
search(1) search(1)

NAME
search − SWISH++ searcher

SYNOPSIS
search [options] query

DESCRIPTION
search is the SWISH++ searcher. It searches a previously generated index for the words specified in a
query. In addition to running from the command-line, it can run as a daemon process functioning as a
‘‘search server.’’

QUERY INPUT
Query Syntax

The formal grammar of a query is:

query: query optional_relop meta
meta

meta: meta_name = primary
primary

meta_name: word

primary: (query)
not meta
word
word*

optional_relop: and
or
(empty)

In practice, however, the query is the set of words sought after, possibly restricted to meta data, and possi-
bly combined with the Boolean operators ‘‘and,’’ ‘‘or,’’ and ‘‘not.’’ The asterisk (*) can be used as a
wildcard character at the end of words. Queries are evaluated in left-to-right order, i.e., ‘‘and’’ has the
same precedence as ‘‘or.’’ See the EXAMPLES.

Character Mapping and Word Determination
The same character mapping and word determination heuristics used by index(1) are used on queries prior
to searching.

RESULTS OUTPUT
Result Components

The results are output either in ‘‘classic’’ or XML format. In either case, the components of the results are:

rank An integer from from 1 to 100.

path-name The relative path to where the file was originally indexed.

file-size The file’s size in bytes.

file-title If the file is of a format that can have titles (HTML, XHTML, LaTeX, mail, or Unix manual
pages) and the title was extracted, then file-title is its title; otherwise, it is its filename.

Classic Results Format
The ‘‘classic’’ results format is plain text as:

rank path-name file-size file-title

It can be parsed easily in Perl with:

($rank,$path,$size,$title) = split(/ /, $_, 4);

SWISH++ June 4, 2002 1

search(1) search(1)

(The separator can be changed via the −R or −−separator options or the ResultSeparator variable.)

Prior to results lines, comment lines may also appear containing additional information about the query
results. Comment lines are in the format of:

comment-key: comment-value

The keys and values are:

ignored: stop-words The list of stop-words (separated by spaces) ignored in the query.

not found: word The word was not found in the index.

results: result-count The total number of results.

XML Results Format
The XML results format is given by the DTD:

<!ELEMENT SearchResults (IgnoredList?, ResultCount, ResultList?)>
<!ELEMENT IgnoredList (Ignored+)>
<!ELEMENT Ignored (#PCDATA)>
<!ELEMENT ResultCount (#PCDATA)>
<!ELEMENT ResultList (File+)>
<!ELEMENT File (Rank, Path, Size, Title)>
<!ELEMENT Rank (#PCDATA)>
<!ELEMENT Path (#PCDATA)>
<!ELEMENT Size (#PCDATA)> <!ELEMENT Title (#PCDATA)>

and by the XML schema located at:

http://homepage.mac.com/pauljlucas/software/swish/SearchResults/SearchResults.xsd

For example:

<?xml version="1.0" encoding="us-ascii"?>
<!DOCTYPE SearchResults SYSTEM
"http://homepage.mac.com/pauljlucas/software/swish/SearchResults.dtd">
<SearchResults
xmlns="http://homepage.mac.com/pauljlucas/software/swish/SearchResults"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://homepage.mac.com/pauljlucas/software/swish/SearchResults

SearchResults.xsd">
<IgnoredList>
<Ignored>stop-word</Ignored>

...
</IgnoredList>
<ResultCount>42</ResultCount>
<ResultList>
<File>
<Rank>rank</Rank>
<Path>path-name</Path>
<Size>file-size</Size>
<Title>file-title</Title>

</File>
...
</ResultList>

</SearchResults>

SWISH++ June 4, 2002 2

search(1) search(1)

RUNNING AS A DAEMON PROCESS
Description

search can alternatively run as a daemon process (via either the −b or −−daemon-type options or the
SearchDaemon variable) functioning as a ‘‘search server’’ by listening to a Unix domain socket (specified
by either the −u or −−socket-file options or the SocketFile variable), a TCP socket (specified by either the
−a or −−socket-address options or the SocketAddress variable), or both. Unix domain sockets are pre-
ferred for both performance and security. For search-intensive applications, such as a search engine on a
heavily used web site, this can yield a large performance improvement since the start-up cost (fork(2),
exec(2), and initialization) is paid only once.

