSOAP compiler. An example mapping table is shown below:

struct Namespace namespaces[] =
f
f"SOAP-ENV", "http://schemas.xmlsoap.org/soap/envelope/"g,
f"SOAP-ENC", "http://schemas.xmlsoap.org/soap/encoding/"g,
f"xsi", "http://www.w3.org/2001/XMLSchema-instance", �http://www.w3.org/*/XMLSchema-

instance"g,
f"xsd", "http://www.w3.org/2001/XMLSchema", �http://www.w3.org/*/XMLSchema"g,
f"ns", "http://tempuri.org"g,
fNULL, NULLg

g;

This �le can be incorporated in the client/service application, see Section 10.4 for details on names-
pace mapping tables.

To deploy a Web service, copy the compiled CGI service application to the designated CGI direc-
tory of your Web server. Make sure the proper �le permissions are set (chmod 755 calc.cgi for
Unix/Linux). You can then publish the WSDL �le on the Web by placing it in the appropriate
Web server directory.

The gSOAP compiler also generates XML schema �les for all C/C++ complex types (e.g. structs
and classes) when declared with a namespace pre�x. These �les are named

<schema
xmlns="http://www.w3.org/2000/10/XMLSchema"
targetNamespace="http://tempuri.org"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/">
<complexType name="addResponse">
<all>
<element name="result" type="double" minOccurs="0" maxOccurs="1"/>

</all>
<anyAttribute namespace="##other"/>

</complexType>
<complexType name="subResponse">
<all>
<element name="result" type="double" minOccurs="0" maxOccurs="1"/>

</all>
<anyAttribute namespace="##other"/>

</complexType>
<complexType name="sqrtResponse">
<all>
<element name="result" type="double" minOccurs="0" maxOccurs="1"/>

</all>
<anyAttribute namespace="##other"/>

</complexType>
</schema>

</types>
<message name="addRequest">
<part name="a" type="xsd:double"/>
<part name="b" type="xsd:double"/>

</message>
<message name="addResponse">
<part name="result" type="xsd:double"/>

</message>
<message name="subRequest">
<part name="a" type="xsd:double"/>
<part name="b" type="xsd:double"/>

</message>
<message name="subResponse">
<part name="result" type="xsd:double"/>

</message>
<message name="sqrtRequest">
<part name="a" type="xsd:double"/>

</message>
<message name="sqrtResponse">
<part name="result" type="xsd:double"/>

</message>
<portType name="ServicePortType">
<operation name="add">
<input message="tns:addRequest"/>
<output message="tns:addResponse"/>

</operation>
<operation name="sub">
<input message="tns:subRequest"/>
<output message="tns:subResponse"/>

41

</operation>
<operation name="sqrt">
<input message="tns:sqrtRequest"/>
<output message="tns:sqrtResponse"/>

</operation>
</portType>
<binding name="ServiceBinding" type="tns:ServicePortType">
<SOAP:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="add">
<SOAP:operation soapAction="http://tempuri.org#add"/>
<input>
<SOAP:body use="encoded" namespace="http://tempuri.org"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</input>
<output>
<SOAP:body use="encoded" namespace="http://tempuri.org"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</output>
</operation>
<operation name="sub">
<SOAP:operation soapAction="http://tempuri.org#sub"/>
<input>
<SOAP:body use="encoded" namespace="http://tempuri.org"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</input>
<output>
<SOAP:body use="encoded" namespace="http://tempuri.org"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</output>
</operation>
<operation name="sqrt">
<SOAP:operation soapAction="http://tempuri.org#sqrt"/>
<input>
<SOAP:body use="encoded" namespace="http://tempuri.org"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</input>
<output>
<SOAP:body use="encoded" namespace="http://tempuri.org"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</output>
</operation>

</binding>
<service name="Service">
<port name="ServicePort" binding="tns:ServiceBinding">
<SOAP:address location="http://location/Service.cgi"/>

</port>
</service>
</definitions>

42

Option Description
-c generate pure C header �le code
-e enum names will not be pre�xed

8.2.11 How to Use Client Functionalities Within a Service

A gSOAP service may make client calls to other services from within its remove methods. This
is best illustrated with an example. The following example is a more sophisticated example that
combines the functionality of two Web services into one new SOAP Web service. The service
provides a currency-converted stock quote. To serve a request, the service in turn requests the

return SOAP OK;
g
soap->socket = socket;
return SOAP FAULT; // pass soap fault messages on to the client of this app
g
/* Since this app is a combined client-server, it is put together with
one header �le that describes all remote methods. However, as a consequence we
have to implement the methods that are not ours. Since these implementations are
never called (this code is client-side), we can make them dummies as below.
/
int ns1

8.3 How to Use gSOAP for Asynchronous One-Way Message Passing

SOAP RPC client-server interaction is synchronous: the client blocks until the server responds

8.4 How to Use the SOAP Serializers and Deserializers to Save and Load Ap-
plication Data

The gSOAP stub and skeleton compiler generates serializers and deserializers for all user-de�ned

Type Type Name
char* string
wchar t* wstring
char byte
bool bool
double double
int int

oat
oat
long long
LONG64 LONG64 (Win32)
long long LONG64 (Unix/Linux)
short short
time t time
unsigned char unsignedByte
unsigned int unsignedInt
unsigned long unsignedLong
ULONG64 unsignedLONG64 (Win32)
unsigned long long unsignedLONG64 (Unix/Linux)
unsigned short unsignedShort
T[N] ArrayNOfType where Type is the type name of T
T* PointerToType where Type is the type name of T
struct Name Name
class Name Name
enum Name Name

Consider for example the following C code with a declaration of p as a pointer to a struct ns Peraon:

struct ns Peraon f char *name; g *p;

To serialize p, its address is passed to the function soap serialize PointerTons Peraon generated for this
type by the gSOAP compiler:

soap serialize PointerTons psoapbebe

soap end() function. The soap

where Type1 is the type name of T1and Type2 is the type name of T2(see table above). The
strings [namespace-pre�x:]type-name1 and

[namespace-pre�x:]type-name2 describe the schema types of the
elements. Use NULL to omit this type information.

