based_on(gdml)

based_on(gdml)

NAME
based_on —declare programariable
SYNTAX
BASIC syntax:
based_ondbhandle]relation-namefield-name variable-nanfigrariable-namg
C yyntax:
based_ondbhandle]relation-namefield-name hostxgression
host-ep ::= { host-&p-commalist variable-namg
*variable-name| function() }
COBOL syntax:
level variable-naméased_ondbhandle]relation-namefield-name
FORTRAN syntax:
based_ondbhandl€g]relation-namefield-name variable-name
Pascal syntax:
variablebased_ondbhandle]relation-namefield-name
variable::= { variable-name:type-name| function(argument-commali$t}
PL/I syntax:
based_ondbhandlg]relation-namefield-name variable-name
DESCRIPTION
The based_onclause declares a programriable by referencing a database fielthe preprocessor
supplies the hostariable with all the attriltes defined for the database field.
ARGUMENTS
variable Names a host languagariable that inherits the characteristics of a database field.
In Pascal, you cannot use thased_onclause in a parameter list for a routinastead, declare a type and
then declare the formal parameter to be that type.
dbhandleSpecifies the source of the database fiflde database handle must/@édeen declared in an
earlierdatabasestatement.
relation-namefield-nameSpecifies the relation and field on which to base the laoistble.
EXAMPLE

The folloving example shars two based_ondeclarations as tlgavould appear in & program:

based_on(gdml)

based_on states. state_nane state_naneg;
based_on states.capitol capitol _city;

The folloving example shws thebased_ondeclaration as it muld appear in adscal program:

var state : based_on states.state;
SEE ALSO
Host language documentation for declarationasfables.

DIAGNOSTICS
See Chapter 8 for a discussion of errors and error handling.

based_on(gdml)

boolean-gpression(gdml) booleamnpression(gdml)

NAME
boolean-gpression —relationship betweealwe &pressions

SYNTAX

boolean-a&pression::= { [not] conditional-epression|
conditional-epressionand conditional-epression|
conditional-epressionor conditional-expression}

conditional-epression:= { comparison-condition] between-conditior]
starting-condition | containing-condition|
matding-condition | not-condition | unique-condition

DESCRIPTION
A boolean-gpressionevduates to true,dise, or missinglt describes the characteristics of a singiug
expression (for gample, a missingalue) or the relationship betweenotwalue epressions (forxeample,x
is greater thag).

The order of precedence forauating compound Booleanxgressions igiot, and, and or.

ARGUMENTS
comparison-conditioDescribes the characteristics of a singlpression. Thdormat of thecomparison-
conditionfollows:

Syntax: comparison-condition of Boolean Expession

value-epression-1 elational-opeator value-&pression-2

Therelational-opeator can be ay of the operators in the folldng table:

boolean-gpression(gdml) booleamnpression(gdml)

Operator Relationship
eqor =or == equal
neor <>or!= | notequal
gtor > greater than
geor >= greatethan or equal
It or < less than
le or <= lessthan or equal

between-conditiorTests whether aalue &pressionyvalue-epression-1 occurs between ta cther \alue
expressionsyalue-&pression-2andvalue-epression-3 This test is inclusie d the boundary alues. The
format of thebetween-conditiofollows:

Syntax: between-condition of Boolean Expgssion

value-epression-1not] between
value-epression-2and value-epression-3

containing-conditionTests for the presence sftring (caseinsensitve) anywhere invalue-epression It
evduates to true iftring is contained irvalue-expression If the \alue ofvalue-epressionis missing, the
result is missing.The format of theontaining-conditiorfollows:

Syntax: containing-condition of Boolean Expession

value-epression-1not] containing value-epression-2

starting-conditionTests for the presence efring (case-sensite) at the bginning ofvalue-expression It
evduates to true if the first charactersvaflue-expressionmatchstring. The search is case-sensiti The

boolean-gpression(gdml) booleamnpression(gdml)

format of thestarting-conditionfollows:

Syntax: starting-condition Boolean Expession

value-epression-1not] starting with value-epression-2

matding-condition Tests for the presence ofildcarded-string a dring that can contain the wildcard
character$ and?. The asterisk matches an unspecified run of characters, while the question mark matches
a sngle characterThis test is casmsensitve. The format of thenatding-conditionfollows:

Syntax: matching-condition of Boolean Expession

value-epression-1not] matching value-epression-2

missing-conditionTests for the absence of alue indbfield-&pression It is true if the alue ofdbfield-
expressions missing. The format of thenissing-conditiorfollows:

Syntax: missing-condition of Boolean Expession

dbfield-expressionnot] missing

Unless you specify otherwise in the figld¥finition, blanks are returned for numbers, characters, and
dates, and nothing is returned for blolBee for more information about defining alternate missahges.

any-conditionTests for the gistence of at least one qualifying record in a relation or relatidings
expression is true if the record stream specifieddayincludes at least one recordf. you addnot, the
expression is true if there an® records in the record streanihe format of theny-conditionfollows:

Syntax: any-condition of Boolean Expession

[not] any rse

You might want to useany instead of joining records if all youamt to do is establish that a recoxists.
As soon finds one record that meets the search criteria, it stops, whereasaujdinamtinue until it found
all qualifying records.

unique-conditionTests for the eistence of ractly one qualifying recordThis expression is true if the
record stream specified loge consists of only one recordf you addnot, the condition is true if there is
more than one record in the record stream or if the record stream is efhptformat of theunique-
conditionfollows:

boolean-gpression(gdml) booleamnpression(gdml)

Syntax: unique-condition of Boolean Expession

[not] unique rse

EXAMPLES

for

for

for

for

for

for

The following statement looks for cities with populations between 100,000 and 250,000:

incities with c.popul ati on between 100000 and 250000
witeln (c.city, c.state, c.population);
end_for;

The folloving statement looks for cities with the substrivglé’ ' somevhere in their name:

incities with c.city containing 'ville’
witeln (c.city, c.state);
end_for;

The folloving statement looks for cities that start with the stiNisgy:

incities with c.city starting with 'New
witeln (c.city, c.state);
end_for;

The following statement looks for cities with the striftgn” following ary number of other characters:

incities with c.city matching '*ton*’
witeln (c.city, c.state);
end_for;