If the process was started with root privileges, it will give them away immediately after initialization and
before servicing any requests.

Clients and Requests
Search clients connect to a daemon via a socket and send a query in the same manner as on the command
line (including the first word being ‘‘search’’). The only exception is that shell meta-characters must not
be escaped (backslashed) since no shell is involved. Search results are returned via the same socket. See
the EXAMPLES.

Multithreading
A daemon can serve multiple query requests simultaneously since it is multi-threaded. When started, it
‘‘pre-threads’’ meaning that it creates a pool of threads in advance that service an indefinite number of
requests as a further performance improvement since a thread is not created and destroyed per request.

There is an initial, minimum number of threads in the thread pool. The number of threads grows dynami-
cally when there are more requests than threads, but not more than a specified maximum to prevent the
server from thrashing. (See the −t, −−min-threads, −T, and −−max-threads options or the ThreadsMin
or ThreadsMax variables.) If the number of threads reaches the maximum, subsequent requests are
queued until existing threads become available to service them after completing in-progress requests. (See
either the −q or −−queue-size options or the SocketQueueSize variable.)

If there are more than the minimum number of threads and some remain idle longer than a specified time-
out period (because the number of requests per unit time has dropped), then threads will die off until the
pool returns to its original minimum size. (See either the −O or −−thread-timeout options or the Thread-
Timeout variable.)

Restrictions
A single daemon can search only a single index. To be able to search multiple indices concurrently, multi-
ple daemons can be run, each searching its own index and using its own socket file. An index must not be
modified or deleted while a daemon is using it.

OPTIONS
Options begin with either a ‘-’ for short options or a ‘‘--’’ for long options. Either a ‘-’ or ‘‘--’’ by itself
explicitly ends the options; however, the difference is that ‘-’ is returned as the first non-option whereas
‘‘--’’ is skipped entirely. Either short or long options may be used. Long option names may be abbrevi-
ated so long as the abbreviation is unambiguous.

For a short option that takes an argument, the argument is either taken to be the remaining characters of the
same option, if any, or, if not, is taken from the next option unless said option begins with a ‘-’.

Short options that take no arguments can be grouped (but the last option in the group can take an argument),
e.g., -lrv4 is equivalent to -l -r -v4.

For a long option that takes an argument, the argument is either taken to be the characters after a ‘=’, if any,
or, if not, is taken from the next option unless said option begins with a ‘-’.

−?
−−help Print the usage (‘‘help’’) message and exit.

−aa
−−socket-address=a When running as a daemon, the address, a, to listen to for TCP requests. (Default

is all IP addresses and port 1967.) The address argument is of the form:

SWISH++ June 4, 2002 3

search(1) search(1)

[host :] port

that is: an optional host and colon followed by a port number. The host may be
one of a host name, an IP address, or the * character meaning ‘‘any IP address.’’
Omitting the host and colon also means ‘‘any IP address.’’

−bt
−−daemon-type=t Run as a daemon process. (Default is not to.) The type, t, is one of:

none Same as not specifying the option at all. (This does not purport to be
useful, but rather consistent with the types that can be specified to the
SearchDaemon variable.)

tcp Listen on a TCP socket (see the −a option).

unix Listen on a Unix domain socket (see the −u option).

both Listen on both.

By default, if executed from the command-line, search appears to return immedi-
ately; however, it has merely detached from the terminal and put itself into the
background. There is no need to follow the command with an ‘&’.

−B
−−no-background When running as a daemon process, do not detach from the terminal and run in the

background. (Default does.)

The reason not to run in the background is so a wrapper script can see if the pro-
cess dies for any reason and automatically restart it.

−c f
−−config-file= f The name of the configuration file, f , to use. (Default is swish++.conf in the

current directory.) A configuration file is not required: if none is specified and the
default does not exist, none is used; however, if one is specified and it does not
exist, then this is an error.

−d
−−dump-words Dump the query word indices to standard output and exit. Wildcards are not per-

mitted.

−D
−−dump-index Dump the entire word index to standard output and exit.