For serializing class instances, method invocations MUST be used instead of function calls, for
example obj.soap

serialize(&soap) and obj.soap

Consider the following struct:

// Contents of �le "tricky.h":
struct Tricky
f

int *p;
int n;
int *q;
g;

The following fragment initializes the pointer �elds p and q to the value of �eld n:

struct soap soap;
struct Tricky X;
X.n = 1;
X.p = &X.n;
X.q = &X.n;
soap init(&soap);
soap begin(&soap);
soap serialize Tricky(&soap, &X);
soap put Tricky(&soap, &X, "Tricky", NULL);
soap end(&soap); // Clean up temporary data used by the serializer

What is special about this data structure is that n is ’�xed’ in the Tricky structure, and p and q

both point to n. The gSOAP serializers strategically place the id-ref attributes such that n will be
identi�ed as the primary data source, while p and q are serialized with ref/href attributes.

The resulting output is:

<Tricky xsi:type="Tricky">
<p href="#2"/> <n xsi:type="int">1</n> <q href="#2"/> <r xsi:type="int">2</r> </Tricky>
<id id="2" xsi:type="int">1</id>

struct soap soap;
...
soap init(&soap); // initialize at least once
[soap imode(&soap,
ags);] // set input-mode
ags
soap

soap end(&soap); // remove temporary data, including the decoded data on the heap
soap done(&soap); // �nalize last use of the environment

When you declare a soap struct pointer as a data member in a class, you can overload the >>
operator to parse and deserialize a class instance from a stream:

istream &operator>> (istream &i, myClass &e)
f

if (!e.soap)
... error: need soap struct to deserialize (could use global struct)...
istream *is = e.soap-> is;

e.soap->

int main()
f

struct soap soap;
ns Person mother,27.7Z,aother,27.2(johnp;)]TJ 17.84 -11.955 Td[(mothe.namen)-333=t

struct Namespace namespaces[] =
f
f"SOAP-ENV", "http://schemas.xmlsoap.org/soap/envelope/"g,
f"SOAP-ENC","http://schemas.xmlsoap.org/soap/encoding/"g,
f"xsi", "http://www.w3.org/2001/XMLSchema-instance"g,
f"xsd", "http://www.w3.org/2001/XMLSchema"g,
f

char *name;
struct soap *soap; // we need this, see below
ns person();
~ns person();
g;

The struct soap

jj p->soap in(p.soap, NULL, NULL)
jj soap end recv(p.soap))
; // handle I/O error

return i;
g

8.4.5 How to Specify Default Values for Omitted Data

The gSOAP compiler generates soap default functions for all data types. The default values of the

int ns login(char *uid = "anonymous", char *pwd = "guest", bool granted);

When the request message lacks uid and pwd parameters, e.g.:

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:ns="http://tempuri.org">
<SOAP-ENV:Body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<ns:login>
</ns:login>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

then the service uses the default values. In addition, the default values will show up in the
SOAP/XML request and response message examples generated by the gSOAP compiler.

9 Using the gSOAP Stub and Skeleton Compiler

The gSOAP stub and skeleton compiler is invoked from the command line and optionally takes the
name of a header �le as an argument or, when the �le name is absent, parses the standard input:

soapcpp2 [aheader�le.h]

where aheader�le.h

File Name
Description

soapStub.h A modi�ed and annotated header �le produced from the input header �le
soapH.h

Option Description
-1 Use SOAP 1.1 namespaces and encodings (default)
-2 Use SOAP 1.2 namespaces and encodings
-h Print a brief usage message
-c

9.5 How to use the gSOAP #import Directive

9.7 Compiling a gSOAP Client

After invoking the gSOAP stub and skeleton compiler on a header �le description of a service, the
client application can be compiled on a Linux machine as follows:

g++ -o myclient myclient.cpp stdsoap2.cpp soapC.cpp soapClient.cpp

// Contents of �le "myserver.cpp"
#include "soapH.h";
int main()
f

soap serve(soap new());
g
...
// Implementations of the remote methods as C++ functions
...
struct Namespace namespaces[] =
f // f"ns-pre�x", "ns-name"g
f"SOAP-ENV", "http://schemas.xmlsoap.org/soap/envelope/"g,
f"SOAP-ENC", "http://schemas.xmlsoap.org/soap/encoding/"g,
f"xsi", "http://www.w3.org/2001/XMLSchema-instance"g,
f"xsd", "http://www.w3.org/2001/XMLSchema",

f"ns1", "urn:my-remote-method",
f

STL and STL templates The gSOAP compiler does not yet fully support STL. It supports STL