The folloving statement looks for states with the state alition equal to'N’’ followed by &actly one character:

incities with c.city matching 'N?’
witeln (c.city, c.state);
end_for;

The following statement looks for states thavéa nissing \alue for thecapIToL field:

in states with s.capitol mssing
witeln (s.state_nane);
end_for;

boolean-gpression(gdml) booleamnpression(gdml)

The folloving statement prints the name ofyaate for which there are cities stored:

gdnml _120a. epas
for s in states with any c in cities with
c.state = s.state
witeln (s.state_nane);
end_for;

The follonving query prints the names of states thaehaly one ski area:

gdml _120b. epas
for s in states with unique ski in ski_areas with
ski.state = s.state
witeln (s.state_nane);
end_for;

SEE ALSO
See the entries in this chapter for:

. value-epression
. rsein this chapter

DIAGNOSTICS
See Chapter 8 for a discussion of errors and error handling.

close_blob(gdml) close_blob(gdml)

NAME
close_blob —close blob field

SYNTAX

close_blobblob-variable[on-error]

on-erfor ::= on_error statement..end_error

DESCRIPTION

The close_blobstatement closes an open blob field and releases system resources associated with blob
retrieval or update.

You should close the blob as soon as you finish reading or writfngpu fail to close a blob to which you
wrote data, you will not be able to neathe blob permanentClosing a blob is especially important when
you access remote databas&ecause remote intaide liffers sgment transfer between participating
nodes, it may truncate the lasggeent you write unless yoxgicitly signal that the blob is closed.

Once you close a blob, you cannot read from or write to that blob without re-opening it witkrarblob
or for blob statement.

ARGUMENTS
blob-variable A temporary name used for name recognititinis associated with indidual sgments in
the field and is usedewy much lile a ontext variable. You must hae asigned the blobariable in an
earliercreate_blobor open_blobstatement.

on-eror Specifies the action to be performed if an error occurs during the close operation.

EXAMPLE

The folloving program creates a record stream froro t&lations, opens a blob field, readgreents from
the blob field, and then closes the blob field:

. gdnl _119a. epas
program updat e_gui de (i nput, output);

dat abase atlas = filenane ’'atl as. gdb’;
begi n

ready atl as;
start_transaction;
for s in states cross t in tourismover state sorted by s.state
begi n
witeln (s.state_nane, ' ', t.city);

close_blob(gdml) close_blob(gdml)

open_blob b in t.office
get _segnent b;
while (gds_$status [2] = 0) or (gds_$status [2] = gds_$segnent) do
begi n
wite (b.segnent:b.length);
get _segnent b;
end;
witeln;
cl ose_bl ob b;
end;
end_for;
commi t;
finish atlas;
end.

SEE ALSO
For some guidance on the best approach to processing blobs, see Chapes &lso the entries in this
chapter for:

. open_blob
. on_error
DIAGNOSTICS

See Chapter 8 for a discussion of errors and error handling.

commit(gdml) commit(gdml)

NAME
commit —write changes to database
SYNTAX
commit [transaction-handlg on-error]
on-erfor ::= on_error statement..end_error
DESCRIPTION

Thecommit statement ends a transaction and @sake transactiom'changes visible to other users.

The commit statement décts all databases in the transaction, writing to the database(s) all changes made
during the transactionit flushes all modified uiffers and closes gmecord streams that are open.

ARGUMENTS
transaction-handleé&pecifies the transaction yowamt to commit. If the transaction you ant to commit
has a transaction handle associated with it, you must use that handle when you commit the transaction.

If you do not specify a transaction handle aroenmit statement, commits th&léfault” transaction. The
default transaction is what starts when you ustag_transaction statement without a handle.

on-ermor Specifies the action to be performed if an error occurs during the commit operation.

EXAMPLE

The following Pascal @ample starts an unnamed transaction, performs some unspecified data manipulation,
and then writes the changes to the database:

start_transacti on concurrency;

commit;

The folloving Pascal program starts tvgeparate transactions, one to get a badge nymzbthe other to store awemployee. This
simplified program contains no error handling.

gdnml _122a. epas
program map (i nput_out put);

dat abase db = fil enane 'enp. gdb’;

type badge_type = based on badge_num badge;

commit(gdml) commit(gdml)

var
store_enp_tr : gds_$handle := nil;
to_be_stored : integer;
function get_badge : badge_type;
var
get _badge_tr : gds_$handl e;
begi n

get _badge_tr :=nil;
start_transaction get_badge_tr;
for (transaction_handl e get_badge_tr) b in badge_num
get _badge : = b. badge;
nmodi fy b using
b. badge : = b.badge + 1;
end_nodi fy;
end_for;
conmit get_badge_tr;
end; { function get_badge }

begi n
ready;
start_transaction store_enp_tr;
wite ('Enter the nunber of new enployees: ');
readln (to_be_stored);
while to_be_stored > 0 do
begi n
store (transaction_handle store_enp_tr) e in enpl oyees using
e. badge : = get_badge;
wite ('Enter first name: ');
readln (e.first_nane);
wite ('Enter last name: ');
readln (e.last_nane);
wite ('Enter supervisor”s id: ');
readl n (e.supervisor);
wite ('Enter department: ');
readl n (e.departnent);

end_store;
to_be_stored := to_be_stored - 1;
end;
conmit store_enp_tr;
finish;

end.

commit(gdml) commit(gdml)

SEE ALSO
See the entries in this chapter for:
. start_transaction
. transaction-handle
. on_error
DIAGNOSTICS

See Chapter 8 for a discussion of errors and error handling.

create_blob(gdml) create_blob(gdml)

NAME
create_blob —create blob
SYNTAX
create_blobblob-variablein dbfield-epressionon-error]
on-ermor ::= on_error statement..end_error
DESCRIPTION

Thecreate_blobstatement creates a blob

ARGUMENTS

blob-variable A temporary name used for name recognititinis associated with indidual sgments in
the field and is used much dila ontext variable.

dbfield-expressionA value epression that identifies a field containing blob data.

on-err Specifies the action to be performed if an error occurs during the creation of the blob field.