−fn
−−word-files=n The maximum number of files, n, a word may occur in before it is discarded as

being too frequent. (Default is infinity.)

−F f
−−format= f The format, f , search results are output in. The format is either classic or XML.

(Default is classic.)

−Gs
−−group=s The group, s, to switch the process to after starting and only if started as root.

(Default is nobody.)

−i f
−−index-file= f The name of the index file, f , to use. (Default is swish++.index in the current

directory.)

−mn
−−max-results=n The maximum number of results, n, to return. (Default is 100.)

−M
−−dump-meta Dump the meta-name index to standard output and exit.

SWISH++ June 4, 2002 4

search(1) search(1)

−os
−−socket-timeout=s The number of seconds, s, a search client has to complete a query request before

the socket connection is closed. (Default is 10.) This is to prevent a client from
connecting, not completing a request, and causing the thread servicing the request
to wait forever.

−Os
−−thread-timeout=s The number of seconds, s, until an idle spare thread dies while running as a dae-

mon. (Default is 30.)

−pn
−−word-percent=n The maximum percentage, n, of files a word may occur in before it is discarded as

being too frequent. (Default is 100.) If you want to keep all words regardless,
specify 101.

−P f
−−pid-file= f The name of the file to record the process ID of search if running as a daemon.

(Default is none.)

−qn
−−queue-size=n The maximum number of socket connections to queue. (Default is 511.)

−rn
−−skip-results=n The initial number of results, n, to skip. (Default is 0.) Used in conjunction with

−m or −−max-results, results can be returned in ‘‘pages.’’

−Rs
−−separator=s The classic result separator string. (Default is " ".)

−s
−−stem-words Perform stemming (suffix stripping) on words during the search. Words that end

in the wildcard character are not stemmed. (Default is no.)

−S
−−dump-stop Dump the stop-word index to standard output and exit.

−tn
−−min-threads=n Minimum number of threads to maintain while running as a daemon.

−Tn
−−max-threads=n Maximum number of threads to allow while running as a daemon.

−u f
−−socket-file= f The name of the Unix domain socket file to use while running as a daemon.

(Default is /tmp/search.socket.)

−Us
−−user=s The user, s, to switch the process to after starting and only if started as root.

(Default is nobody.)

−V
−−version Print the version number of SWISH++ to standard output and exit.

−wn[,c]
−−window=n[,c] Dump a ‘‘window’’ of at most n lines around each query word matching c charac-

ters. Wildcards are not permitted. (Default for c is 0.) Every window ends with a
blank line.

CONFIGURATION FILE
The following variables can be set in a configuration file. Variables and command-line options can be
mixed, the latter taking priority.

Group Same as −G or −−group

SWISH++ June 4, 2002 5

search(1) search(1)

IndexFile Same as −i or −−index-file
PidFile Same as −P or −−pid-file
ResultSeparator Same as −R or −−separator
ResultsFormat Same as −F or −−format
ResultsMax Same as −m or −−max-results
SearchBackground Same as −B or −−no-background
SearchDaemon Same as −b or −−daemon-type
SocketAddress Same as −a or −−socket-address
SocketFile Same as −u or −−socket-file
SocketQueueSize Same as −q or −−queue-size
SocketTimeout Same as −o or −−socket-timeout
StemWords Same as −s or −−stem-words
ThreadsMax Same as −T or −−max-threads
ThreadsMin Same as −t or −−min-threads
ThreadTimeout Same as −O or −−thread-timeout
User Same as −U or −−user
WordFilesMax Same as −f or −−word-files
WordPercentMax Same as −p or −−word-percent

EXAMPLES
Simple Queries

The query:

librar*

will return all documents that contain ‘‘library,’’ ‘‘libraries,’’ or ‘‘librarian.’’ The query:

mouse and computer

will return only those documents regarding the kind of mice attached to a computer and not the rodents.
The query:

cat or kitten or feline

will return only those documents regarding cats. The query:

mouse or mice and not computer

will return only those documents regarding mice (the rodents) and not the kind attached to a computer. The
query:

mouse and computer or keyboard

is the same as:

(mouse and computer) or keyboard

in that they will both return only those documents regarding either mice attached to a computer or any kind
of keyboard. However, neither of those is the same as:

mouse and (computer or keyboard)

that will return only those documents regarding mice and either a computer or a keyboard.