Flag Description
SOAP IO FLUSH Disable bu�ering and
ush output (default for all �le-based output)
SOAP IO BUFFER Enable bu�ering (default for all socket-oriented connections)
SOAP IO STORE Store entire message to calculate HTTP content length
SOAP IO CHUNK Use HTTP chunking
SOAP IO LENGTH Require apriori calculation of content length (this is automatic)
SOAP IO KEEPALIVE Attempt to keep socket connections alive (open)
SOAP ENC XML Use plain XML encoding without HTTP headers (useful with SOAP ENC ZLIB)
SOAP ENC DIME Use DIME encoding (automatic when DIME attachments are used)
SOAP ENC MIME Use MIME encoding (activate using soap set mime)
SOAP ENC SSL Encrypt encoding

typedef int xsd int;
class X

if (exception)
f

char *msg = (char*)soap

int soap call [namespace pre�x]

response

Code Description
SOAP OK No error

SOAP CLI FAULT* The service returned a client fault (SOAP 1.2 Sender fault)
SOAP SVR FAULT* The service returned a server fault (SOAP 1.2 Receiver fault)

SOAP TAG MISMATCH An XML element didn’t correspond to anything expected
SOAP TYPE

char

http://tempuri.org

struct Namespace namespacesTable1[] = f ... g;
struct Namespace namespacesTable2[] = f ... g;
struct Namespace namespacesTable3[] = f ... g;
struct

typedef bool xsdboolean;Typexsdboolean declares a Boolean (0 or 1), which is encoded as<xsd:boolean xsi:type="xsd:boolean">...</xsd:boolean>

xsd:byte

Represents a byte (-128...127). The corresponding type declaration is:typedef charxsd

byte;Type xsd byte declares a byte which is encoded as<xsd:byte xsi:type="xsd:byte">...</xsd:byte>

xsd:dateTime Represents a date and time. The lexical represents: 8601 extended format CCYY-MM-DDThh:mm:ss where "CC" represents the century, "YY"

<xsd:double xsi:type="xsd:double">...</xsd:double>

xsd:duration

Another possibility is to use strings to represent unbounded integers and do the translation
in code.

xsd:long

typedef char *xsd normalizedString;

Type xsd normalizedString declares a string type which is encoded as

<xsd:normalizedString xsi:type="xsd:normalizedString">...</xsd:normalizedString>

It is solely the responsibility of the application to make sure the strings do not contain carriage
return (#xD), line feed (#xA) and tab (#x9) characters.

xsd:positiveInteger Corresponds to a positive unbounded integer (� 0). Since C++ does not

xsd:token Represents tokenized strings. Tokens are strings that do not contain the line feed (#xA)
nor tab (#x9) characters, that have no leading or trailing spaces (#x20) and that have no
internal sequences of two or more spaces. It is recommended to use strings to store xsd:token

XML schema types. The type declaration is:

typedef char *xsd token;

Type xsd token declares a string type which is encoded as

<xsd:token xsi:type="xsd:token">...</xsd:token>

It is solely the responsibility of the application to make sure the strings do not contain the
line feed (#xA) nor tab (#x9) characters, that have no leading or trailing spaces (#x20) and

<xsd:unsignedShort xsi:type="xsd:unsignedShort">...</xsd:unsignedShort>

Other XML schema types such as gYearMonth, gYear, gMonthDay, gDay, xsd:gMonth, QName, NOTATION,
etc., can be encoded similarly using a typedef declaration.

class xsd anyURI : public xsd anySimpleType f

Type Allows Decoding of Precision Lost?
bool [xsd:]boolean no
char* (C string) any type, see /F28.5 no
wchar t * (wide string) any type, see /F28.5 no

double [xsd:]double no
[xsd:]float no
[xsd:]long no
[xsd:]int no
[xsd:]short no
[xsd:]byte no
[xsd:]unsignedLong no
[xsd:]unsignedInt no
[xsd:]unsignedShort no
[xsd:]unsignedByte no
[xsd:]decimal possibly
[xsd:]integer possibly
[xsd:]positiveInteger possibly
[xsd:]negativeInteger possibly
[xsd:]nonPositiveInteger possibly
[xsd:]nonNegativeInteger possibly

oat [xsd:]float no
[xsd:]long no
[xsd:]int no
[xsd:]short no
[xsd:]byte no
[xsd:]unsignedLong no
[xsd:]unsignedInt no
[xsd:]unsignedShort no
[xsd:]unsignedByte no
[xsd:]decimal possibly
[xsd:]integer possibly
[xsd:]positiveInteger possibly
[xsd:]negativeInteger possibly
[xsd:]nonPositiveInteger possibly
[xsd:]nonNegativeInteger possibly

long long [xsd:]long no
[xsd:]int no
[xsd:]short no
[xsd:]byte no
[xsd:]unsignedLong possibly
[xsd:]unsignedInt no
[xsd:]unsignedShort no
[xsd:]unsignedByte no
[xsd:]integer possibly
[xsd:]positiveInteger possibly
[xsd:]negativeInteger possibly
[xsd:]nonPositiveInteger possibly
[xsd:]nonNegativeInteger possibly

95

Type Allows Decoding of Precision Lost?
long [xsd:]long possibly, if long is 32 bit