EXAMPLE
The folloving example creates a record stream, creates a blob field, and wgitesrde to the blob field:

bl ob_6. epas
program store_tour (input_output);
dat abase db = fil enane 'atl as. gdb’;

var i : integer;

var statecode based_on states.state
.sp

begi n

store t in tourismusing
wite (statecode)
t.state : =
t.date_nodified.char [6] := '"TODAY;
create_blob b in t.blurb;
witeln ('"Enter new blurb one line at a tine’);
witeln (" Aline containing "-30-" ends input’);
readl n (b.segnent);
whil e (b.segnent <> '-30-') do
begi n
for i := sizeof (b.segnment) downto 1 do
if b.segnent[i] <> then exit;
i =i + 1

create_blob(gdml) create_blob(gdml)

b.segnent[i] := chr(10);
b.length :=i;
put _segnent b;
readl n (b.segnent);
end;
cl ose_bl ob b;
end_store;

rol | back;
finish;

end.

SEE ALSO
For some guidance on the best approach to processing blobs, see Chapter 6 in this Semaddo the
entries in this chapter for:

. on_error
. value-epression
DIAGNOSTICS

See Chapter 8 for a discussion of errors and error handling.

database(gdml) database(gdml)

NAME
database —declare database

SYNTAX

database database-handle= [declaation-scopé
[compiletimg] [filename] database-filespec

[runtime [filenam¢g {database-filespe¢ host-variablé]

declasation-scope::= { static | extem }

DESCRIPTION
The databasedeclaration specifies the database to be accessed by a program or program Beuduise
the databasedeclaration identifies the source of metadata, it must precgddatabase accessiowever,
it is theready statement or equdlent action that actually opens the database for access.

The database declaration optionally supports the specification ofuatime database. Heever, the
runtime database is more appropriately referenced in (and opened bgadigestatement. & example,

your program may access a number of databases that use common metadatatain diferent data.
Applications of this type includ€AD/CAM and test control systems, in which a boilerplate database
supplies metadata (foxample, relations for wing struts and other aircraft assemblies) while instances of
that database contain actual data iithlial databases fot-62, IL-70, andIL-82 aircraft designs).The use

of the boilerplate database for metadata helps ensure that yaepiedtrack of the same data for all your
aircraft designs.

However, if you find that the runtime database iwajls the same, and &fent from the compiletime
database, you can add thmentime clause to thedatabase declaration. Ifyou choose only one
compiletime identifier, gpre uses that identifier for both compilation and runtime unless yovidea
runtime file in theready statement.

ARGUMENTS
database-handl®eclares a name that you can use when yoe lmreference multiple databases in a
program.

NOTE

Many of the gamples in this manual use the database habalevhich is a reserved wat in VAX COBOL.
You cannot use reseed words as database handles.

declamtion-scopeDeclares the scope of the handle specified byl#tabase-handlelause. Ifyou do not
specify a declaration scope, the scope of the handhelltiefoglobal.

database(gdml) database(gdml)

If you specifystatic, the scope is the module containing tla@abasedeclaration.
If you specifyextem, the handle will correspond to one in another module wilobal scope.

If all database handles in a module/ddhe same scope, the handle for theadiftransaction will also
have that scope; otherwise, the handle for theadiftransaction will hae aglobal scope.

database-filespe€pecifies the database from which the preprocessor reads the mefdaatiatabase-
filespeccan be:

. A filename enclosed in single (") or double (") quotation marks, depending on your host
language corentions.

. A logical name that resadg to a quoted file specification.

The file specification can contain the full pathname, including the name of the node on which the database
is stored.If you are in a directory other than the one that contains the database file, the file specification
mustinclude the pathnamdf the database is on another node,fitespeamust include the node name and
pathname. ¥u can define a link or logical name for the database file.

File specifications for remote databasegehhe followving form:

Syntax: Remote Database File Specification

VMS to ULTRIX:
node-namefilespec

VMS to non-VMS and non-ULRIX:
node-naméilespec

Within Apollo DOMAIN:
/Inode-naméilespec

All Else:
node-namsdilespec

Make aure that what folls the colon is aalid file specification on the et system; use bragtls,
slashes, and spaces as appropriate.

EXAMPLE
The folloving Pascal program includes ¢vdatabasedeclarations:

program mapper (i nput, output);
dat abase atlas =

database(gdml) database(gdml)

conpiletine filenanme 'atl as. gdb’;
dat abase gazetteer =

conpi letine filename '/usr/gds/exanpl es/atl as. gdb’;
begi n

ready atl as;
ready gazetteer;

for s in atlas.states sorted by s.state
begi n
witeln (s.state);
for ¢ in gazetteer.cities with c.state = s.state
witeln (c.city, c.latitude, c.longitude);
end_for;
end;
end_for;
end.

SEE ALSO
See the entry faready in this chapter

DIAGNOSTICS
See Chapter 8 for a discussion of errors and error handling.

erase(gdml) erase(gdml)

NAME
erase —delete record
SYNTAX
erasecontet-variable[on-error]
on-erfor ::= on_error statement..end_error
DESCRIPTION

The erasestatement remas records from an open record stream.

You cannot erase records from wig or joins. Rather you must erase them through the source relations.

ARGUMENTS
contt-variable Specifies the record stream from which to erase the record¢s). must declare the
contt-variablein afor or start_streamstatement.

on-eror Specifies the action to be performed if an error occurs during the erase operation.

EXAMPLE
The following statements prompt for a fieldlue and then delete records with thaitre:

var statecode: based_on states.state;

wite ('State to depopulate: ");
readl n (statecode);

for cincities with c.state = statecode
erase c;
end_for;

SEE ALSO
See the entries in this chapter for:

. on_error
. for
. start_stream

DIAGNOSTICS
See Chapter 8 for a discussion of errors and error handling.

fetch(gdml) fetch(gdml)

NAME
fetch —adance record stream pointer

SYNTAX

fetch stream-namégat end statement..end_fetcH [on-eror]

on-erfor ::= on_error statement..end_error

DESCRIPTION
Thefetch statement adances the record stream pointer to the necord in a record stream, thus selecting
the current record of that stream for whvateetrieval or manipulation operation you choose.

Thefetch statement:
. Can be used only in a record stream createddigira streamstatement.
. Must precede another statement thatfatts the current record.