SWISH++ June 4, 2002 6

search(1) search(1)

Queries Using Meta Data
The query:

author = carroll

will return only those documents whose author attribute contains ‘‘carroll.’’ The query:

author = stevenson treasure

will return only those documents whose author attribute contains ‘‘stevenson’’ and also regarding treasure.
The query:

author = (lewis carroll)

will return only those documents whose author is Lewis Carroll. The query:

author = (lewis carroll) or wonderland

will return only those documents whose author is Lewis Carroll or that contain the word ‘‘wonderland’’
anywhere in the document regardless of the author.

Sending Queries to a Search Daemon
To send a query request to a search daemon using Perl, first open the socket and connect to the daemon (see
[Wall], pp. 439-440):

use Socket;

$SocketFile = ’/tmp/search.socket’;
socket(SEARCH, PF_UNIX, SOCK_STREAM, 0) or

die "can not open socket: $!\n";
connect(SEARCH, sockaddr_un($SocketFile)) or

die "can not connect to \"$SocketFile\": $!\n";

Autoflush must be set for the socket filehandle (see [Wall], p. 781), otherwise the server thread will hang
since I/O buffering will wait for the buffer to fill that will never happen since queries are short:

select((select(SEARCH), $| = 1)[0]);

Next, send a query request (beginning with the word ‘‘search’’ and any options just as with a command-
line) to the daemon via the socket filehandle making sure to include a trailing newline since the server reads
an entire line of input (so therefore it looks and waits for a newline):

$query = ’mouse and computer’;
print SEARCH "search $query\n";

Finally, read the results back and print them:

print while <SEARCH>;
close(SEARCH);

EXIT STATUS
Exits with one of the values given below:

0 Success.

SWISH++ June 4, 2002 7

search(1) search(1)

1 Error in configuration file.
2 Error in command-line options.
40 Unable to read index file.
50 Malformed query.
51 Could not write to PID file.
52 Host or IP address is invalid or nonexistent.
53 Could not open a TCP socket.
54 Could not open a Unix domain socket.
55 Could not unlink(2) a Unix domain socket file.
56 Could not bind(3) to a TCP socket.
57 Could not bind(3) to a Unix domain socket.
58 Could not listen(3) to a TCP socket.
59 Could not listen(3) to a Unix domain socket.
60 Could not select(3).
61 Could not accept(3) a socket connection.
62 Could not fork(2) child process.
63 Could not change directory to /.
64 Could not create thread.
65 Could not detach thread.
66 Could not initialize thread condition.
67 Could not initialize thread mutex.

CAVEATS
1. Stemming can be done only when searching through and index of files that are in English because the

Porter stemming algorithm used only stems English words.

2. When run as a daemon using a TCP socket, there are no security restrictions on who may connect and
search. The code to implement domain and IP address restrictions isn’t worth it since such things are
better handled by routers.

3. XML output can currently only be obtained for actual search results and not word, index, meta-name,
or stop-word dumps.

FILES
swish++.conf default configuration file name
swish++.index default index file name

SEE ALSO
index(1), perlfunc(1), exec(2), fork(2), unlink(2), accept(3), bind(3), listen(3), select(3),
swish++.conf(4), searchmonitor(8)

Tim Bray, et al. Extensible Markup Language (XML) 1.0, February 10, 1998.

Bradford Nichols, Dick Buttlar, and Jacqueline Proulx Farrell. Pthreads Programming, O’Reilly & Associ-
ates, Sebastopol, CA, 1996.

M.F. Porter. ‘‘An Algorithm For Suffix Stripping,’’ Program, 14(3), July 1980, pp. 130-137.

W. Richard Stevens. Unix Network Programming, Vol 1, 2nd ed., Prentice-Hall, Upper Saddle River, NJ,
1998.

Larry Wall, et al. Programming Perl, 3rd ed., O’Reilly & Associates, Inc., Sebastopol, CA, 2000.

AUTHOR
Paul J. Lucas <pauljlucas@mac.com>

SWISH++ June 4, 2002 8