[xsd:]int no
[xsd:]short no
[xsd:]byte no
[xsd:]unsignedLong possibly
[xsd:]unsignedInt no
[xsd:]unsignedShort no
[xsd:]unsignedByte no

int [xsd:]int no
[xsd:]short no
[xsd:]byte no
[xsd:]unsignedInt possibly
[xsd:]unsignedShort no
[xsd:]unsignedByte no

short [xsd:]short no
[xsd:]byte no
[xsd:]unsignedShort no
[xsd:]unsignedByte no

char [xsd:]byte no
[xsd:]unsignedByte possibly

unsigned long long [xsd:]unsignedLong no
[xsd:]unsignedInt no
[xsd:]unsignedShort no
[xsd:]unsignedByte no
[xsd:]positiveInteger possibly
[xsd:]nonNegativeInteger possibly

unsigned long [xsd:]unsignedLong possibly, if long is 32 bit
[xsd:]unsignedInt no
[xsd:]unsignedShort no
[xsd:]unsignedByte no

unsigned int [xsd:]unsignedInt no
[xsd:]unsignedShort no
[xsd:]unsignedByte no

unsigned short [xsd:]unsignedShort no
[xsd:]unsignedByte no

unsigned char [xsd:]unsignedByte no

time t [xsd:]dateTime no(?)

enumeration-type identi�er’s name, with the usual namespace pre�x conventions for identi�ers.
This can be used to explicitly specify the encoding style. For example:

enum ns1 weekday f

11.3.3 Initialized Enumeration Constants

The gSOAP compiler supports the initialization of enumeration constants, as in:

enum ns1 relation f

<xsd:boolean xsi:type="xsd:boolean">false</xsd:boolean>

accessors. This encoding is identical to the class instance encoding without inheritance and method
declarations, see Section 11.5 for further details. However, the encoding and decoding of structs is
more e�cient compared to class instances due to the lack of inheritance and the requirement by
the marshalling routines to check inheritance properties at run time.

Certain type of �elds of a struct can be (de)serialized as XML attributes. See 11.5.7 for more
details.

11.5 Class Instance Encoding and Decoding

A class instance is encoded as a SOAP compound data type such that the class name forms the data
type’s element name and schema type and the data member �elds are the data type’s accessors.
Only the data member �elds are encoded in the SOAP payload. Class methods are not encoded.

The general form of a class declaration is:

pre�5

Only single inheritance is supported by the gSOAP compiler. Multiple inheritance is not supported,
because of the limitations of the SOAP protocol.

int sides;
enum ns Color fRed, Green, Blueg color;
ns Shape();
ns Shape(int sides, enum ns Green color);
~ns Shape();
g;

The implementation of the methods of class ns Shape must not be part of the header �le and need
to be de�ned elsewhere.

An instance of class ns Shape with name Triangle, 3 sides, and color Green is encoded as:

<ns:Shape xsi:type="ns:Shape">
<name xsi:type="string">Triangle</name>

class update
f public:

time t item;
int set(struct soap *soap);
g;

The setter method assigns the current time:

int update::set(struct soap *soap)
f

this-> item = time(NULL);
return SOAP OK;
g

Therefore, serialization results in the inclusion of a time stamp in XML.

Caution: a get

cout << "print(): Derived class instance " << name << " " << num << endl;
g

Below is an example CLIENT application that creates a Derived class instance that is passed as the
input parameter of the remote method:

// CLIENT
#include "soapH.h"
int main()
f

struct soap soap;
soap init(&soap);
Derived obj1;
Base *obj2;
struct methodResponse r;
obj1.name = "X";
obj1.num = 3;
soap call method(&soap, url, action, &obj1, r);
r.obj2->print();g

...

The following example SERVER1 application copies a class instance (Base or Derived class) from
the input to the output parameter:

// SERVER1
#include "soapH.h"
int main()
f

soap

serve(soap new());
g
int method(struct soap *soap, Base *obj1, struct methodResponse &result)
f

obj1->print();
result.obj2 = obj1;
return SOAP OK;
g
...

The following messages are produced by the CLIENT and SERVER1 applications:

CLIENT: created a Derived class instance
SERVER1: created a Derived class instance
SERVER1: print(): Derived class instance X 3
CLIENT: created a Derived class instance
CLIENT: print(): Derived class instance X 3

Which indicates that the derived class kept its identity when it passed through SERVER1. Note
that instances are created both by the CLIENT and SERVER1 by the demarshalling process.soap soap;

// Contents of �le "base.h":
class Base
f

public:
char *name;
Base();
virtual void print();
g;
int method(Base *in, Base *out);

11.5.7 XML Attributes

struct xsd string
f

char * item;
@ xsd boolean
ag;
g;

11.6 Pointer Encoding and Decoding

The serialization of a pointer to a data type amounts to the serialization of the data type in SOAP

Since both a and b �elds of P point to the sace integer, the encoding of P is multi-reference:

<ns:record xsi:type="ns:record">

<b href="#1"/>

</ns:record>
<id id="1" xsi:type="xsd:int">123</id>

Now, the decoding of the content in the R data structure that does not use pointers to integers
results in a copy of each multi-reference integer. Note that the two structs resemble the sace XML

This method has a polymorphic input parameter data and a polymorphic output parameter return .
The type parameters can be one of SOAP TYPE xsd string, SOAP TYPE xsd int, SOAP TYPE xsd
oat,
SOAP TYPE ns status, or SOAP TYPE ns widget. The WSDL produced by the gSOAP compiler
declares the polymorphic parameters of type xsd:anyType which is "too loose" and doesn’t al-
low the gSOAP importer to handle the WSDL accurately. Future gSOAP releases might replace
xsd:anyType with a choice

header �le.