ARGUMENTS
stream-nameSpecifies the stream from which to fetch recoré®u must open the stream with a
start_streamstatement.

statemenSpecifies or host language statements toxbeuéed on each record in the stream.
on-ermor Specifies the action to be performed if an error occurs during the fetch operation.

at end Specifies the action to be takwhen the program reaches the end of the stréfayou include
more than onstatementyou must separate them using the host languagesaion.

EXAMPLE

The followving program demonstrates the use of #tert stream statement in a loop that may be
terminated by user interaction:

. gdm _130a. epas
program map (i nput_out put);

dat abase db = fil enane 'atl as. gdb’;
var end_of _stream : bool ean;
genug : char;

begi n
start_stream geodata using c in cities
sorted by c.latitude, c.l|ongitude;

fetch(gdml) fetch(gdml)

end_of _stream := fal se
fetch geodata
at end end_of _stream:= true
end_fetch
whi l e not end_of _stream do begin
witeln (c.latitude, c.longitude, c.altitude
c.city, c.state);
wite ('Seen enough? (Y/N) ');
readl n (genug)
if genug = 'Y then
end_of _stream:= true
fetch geodata
at end begin
end_of _stream:= true
witeln ('Sorry, there is no nore.’);
end;
end_fetch
end;
end_stream geodat a
commi t;
finish;
end.
SEE ALSO
See the entries in this chapter for:

i start_stream
i on_error

DIAGNOSTICS
See Chapter 8 for a discussion of errors and error handling.

finish(gdml) finish(gdml)

NAME
finish —close database

SYNTAX

finish [database-handle-commaligbn-error]

on-erfor ::= on_error statement..end_error

DESCRIPTION
The finish statement closes either the aldf database (that is, a database opened without a database
handle) or a specific database identified by a database handle.

ARGUMENTS
database-handl&pecifies which open database or databases wot to close.A databasedeclaration
declares this handle.

. If you use the optionadlatabase-handleslause, the database handle mustehbeen
previously associated with a database in da¢abasedeclaration. Thiglause lets you
close specific databases if you are using multiple databases in your program.

. If you do not specify a database handle, tfieish statement commits the defit
transaction. Ifyou want to close a specific database, you must first commit or roll back
the transaction.

. Non-defult transactions that ta rot been committed are automatically rolled back by a
finish statement.

on-ermor Specifies the action to be performed if an error occurs during the finish operation.

EXAMPLE
The following statement closesanpen databases:

finish;
The following statements close the databases identified by the handle:

finish atlas;
finish napper;
finish your_broccoli;

SEE ALSO
See the entries in this chapter for:

. on_error

finish(gdml) finish(gdml)

. database

. commit

. rollback
DIAGNOSTICS

See Chapter 8 for a discussion of errors and error handling.

for(gdml) for(gdml)

NAME
for —loop structure
SYNTAX
for [request-optiohrse
statement...
end_for [on-eror]
on-ermor ::= on_error statement..end_error
DESCRIPTION
Thefor statementxecutes a statement or group of statements once for each record in a stream formed by a
record selectionx@ression.
You can nesfor loops to display a hierarglof records or to join relations across databases.
ARGUMENTS

request-optionSpecifies a transaction handle and/or request handle that determine the transaction and/or
request in which théor loop eecutes.

rse Specifies the record selection criteria used to create the record stream.
The scope of a comtevariable declared in thiese is the statement in which itas declared.Therefore,
you can re-use a comtevariable from dor statement when you end the for loop wéthid_for and bgin a

new record stream with for or start_streamstatement.

You cannot reference more than one database in a record selegitession. Thereforajse nestedor
loops to join relations across databases.

on-ermor Specifies the action to be performed if an error occurs durirfgrtheop.

statemenBpecifiesGDML or host language statements to kecated within thefor loop. Thestatemerg
you include in dor loop are subject to the follng rules:

. You can nedlor statements within othdor statements.

. If you include more than orsatementyou must separate them using the host language
corvention.

. If you use otheGDML statements in the for loop, those statements can use th&tconte

variables declared in théor statement or in an outer statement, as well as xisnte
declared in the currefdr statement.

for(gdml) for(gdml)

EXAMPLE
The following statements retwe records through for loop:

for c incities with popul ation gt 1000000
witeln (c.city, c.state, c.population);
end_for;

The folloving statements join tavrelations using &r loop:

for cincities cross s in states with c.state = s.state
witeln (c.city, s.state_nane, c.population);
end_for;

The following statements use an oufer loop to create a record stream from whiclstare statement tads some alues, host
variables supply somealues, and unreferenced fields are set to missing:

for oldcity in cities with oldcity.city = hostvarl

store newcity in cities using
newcity.city = hostvar?2;
newcity.state = oldcity.state;
newcity. popul ati on = ol dcity. popul ati on * hostvar 3;
newcity.altitude = oldcity.altitude;

end_store;

end_for;

The follonving example lists emplgees by department:

gdnml _136a. epas
program print_depts (input, output);
dat abase db = fil enanme 'enp. gdb’;

begi n
for d in departments sorted by d.dept_nane
begi n
witeln (d.department, ' nmanager: ', d.nmanager);

for e in enployees with e.departnent = d.departnment
sorted by e.badge
witeln (’ ", last_nane, first_nane);
end_for;
end_for;
end.

for(gdml) for(gdml)

The net example demonstrates theayto join relations across databas#suses tv copies of the sample atlas databases, one of
which is in your current directory and the other in thaneples directory praded with The statements displaglves from the
smresrelation in one copof the atlas database, aralues stored in another database f@MES in those
states. Thgoin term is theSTATE field in both relations.

program mapper (input, output);
dat abase atlas =
conpiletine filenanme 'atl as. gdb’;
dat abase gazetteer =
conpi letine filename '/usr/gds/exanpl es/atl as. gdb’;
begi n

ready atl as;
ready gazetteer;

for s in atlas.states sorted by s.state
begi n
witeln (s.state);
for ¢ in gazetteer.cities with c.state = s.state
witeln (c.city, c.latitude, c.longitude);
end_for;
end;
end_for;

finish atlas;
finish gazetteer;

end.