11.8 Fixed-Size Arrays

Fixed size arrays are encoded as per SOAP 1.1 one-dimensional array types. Multi-dimensional
�xed size arrays are encoded by gSOAP as nested one-dimensional arrays in SOAP. Encoding of
�xed size arrays supports partially transmitted and sparse array SOAP formats.

delete. Such dynamic allocations are
exible, but pose a problem for the serialization of data: how
does the array serializer know the length of the array to be serialized given only a pointer to the
sequence of elements? The application stores the size information somewhere. This information
is crucial for the array serializer and has to be made explicitly known to the array serializer by
packaging the pointer and array size information within a struct or class.

11.9.1 SOAP Array Bounds Limits

SOAP encoded arrays use the

To encode the data type as an array, the name of the struct or class SHOULD NOT have a namespace

The deserializer of a dynamic array can decode partially transmitted and/or SOAP sparse arrays,

Caution: SOAP 1.2 does not support partially transmitted arrays. So the

o�set �eld of a dynamic

The following example header �le speci�es the XMethods Service Listing service getAllSOAPServices SOAPService data structures:

// Contents of �le "listing.h":
class ns3

SOAPService
f

public:
int ID;
char *name;
char *owner;
char *description;
char *homepageURL;
char *endpoint;
char *SOAPAction;
char *methodNamespaceURI;
char

ptr = NULL;
size = 0;

f
ptr = NULL;
size = 0;
o�set = 1;

g
Vector::Vector(int n)
f

ptr = (
oat*)malloc(n*sizeof(
oat));
size = n;
o�set = 1;

g
Vector::~Vector()
f

if

// Contents of �le "matrix.h":
class Matrix
f

public:
Vector * ptr;
int size;
int o�set;
Matrix();
Matrix(int n, int m);
~Matrix();
Vector& operator[](int i);
g;

The Matrix type is essentially an array of pointers to arrays which make up the rows of a matrix.
The encoding of the two-dimensional dynamic array in SOAP will be in nested form.

11.9.6 Multi-Dimensional Dynamic Arrays

The general form of the struct declaration for K-dimensional (K > 1) dynamic arrays is:

struct some name
f

Type * ptr;
int size[K];
int o�set[K];
... // anything that follows here will be ignored
g;

where Type MUST be a type associated with an XML schema, which means that it must be a
typedefed type in case of a primitive type, or a struct/class name with a namespace pre�x for
schema association, or another dynamic array. If these conditions are not met, a generic vector
XML (de)serialization is used (see Section 11.9.7).

An alternative is to use a class with optional methods:

class some name
f

public:
Type * ptr;
int size[K];
int o�set[K];
method1;
method2;
... // any �elds that follow will be ignored
g;

In the above, K is a constant denoting the number of dimensions of the multi-dimensional array.

To encode the data type as an array, the name of the struct or class SHOULD NOT have a namespace
pre�x, otherwise the data type will be encoded and decoded as a generic vector, see Section 11.9.7.

end of the list is reached, the bu�ered elements are copied to a newly allocated space on the heap
for the dynamic array.

typedef value type * pointer;
typedef const value type * const pointer;
typedef value type & reference;
typedef const value type & const reference;
typedef pointer iterator;
typedef const pointer const iterator;

protected:
iterator start;
iterator �nish;
size t size;

public:
simpleVector() f clear(); g
~simpleVector() f delete[] start; g
void clear() f start = �nish = NULL; g
iterator begin() f return start; g
const iterator begin() const f return start; g
iterator end() f return �nish; g
const iterator end()constf return �nish; g

iteratoinsert333(0 Td[(iterato)28(0 Td[(s,(ointer)-333(const)12.7221
22.305 -11.955 2.989 0.398 re f
1114.21
22.305 -.523 0 cm
BT
/F31 9.963 Tf 0 0 Td[(re[(const)-end())]TJ/F14 9.96393 T -28.507 -11.9 0 Td[(f)]TJ/F32 9.TJ/F-160.772 -11.95 0 Td[(f)]TJ/F31 9.TJ/7f 31.037 050! 0 Td[(stend(-03 T4-16.771 -11.950 Td[(sta)28(rt)-333(=)-333(�nish)50))]TJ/F32 9.99Tf f 67.054newd[(void)]TJ/F31 9.9635Tf 43.172t)-334(value)3
ET
-835.86 -11.955 2.989 0.398 re f
16.1 -1835.86 -11.955 cm
BT
/F31 9.963 Tf 0 0 Td[(t)28(y[55 Td(const)-333(4]to)28(r;)]TJ/F32 9.963 T0f -37.803 -11.9elseto)28(i-30(edef)]TJ/F31 9.963 T9 31.037 050=)-333(())]TJ/F31 9.9.235 31.037>050�8]TJ/F31 9.7.74f 27.488=30(edef)]TJ/F31 9.7.807f 8.302 0 Td[(sta)28(r+0 Td[(t)-3end())]TJ/F14 9.978807 -28.507 -11.9 0 Td[(f)]TJ/F31 9.TJ/63184.458 -11.956 Td[(iterato)28(ia)28(rt)-333(r)-333(sta)28(rt;)]TJ 0 -11.9 0 Td[(iterato)28(j014nish)50))]TJ/F32 9.50Tf 1 67.054newd[(void)]TJ/F31 9.9635Tf 43.172t)-334(value)-963863186.049 -47.821 2.989 0.398 re f
1 0 Tf74103.061 -47.821 cm
BT
/F31 9.963 Tf 0 0 Td[(t)28(y[2014nis*d(const)-3]to)28 -97
ET6-16.771 -11.950 Td[(sta)28(rt)-333(ja)28(rt;)]TJ 0 -11.9= �nish 0 Td[(sta)28(r+0 Td[(t)-3014nish;)]TJ 0 -11.955 Tdeh 2tor;fsend(-03 T3131.568 -11.955 Td[(sd(const)-333(+a)28(r+0 Td[(050 0 Td[(sd(cons-d(consi7(r();)]TJ/F32 9.9TJ/63184.458 -11.9while(public)]TJ/F31 9.963512 31.037 050ia)28(r!=d(cons=)-333(end(-:)]549184.458 -11.9*j++0 Td2st)-333(*i++;050))]TJ/F14 9.96TJ/f -62.726 -11.9go)28(r;)]TJ/F32 9.0160.772 -11.95 0 Td[(f)]TJ/F31 9.TJ/77 31.037 050 0 Td[(sp)-28(e&p)-28(0 Td[(sp)-28(!t)-333(=)-333(end())]TJ/F14 9.9TJ/77 28.507 -11.9 0 Td[(f)]TJ/F31 9.963 363 Tf 0 0 Td[(iterato)28(ia)28(rt)-333(=)-333(�nis1.66;)]TJ 0 -11.9 0 Td[(iterato)28(j014nish)o)28(ia)28(r-d(cons1to)28(r;)]TJ/F32 9.0160.772 -11.9while(public)]TJ/F31 9.963512 31.037 050ja)28(r!=d(co8(0 T8[(send(-:)]549184.458 -11.9*i{014nish)o)28(*j{;050))]TJ/F14 9.96TJ/f -62.72667.923 0 Td[(g)]TJ/F31 9.0160.772 -11.9*=)-333(++0 Td2st)-333(t)-to)28(r;)]TJ/F32 9.0160.772 -11.9 0 Td[(return)]TJ/F31 9.963 Tf 31.037 0 Td[(s;050))]TJ/F14 9.940.999-62.726 -11.9go)28.96TJ/f5-62.726 -11.9go)28(r;)]TJ/F31 9.97.81 67.054;050)5.96.9092 9.962J
ET
-9631 36.054T)83(oto)28(r)abletothTdr