The follonving program hiresverybody’s df spring and assigns themwbadge numbersNote that each request (that is, efarhand
store) must use the same request optiongnehough thg are nested.The modify statement is not a separate request and does not
require a transaction handl@he outerfor statement is in the dailt transaction so that it will not read thevhestored records and
start prompting for empie@e grandchildren.

gdnml _137a. epas
program nested_for (input, output);
dat abase db = fil ename 'enp. gdb’;

var
update_tr : gds_$handle := nil;
check . char;
fnl, Inl : integer;

for(gdml)

begi n
ready;

start_transaction update_tr consistency read_wite reserving
badge_

num enpl oyees for protected wite;

start_transacti on;

for e in enpl oyees

fnl :=

whi | e
fnl

Inl :=

whil e
I nl
wite

1;

(e.first_nanme [fnl] <> ') do
= fnl + 1;

1;

(e.last_nanme [Inl] <> ') do
= 1nl + 1;

("Should we hire ', e.first_nanme:fnl,

e.last_nane:Inl-1, "s kid? ");
readl n (check);
if (check ="'y’) or (check ="'Y) then

begi n

for (transaction_handl e update_tr) b in badge_num

begi

store (transaction_handl e update_tr) n_e in enpl oyees using

n

begi n

wite ("What”s the kid"s first nane? ’);
readln (n_e.first_nane);

n_e.last_nane := e.last_nane;

wite ('What”s the kid"s date of birth? ’);
readln (n_e.birth_date.char[20]);

n_e. badge : = b. badge + 1;

n_e. departnent := 'NEP';
n_e. supervisor := 13;
end;
end_store;

nmodi fy b using

b. badge : = b.badge + 1;

end_nodi fy;

end;

end_

end;
end_for;

for;

commit update_tr;

conmmit;
finish;

for(gdml)

for(gdml) for(gdml)

end.
SEE ALSO
See the entries in this chapter for:
. request-option
. rse
. on_error
. for blob
DIAGNOSTICS

See Chapter 8 for a discussion of errors and error handling.

for blob(gdml) for blob(gdml)

NAME
for blob —access blob field

SYNTAX

for blob-variablein dbfield-epressionon-error]
statement...
end_for

on-ermor ::= on_error statement..end_error

DESCRIPTION
Thefor blob statement retriges data from a field that contains blob data.

The for blob statement is the easiesawto access blobsYou should use it when you process whole
segments of a blob field or the entire contents of the bldfet) without calling special formatting routines.

To read or write a blob field with tHfer blob statement:
. Construct a loop with thédther” for statement. Thisuter for loopcreates a record stream.

. Construct a loop with thior blob statement. Thigner loopswings through the blob, returning a
segment at a time.

. Perform whatger action(s) you vant to the blob under the control of the inner loop.
. Return control to the outer loop when you are finished with the blob field.

ARGUMENTS
blob-variable A temporary name used for name recognititinis associated with indidual sgments in
the field and is usedewy much lile a ®@ntext variable.

dbfield-expressionA value epression that identifies a field containing blob data.
on-ermor Specifies the action to be performed if an error occurs durirfgrtheop.

statementAny valid host language or statementlse host language punctuation to terminate each
statement.

EXAMPLE
The following statements create a record stream, disphagradestructured fields from those records, and
display a blob from each of those records:

for tour in tourismsorted by tour.state
witeln (tour.city, tour.state, tour.zip);
writeln;

for blob(gdml) for blob(gdml)

for blob in tour. guidebook
wite (bl ob.segnent:blob.length);
end_for; {blob |oop}
witeln;
end_for; {for |oop}

The follonving program copies a blob to another database byviewié in afor blob statement:

gdm _139a. epas
program updat e_gui de (i nput, output);

dat abase atlas = filenane ’'atl as. gdb’;
dat abase guide = fil enane ’'coastal _gui de. gdb’;

begi n
start_transacti on;

for t in atlas.tourism

begi n
store new i n guide.tourismusing
new. state := t.state;
new.city :=t.city;

new.zip :=t.zip;
create_bl ob n_gui de in new. gui debook;
for o_guide in t.guidebook
n_gui de. segnent : = o_gui de. segnent;
n_gui de.l ength : = o_guide. | ength;
put _segnment n_gui de;
end_for;
cl ose_bl ob n_gui de;
end_store;
end;
end_for;
commi t;
finish;
end.
SEE ALSO
For more guidance on processing blobs, see Chapter 6 of this m&emlalso the entries in this chapter
for:

. on_error

. value-epression

for blob(gdml) for blob(gdml)

DIAGNOSTICS
See Chapter 8 for a discussion of errors and error handling.

get_sgment(gdml) get_ggment(gdml)

NAME
get_sgment —retrige Hob segment

SYNTAX

get_segmenblob-variable[on-eror]

on-ermor ::= on_error statement..end_error

DESCRIPTION
The get_segmenstatement reads a portion of a blob fieRefore you can read a blob, you must open it
with anopen_blobstatement.

ARGUMENTS
blob-variable A temporary name used for name recognititinis associated with indidual sgments in
the field and is used kka @ntext variable. You must hee @signed the blobariable in an earlier
open_blobstatement.

on-eror Specifies the action to be performed if an error occurs during the get operation.

EXAMPLE
The folloving example creates a record stream, opens a blob field, and rgatense from the blob field:

for tour in tourismcross s in states over state
sorted by s.state
witeln (tour.zip, s.state_nanme, s.area);
open_blob b in tour. guidebook;
get _segnent b;
while (gds_$status [2] = 0) or
(gds_$status [2] = gds_$segnent) DO
begi n
wite (b.segnent : b.length);
get _segnent b;
end;
cl ose_bl ob b;
writeln;
end_for;

SEE ALSO
For some guidance on the best approach to processing blobs, see Chapter 6 in this Semaddo the
entries in this chapter for:

. open_blob

get_sgment(gdml) get_ggment(gdml)

. close_blob
. on_error
DIAGNOSTICS

See Chapter 8 for a discussion of errors and error handling.

modify(gdml) modify(gdml)

NAME
modify —change fieldalue

SYNTAX

modify contet-variableusing
statement...
end_maodify [on-ermor]

on-ermor ::= on_error statement..end_error

DESCRIPTION
Themodify statement updates a field or fields in a record from a record stream.

You cannot modify records through wis. Ratheryou must modify them through the source relations.
If the field you vant to modify contains blob data, use phe_segmentstatement to modify it.

ARGUMENTS
contet-variable Specifies the record stream from which the record is to be modifiga.must declare

contet-variablein afor or start_streamstatement.
on-ermor Specifies the action to be performed if an error occurs during the modify operation.

statementSpecifies the action to be &k in modifying the record(s)The statemerg ae typically
assignments. Ifou include more than orgtatementyou must separate them using the host language
corvention.

EXAMPLE
The following statements increase thedwe of thePOPULATION field in all cities in a gien date:

var statecode : based_on states.state;
wite ('State code [2 characters, uppercase]: ');
readl n (statecode);

for cincities with c.state = statecode
nmodi fy ¢ using
c.popul ation := c.population * 1.2;
end_nodi fy;
end_for;

SEE ALSO
See the entries in this chapter for:

modify(gdml) modify(gdml)

. on_error

. for

. start_stream

. put_segment
DIAGNOSTICS

See Chapter 8 for a discussion of errors and error handling.

on_error(gdml)

on_error(gdml)

NAME
on_error —error handling
SYNTAX
on_error
statement...
end_error
DESCRIPTION

Theon_error clause specifies the action the program wilktélan error occurs during thexecution of the

associated operation.

All statements can include am_error clause; thelatabasedeclaration cannot.

ARGUMENTS

statemenfA host language or statemerif.you include more than orgatementyou must separate them

using the host language a@ntion.

EXAMPLE

The following program changes the type of ski areas, using reasonable error haftdlirampts for the
name of a database and reprompts if there is an error duringattestatement. Thenodification taks
place in a subroutine that returns the status of the chafaijdation errors are handled in the routine, thus
avading restarting either the transaction or thieloop. Deadlocksre handled by the main routine, which

rolls back and retriesOther errors print the status, rollback and.e

gdnml _145a. epas
program ski _areas (i nput_output);

dat abase db = fil enane 'atl as. gdb’;

type

name = based on ski _areas. nang;

a_type = based on ski _areas. type;
var

nor e : char :="y’;

ar ea_nane : nane;

area_type : a_type;

stat ;. integer;

function nodify_type (area_nanme : nane; area_type :

| abel
re_nod;

i nt eger;

on_error(gdml)

begi n
nodi fy_type : = gds_S$true;
start_transacti on;
for ski in ski_areas with ski.nane = area_nane
re_nod:
nmodi fy ski using
ski.type := area_type;
end_nodi fy
on_error
begi n
if gds_$status [2] = gds_$not _valid then
begi n
witeln ('Type nmust be N, A or B);
wite ('Enter new area type: ');
readl n (area_type);
goto re_nod,;
end
else if gds_$status [2] <> gds_$deadl ock then
gds_$print_status (gds_$status);
nodi fy_type : = gds_$fal se;
rol | back;
return;
end;
end_error;
end_for
on_error
if gds_$status [2] <> gds_$deadl ock then
gds_$print_status (gds_$status);
nodi fy_type : = gds_$fal se;
end_error;
commi t;
end;

function open_dat abase . integer;
var
filenane : array [1..40] of char;

begi n
open_dat abase : = 0;

wite ('Please enter pathname of database ("quit” to exit):

readln (fil enane);
if filename = 'quit’ then
open_dat abase := -1

on_error(gdml)

on_error(gdml)

el se begin
ready fil enane as db
on_error
begi n

witeln ('Error during database open.

gds_$print_status (gds_$status);
witeln;
open_dat abase := 1;
end;
end_error;
end;
end;

begi n
r epeat
begi n
stat := open_dat abase;
if stat = -1 then
begi n
witeln ('Toodl es, kid!");
return;
end;
end;
until (stat = 0);
while nore ="'y’ do
begi n
wite ('Enter ski_area nane: ');
readl n (area_nane);
wite ('Enter new area type: ');
readl n (area_type);

Status follows.");

stat := nodify_type (area_nane, area_type);
while stat = gds_$fal se do
begi n
if gds_$status [2] = gds_$deadl ock then
stat := nodify_type (area_nane, area_type)
el se
begi n
witeln ('Farewell, cruel world...");
finish;
return;
end;

end;

wite ('Enter "y" to change another record:);

on_error(gdml)

on_error(gdml) on_error(gdml)

readln (nore);
end;
finish;
end.
DIAGNOSTICS
See Chapter 8 for a discussion of errors and error handling.

open_blob(gdml) open_blob(gdml)

NAME
open_blob —open blob field for access
SYNTAX
open_blobblob-variablein dbfield-expressionon-error]
on-erfor ::= on_error statement..end_error
DESCRIPTION
Theopen_blobstatement opens a blob so that its data may bewvegtrie
You can process blobs by using the fallag statements:
. create_blob
. for blob
. open_blob
. get_segmenandput_segment
. close_blob
This approach is most useful when you process a blob field, look at what is in the data, edecigdns
based on the contents.
ARGUMENTS
blob-variableDeclares a temporary name to be used for name recognitignassociated with indidual
segments in the field and is useddik @ntext variable.
dbfield-expressionA value expression that identifies a field containing blob dathe contat variable must
be assigned in an outer loop orstart_streamstatement.
on-ermor Specifies the action to be performed if an error occurs during the blob operation.
EXAMPLE

The following example creates a record stream frono telations, opens a blob field, and readgsents
from the blob field:

for tour in tourismcross s in states over state
sorted by s.state
witeln (tour.zip, s.state_nanme, s.area);
open_blob b in tour. guidebook;
get _segnent b;

open_blob(gdml) open_blob(gdml)

while (gds_$status [2] = 0) DO

begi n
wite (b.segnent : b.length);
get _segnent b;

end;

cl ose_bl ob b;

witeln;

end_for;

SEE ALSO
For more guidance on processing blobs, see Chapter 6 of this m&emlalso the entries in this chapter
for:

. on_error
. for blob
. close_blob

DIAGNOSTICS
See Chapter 8 for a discussion of errors and error handling.

prepare(gdml) prepare(gdml)

NAME
prepare —prepare to commit transaction

SYNTAX

prepare [transaction-handlg on-error]

on-ermor ::= on_error statement..end_error

DESCRIPTION
The prepare statement signals your intention to commit either thaulefransaction (that is, a transaction
you start without declaring a handle) or the transaction specified by the optional transaction handle.