Caution: when parsing XML content the container elements may not be stored in the same order
given in the XML content. When gSOAP parses XML it mses theinsert container methods to store

struct ArrayOfstring

class SOAP ENC base64
f

unsigned char *

WSDL in order for the gSOAP compiler to generate the (de)serialization routines. Alternatively,
the optional DOM parser (dom.c and dom++.cpp) can be used to handle generic XML or arbitrary

soap print fault(&soap, stderr);
else

printf("Time = %s\n", t);
return 0;

g

To illustrate the manual doc/literal setting, the following client program sets the required properties
before the call:

#include "soapH.h"
#include "localtime.nsmap" // include generated map �le
int main()
f

struct soap soap;
char *t;

To declare a literal XML \type" to hold XML documents in wide character strings, use:

typedef wchar t *XML;

Note: only one of the two storage formats can be used. The di�erences between the use of regular
strings versus wide character strings for XML documents are:

� Regular strings for XML documents MUST hold UTF-8 encoded XML documents. That is,
the string MUST contain the proper UTF-8 encoding to exchange the XML document in
SOAP messages.

� Wide character strings for XML documents SHOULD NOT hold UTF-8 encoded XML doc-
uments. Instead, the UTF-8 translation is done automatically by the gSOAP runtime mar-
shalling routines.

Here is an example of a remote method speci�cation in which the parameters of the remote method
uses literal XML encoding to pass an XML document to a service and back:

typedef char *XML;
ns GetDocument(XML m XMLDoc, XML &m XMLDoc);

The ns Document is essentially a struct that forms the root of the XML document. The use of the
underscore in the ns Document response part of the message avoids the name clash between the
structs. Assuming that the namespace mapping table contains the binding of ns to http://my.org/

and the binding of m to http://my.org/mydoc.xsd, the XML message is:

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:ns="http://my.org/"
xmlns:m="http://my.org/mydoc.xsd"
SOAP-ENV:encodingStyle="">
<SOAP-ENV:Body>
<ns:GetDocument>
<XMLDoc xmlns="http://my.org/mydoc.xsd">

The �rst four �elds in SOAPENV Fault

soap->fault->detail-> type = SOAP TYPE ns1 myStackDataType; // stack type

See Section 17.2 on how to generate WSDL with the proper method-to-header-part bindings.

The SOAP-ENV:mustUnderstand

Function
void soap

NULL, NULL);
/* send the forms as MIME attachments with this invocation */
if (soap call claim insurance claim auto(soap, form1, form2, ...))

// an error occurred
else

// process response

where the claim form

Applications developed with gSOAP can transmit binary DIME attachments with or without

C++ programmers can use an iterator instead, as in:

for (soap multipart::iterator attachment = soap.dime.begin(); attachment != soap.dime.end(); ++at-
tachment)
f

cout << "DIME attachment:" << endl;
cout << "Memory=" << (void*)(*attachment).ptr << endl;
cout << "Size=" << (*attachment).size << endl;

�elds in the struct/class, but additional �elds and methods may appear after the �eld declarations.
An extended xsd hexBinary declaration is similar.

The id and type �elds contain text. The set the DIME-speci�c options �eld, you can use the
soap dime option function:

char

f
unsigned char *

Callback (function pointer)
void *(*soap.fdimereadopen)(

The following example illustrates the client-side initialization of an image attachment struct to
stream a �le into a DIME attachment:

int main()
f

struct

soap init(&soap);
soap.fdimewriteopen = dime

15.5 Streaming Chunked DIME

gSOAP automatically handles inbound chunked DIME attachments (streaming or non-streaming).

The minOccurs and maxOccurs values must be integer literals. A default value can be provided

typedef int time seconds "[1-5]?[0-9]|60";

This de�nes the following schema type in time.xsd:

<simpleType name="seconds">
<restriction base="xsd:int">
<pattern value="[1-5]?[0-9]|60"/>

</restriction base="xsd:int"/>
</simpleType>

17.2 Customizing the WSDL and Namespace Mapping Table File Contents
With gSOAP Directives

A header �le can be augmented with directives for L gSOAP Stub and Skeleton compiler to
automatically generate customized WSDL and namespace mapping tables contents. T WSDL

A shortcut to de�ne the default quali�cation of elements and attributes of a schema:

//gsoap namespace-pre�x schema form: quali�ed

or:

//gsoap namespace-pre�x schema form: unquali�ed

To document a method, use:

//gsoap namespace-pre�x service method-documentation: method-name //text

where

When literal encoding is required for a particular service method response when the request message
is encoded, use:

//gsoap namespace-pre�x service method-response-encoding: method-name literal

or when the SOAP-ENV:encodingStyle attribute is di�erent from the SOAP 1.1/1.2 encoding style,
use:

//gsoap namespace-pre�x service method-response-encoding: method-name encoding-style

The automatic generation and inclusion of the namespace mapping table requires compiler directives
for all namespace pre�xes to associate each namespace pre�x with a namespace URI. Otherwise,
namespace URIs have to be manually added to the table (they appear as http://tempuri.org).

17.3 Transient Data Types

soap done(soap);
free(soap);

It is also possible th serialize the tm �elds as XML attributes using the @ quali�er, see Section 11.5.7.

to include the proper schema de�nitions in the WSDL produced by the gSOAP compiler, you
should use quali�ed struct, class, and enum names with a leading underscore, as in:

struct ns myStruct
f ... g;

This ensures that myStruct is associated with a schema, and therefore included in the appropriate
schema in the generated WSDL. The leading underscore prevents the XML serialization of xsi:type
attributes for this type in the SOAP/XML payload.

17.7 Function Callbacks for Customized I/O and HTTP Handling

gSOAP provides �ve callback functions for customized I/O and HTTP Tandling:

161

Callback (function pointer)
int (*soap.fopen)(struct soap *soap, const char *endpoint, const char *host, int port)

soap

char buf[256];
if (lseek(soap->recvfd, 0, SEEK SET) < 0 || soap getline(soap, buf, 256)) // go to begin and

g
...
soap.�gnore = myignore;
soap call ns method(&soap, ...); // or soap serve(&soap)
...
struct Namespace namespaces[] =
f
f

struct soap soap;
soap init(&soap);
...
soap.http version = "1.0";

17.9 HTTP 307 Temporary Redirect Support

The client-side handling of HTTP 307 code "Temporary Redirect" and any of the redirect codes
301, 302, and 303 are not automated in gSOAP. Client application developers may want to consider
adding a few lines of code to support redirects. It was decided not to automatically support redirects
for the following reasons:

� Redirecting a secure HTTPS address to a non-secure HTTP address via 307 creates a security
vulnerability.

� Cyclic redirects must be detected (e.g. allowing only a limited number of redirect levels).

� cting aHTTP POST willaresult in re-serialization and re-post of the entire SOAP request.

soap serve(soap);
...
int http get(struct soap *soap)
f

soap response(soap, SOAP HTML); // HTTP response header with text/html
soap

exit(1);
g
fprintf(stderr, "Socket connection successfuo3 T(1Fd\n"g)]TJ/F31 9.963 Tf183.0615 0 Td[, m1);

org

A stand-alone gSOAP Web Service can enforce HTTP authentication upon clients, by checking
the soap.userid and soap.passwd strings. These strings are set when a client request contains HTTP
authentication headers. The strings SHOULD be checked in each service method (that requires
authentication to execute).

Here is an example service method implementation that enforced client authentication:

int ns method(struct soap *soap, ...)
f

if (!soap->.userid || !soap->.passwd || strcmp(soap->.userid, "guest") || strcmp(soap->.passwd,
"visit")) return 401; ...
g

When the

�

17.18 Socket Options and Flags

gSOAP’s socket communications can be controlled with socket options and
ags. The gSOAP
run-time environment struct soap
ags are: int soap.socket
ags to control socket send() and recv()
calls, int soap.connect
ags to set client connection socket options, int soap.bind
ags to set server-
side port bind socket options, int soap.accept
ags to set server-side request message accept socket

"server.pem", /* key�le: required when server must authenticate to clients (see SSL docs on
how to obtain this �le) */

g
static void dyn destroy function(struct CRYPTO dynlock

void sigpipe handle(int x) f g

By default, clients are not required to authenticate. To support client authentication use the
following:

if (soap

ssl server context(&soap,
SOAP SSL REQUIRE CLIENT AUTHENTICATION,
"server.pem",
"password",
"cacert.pem",
NULL,
"dh512.pem",
NULL,
NULL

))
f

soap printAUfault(&soap, stderr);
exit(1);

g

This requires each client to authenticate with its certi�cate.