The prepare statement xecutes the first phase of a dyphase commit.The access method polls all
participants and waits for replies from eachit checks to see that no other databaseigctan afect the
transaction. Th@repare statement is particularly useful for transactions that access multiple databases or
for transactions that wiolve both database and non-databaseviygti

If the statement completes successfiglyarantees that@mmit statement will gecute successfully if the
disk is still intact.

ARGUMENTS
transaction-handl&pecifies which transaction to prepare to comitfithe transaction you ant to commit
has a transaction handle associated with it, you must use that handle mrepghes and subsequent
commit statements.

If you do not specify a handle on tpheepare statement, prepares tHdefault” transaction. Thelefault
transaction is what gets started when you ustard transaction statement without a handle.

on-ermor Specifies the action to be performed if an error occurs during the prepare operation.

EXAMPLE
The following extract includes @repare statement with ann_error clause:

prepare zi p_code_update

on_error

begi n
witeln ('Sonething failed during prepare’);
gds_S$print_status (gds_$status);
witeln ('Starting rollback...");
rol | back zi p_code_updat e€;
goto failure;

end
end_error;

prepare(gdml) prepare(gdml)

commit zi p_code_updat e;

SEE ALSO
See the entries in this chapter for:

. commit

. on_error

. transaction-handle
DIAGNOSTICS

See Chapter 8 for a discussion of errors and error handling.

put_sgment(gdml) put_sgment(gdml)

NAME
put_sg@ment —write a blob ggnent
SYNTAX
put_segmentblob-variable[on-error]
on-erfor ::= on_error statement..end_error
DESCRIPTION

Theput_segmentstatement writes a portion of a blob field.
Before you can write a blob field, you must create it witheate blobstatement.

ARGUMENTS
blob-variable A temporary name used for name recognititinis associated with indidual sgments in
the field and is used much dila ®ntext variable. Yu must hee asigned the blobariable in an earlier
open_blobstatement.

on-eror Specifies the action to be performed if an error occurs during the put operation.

EXAMPLE
The following statements create a record stream, create a blob field, and gmienggto the blob field:

{bl ob_3. epas}

store tour in tourismusing
wite ('Enter state code: ’);
readln (tour.state)
wite ('Enter zip code: ');
readl n (tour. zip)
wite ('Enter city: ");
readln (tour.city)
create_blob b in tour.gui debook;
witeln ('"Enter new blurb one line at a tine’);
witeln (" Aline containing "-30-" ends input’);
readl n (b.segnent);
while (b.segnent <> '-30-") do

begi n
for i := sizeof (b.segnment) downto 1 do
if b.segnment[i] <> "' ' then exit;
i =i + 1
b. segnent[i] := chr(10);
b.length :=i;

put_sgment(gdml) put_sgment(gdml)

put _segnent b;
readl n (b.segnent);
end;
cl ose_bl ob b;
end_store;

The folloving program copies the contents of a blob field from one database to another:

gdm _139a. epas
program updat e_gui de (i nput, output);

dat abase atlas = filenane ’'atl as. gdb’;
dat abase guide = fil enane ’'coastal _gui de. gdb’;

begi n
start_transacti on;

(* copy a blob to another database by retrieving it in a blob for *)

for t in atlas.tourism
begi n
store new in guide.tourism using
new. state := t.state;
new.city :=t.city;
new.zip :=t.zip;
create_bl ob n_gui de i n new. gui debook;
for o_guide in t.guidebook
n_gui de. segnent : = o_gui de. segnent;
n_gui de.l ength : = o_guide. | ength;
put _segnment n_gui de;
end_for;
cl ose_bl ob n_gui de;
end_store;
end;
end_for;
commi t;
finish;
end.
SEE ALSO
For some guidance on the best approach to processing blobs, see Chapter 6 in this Semaddo the
entries in this chapter for:

put_sgment(gdml) put_sgment(gdml)

. on_error
. open_blob
. close_blob

DIAGNOSTICS

See Chapter 8 for a discussion of errors and error handling.

ready(gdml) ready(gdml)

NAME
ready —open database

SYNTAX
ready { dbhandle-commalist runtime-file } [on-eror]
dbhandle:={ database-handld runtime-file as database-handlg
runtime-file ::= { database-filespe¢ host-variable}
on-ermor ::= on_error statement..end_error

DESCRIPTION

Theready statement opens one or more databases for adé#sm it encountersready statement,

. Initializes itself internally The initialization sets up data structures and allocates dynamic
memory

. Looks at the file name of the database and determines if the file is stored on the originating node (a
local databasgor on another node (aemote databage provides transparent access to remote
databases.

. Opens the database file and looks at the header pageming that the header page identifies the
file as containing aalid, unbrolen database with the correatrsion of the on-disk structure,
permits further acces®Otherwise, it returns an error

Depending on the switches you set when preprocessing the progragpreitifou may not hee o issue a

ready statement to access a databaBg. default, gpre generates aeady if one is needed so that the

database is automatically readied the first time your program refers to that datdbaseer, if you
specify themanual switch when you preprocess the progragpre does not generateeady (and
start_transaction) statements. Thadwantage to using thmanual switch is that preprocessed code is
smaller and simpler

Finally, you should close each database wiimsh statement when you are done with Tthis practice

saves g/stem resources.

ARGUMENTS

dbhandleReferences either a database assigned a handlelatabase declaration or a database you
specify withdatabase-filespeand to which you assign a database hantie database-filespemust be a
guoted file specification or a logical name that resote a quoted file specification.

In the case of a handle assigned in aviptes databasedeclaration, the database you ready for runtime
access is the same as the one you declared for compiletime access.

The file specification can contain the full pathname, including the name of the node on which the database
is stored. If you are in a directory other than the one that contains the database file, the file specification

ready(gdml) ready(gdml)
mustinclude the pathnamdf the database is on another node,fitespeamust include the node name and
pathname. ¥u can define a link or logical name for the database file.