The cacert �le and capath

or you can add the following line to soapdefs.h:

#de�ne WITH OPENSSL

and compile with option -DWITH SOAPDEFS H to include soapdefs.h

void sigpipe handle(int x) f g

Caution: it is important that the WITH OPENSSL macro MUST be consistently de�ned to compile
the sources, such as stdsoap2.cpp, soapC.cpp, soapClient.cpp, soapServer.cpp, and all application sources
that include stdsoap2.h or soapH.h. If the macros are not consistently used, the application will

� There should be a script called CA.sh (and a CA.pl that does the same). This hides all the

Of course the developer using your server cert on her machine will �nd that if require

It is also possible to convert IIS-generated certi�cates to PEM format, see http://www.icewarp.com/Knowledgebase/617.htm

for example.

17.23 SSL Hardware Acceleration

You can specify a hardware engine to enable hardware support for cryptographic acceleration. This
can be done once in a server or client with the following statements:

static const char

The gzip compression is oo28Pgonal to all transpoo2 encodings such as HTTP, SSL, DIME, and can
be used with other transpoo2 layers. You can even save and load compressed XML data to/from
�les.

gSOAP suppoo2s two compression formats: de
ate and gzip. The gzip format is used by default.

and may speed up the transmission of compressed SOAP/XML messages. This is accomplished by
setting the SOAP IO

char *path;
long expire; /* client-side: local time to expire; server-side: seconds to expire */
unsigned int version;
short secure;
short session; /* server-side */
short env; /* server-side: 1 = got cookie from client */
short modi�ed; /* server-side: 1 = client cookie was modi�ed */
struct soap cookie *next;

g;

Since the cookie database is linked to a soap struct, each thread has a local cookie database in a
multi-threaded implementation.

17.27 Server-Side Cookie Support

Server-side cookie support is optional. To enable cookie support, compile all sources with option
-DWITH COOKIES, for example:

g++ -DWITH COOKIES -o myserver ...

gSOAP prov
/Fs the following cookie API for server-side cookie session control:

186

Function
struct soap cookie *soap set cookie(struct soap *soap, const char *name, const char *value, const

The cookie path value is used to �lter cookies intended for this service according to the path pre�x
rules outlined in RFC2109.

The following example server adopts cookies for session control:

int main()
f

struct soap soap;
int m, s;
soap init(&soap);
soap.cookie domain = "...";
soap.cookie path = "/"; // the path which is used to �lter/set cookies with this destination
if (argc < 2)
f

soap getenv cookies(&soap); // CGI app: grab cookies from ’HTTP COOKIE’ env var
soap serve(&soap);

g
else
f

m = soap bind(&soap, NULL, atoi(argv[1]), 100);
if (m < 0)

exit(1);
for (int i = 1; ; i++)
f

s = soap accept(&soap);
if (s < 0)

exit(1);
soap serve(&soap);
soap end(&soap); // clean up
soap free cookies(&soap); // remove all old cookies from database so no interference occurs

with the arrival of new cookies
g
g
return 0;

g
int ck demo(struct soap *soap, ...)
f

int n;
const char *s;
s = soap cookie value(soap, "demo", NULL, NULL); // cookie returned by client?
if (!s)

s = "init-value"; // no: set initial cookie value
else

... // modify ’s’ to re
ect session control
soap set cookie(soap, "demo", s, NULL, NULL);
soap set cookie

17.28 Connecting Clients Through Proxy Servers

When a client needs to connect to a Web Service through a proxy server, set the soap.proxy host

string and soap.proxy port integer attributes of the current soap runtime environment to the proxy’s
host name and port, respectively. For example:

struct soap soap;
soap init(&soap);
soap.proxy host = "proxyhostname";
soap.proxy port = 8080;
if (soap call

� No logging

� Limited TCP/IP and HTTP error diagnostic messages

�

The generated envC.cpp �le holds the SOAP Header and Fault serializers and you can link this �le
with your client or server application.

17.32 How to Create Client/Server Libraries

The gSOAP compiler produces soapClientLib.cpp and soapServerLib.cpp codes that are speci�cally
intended for building static or dynamic client/server libraries. These codes export the stubs and
skeletons, but keep all marshaling code (i.e. parameter serializers and deserializers) local (i.e. as

First, we create an empty header �le env.h (which may contain optional SOAP Header and Fault
de�nitions), and compile it as follows:

soapcpp2 -penv env.h
g++ -c envC.cpp

We also compile stdsoap2.cpp without namespaces:

g++ -c -DWITH NONAMESPACES stdsoap2.cpp

Similar to the Quote example above, we compile it as a library and we use option -n to rename the
namespace table to avoid link con
icts:

//gsoap ns service style: rpc
//gsoap ns service encoding: encoded
//gsoap ns service location: http://www.cs.fsu.edu/ engelen/calc.cgi
//gsoap ns schema namespace: urn:calc
int ns add(double a, double b, double &result);
int ns sub(double a, double b, double &result);
int ns mul(double a, double b, double &result);
int ns div(double a, double b, double &result);
g

We compile this with:

soapcpp2 -n calc.h
g++ -c calcServiceObject.cpp

The e�ect of the -n option is that it creates local namespace tables, and a modi�ed calcServiceObject.h

server class de�nitions that properly initialize the gSOAP run time with the table.

#include "calcServiceObject.h" /e.

Second, we create the Delayed Stock Quote header �le speci�cation, which may be obtained using
the WSDL importer.

//gsoap ns service name: Service
//gsoap ns service style: rpc
//gsoap ns service encoding: encoded
//gsoap ns service location: http://services.xmethods.net/soap

To create multiple DLLs in the same project directory, you SHOULD use option -p to rename the
generated soapClientLib.cpp and