File specifications for remote databasegehhe followving form:

Syntax: Remote Database File Specification

VMS to ULTRIX:
node-namefilespec

VMS to non-VMS and non-ULRIX:
node-naméilespec

Within Apollo DOMAIN:
/Inode-naméilespec

All Else:
node-namsdilespec

Make aure that what folls the colon is aalid file specification on the @&t system; use bragtls,
slashes, and spaces as appropriate.

runtime-fileReadies the named database fifeu can use this option if your program accesses only one
database.

The file specification can contain the full pathname, including the name of the node on which the database
is stored.See the discussion dbhandlefor information about accessing remote databases.

on-eror Specifies the action to be performed if an error occurs during the ready operation.

EXAMPLES
The folloving sequence declares a database and readies it:

. gdm _156a. epas
program atlas (i nput_output);
dat abase atlas = filenane ’'atl as. gdb’;

begi n

ready atl as;
start_transacti on;

rol | back;

ready(gdml) ready(gdml)

finish atlas;
end.

Another option is to assign the database handle inetidty statement. & example, the follaving sequence declares a compiletime
database and readiesfeient databases for runtime access:

gdnml _156a. epas
program ski _areas (i nput_output);

dat abase atlas = filenane ’'atl as. gdb’;

var
filenane : array [1..40] of char;
open_dat abase : bool ean;
begi n
r epeat
begi n
open_dat abase : = true;
wite ('Please enter pathnanme of database ("quit” to exit): ');
readln (fil enane);
if filename = 'quit’ then
begi n
witeln ('Toodl es, kid!");
return;
end;
ready filename as atlas
on_error
begi n
witeln ('Error during database open. Status follows.’);
gds_$print_status (gds_$status);
witeln;
open_dat abase : = fal se;
end;
end_error;
end;

until open_dat abase;

(* do work *)
finish;

end.

ready(gdml) ready(gdml)

SEE ALSO
See the entries in this chapter for:
. on_error
. database
. finish
* gpre
DIAGNOSTICS

See Chapter 8 for a discussion of errors and error handling.

release_requests(gdml) release_requests(gdml)

NAME
release_requests —release resources
SYNTAX
release_equestd[for] database-hand]d on-eror]
on-ermor ::= on_error statement..end_error
DESCRIPTION

Therelease_equestsstatement frees the memory used by tteedtion tree of all compiled requests for a
database and sets the request handles to null.

In most programs, the program logizdives loops that can re-use requesiberefore, saes requests in

their compiled and optimized forntowever, if your program finishes and re-readies databases, requests
must be re-compiledThefinish statement automatically marks requests from that module as obsolete and
ensures that tlyawill be re-compiled when, and if, there re-used.

Large programs consisting of separately compiled modules sometinegfaests in modules that do not
contain &finish statement. Ithose cases, you can use tbkease equestsstatement to release resources
and ensure re-compilationYou must include theelease_equestsstatement in onexéernally callable
subroutine in each module that contains a database re@efstre you gecute afinish statement, call
each of the'felease” subroutines to release resources allocated in its module.

ARGUMENTS
database-handle&Specifies the database whose requests yauot wo release.f you do not specify a
database handle, the database softweleases requests associated with all open databases.

on-ermor Specifies the action to be performed if an error occurs durirfortheop.

EXAMPLES

The folloving program calls onexgernal routine to perform an action and another to release resources
associated with the request:

gdnl _160a. epas
programdriver (input, output);
dat abase atlas = filenane "atl as. gdb";

procedure wor ker; EXTERN,
procedure worker_rel ease; EXTERN,

var quit : array [1..4] of char;

begi n

release_requests(gdml) release_requests(gdml)

r epeat
begi n
ready atl as;
wor ker ;
wor ker _r el ease;
finish;
wite ('Done yet ("yes” to stop): ');
readln (quit);
end
until quit = 'yes’;
end.

The followving module is called by the preceding program:

gdnml _160b. epas
nmodul e wor ker;
dat abase atlas = EXTERN fil enane ’'atl as. gdb’;

procedure wor ker_rel ease;
begi n

rel ease_requests;
end;

procedur e worker;
var
i integer;
begi n
i 1= 0;
start_transacti on;
for s in states

=0+ 1

end_for;

commi t;

witeln ('There are ', i, ' states’);

end;
SEE ALSO
See the entry fdinish in this chapter

DIAGNOSTICS

See Chapter 8 for a discussion of errors and error handling.

request-option(gdml) request-option(gdml)

NAME
request-option —request andriable selection

SYNTAX

request-option:= (option-commaligt

option ::= { level integer-expression|
transaction_handle host-variable |
request_handle host-variable }

DESCRIPTION
Therequest-optioris an optional clause that lets you specify the instantiation (recursiehpie request,
transaction, or request itself that will béeated by the statement.

does not support recursion; if you are using statements in your program, deoha &y gperations in a
recursve request.

ARGUMENTS
level integer-expressionSpecifies the instantiationvig of a request.

transaction_handlehost-variableSpecifies a transaction handle for the transaction in which the statement
executes.

request_handlehost-variableSpecifies a request handle for the request in which the statexeeutes.

EXAMPLES
The folloving program produces a horizontabarization chart with the president at the top left and the
rest of the compammoving to the right:

. gdnl _161a. epas
program map (i nput_out put);

dat abase db = fil enane 'enp. gdb’;
type

badge_type = based on enpl oyees. badge;
var

level : integer;
bl anks : array [1..40] of char :=[* of ''];
procedure print_next (lev : integer; super : badge_type);

var

request-option(gdml) request-option(gdml)

of fset : integer;
begi n
for (level lev) e in enployees with e.supervisor = super
of fset := (lev) * 4;
witeln (blanks : offset,
..., e.first_name : -1,

* ', e.last_nane);
print_next (lev+l, e.badge);

end_for;
end; { procedure print next }
begi n
ready;
start_transacti on;
witeln (’ Enpl oyee Roster’);
witeln;
for e in enployees with e.supervisor mssing
witeln (e.first_nane : -1, ' ', e.last_nane);
print_next (0, e.badge);
end_for;
commi t;
finish;
end.

The folloving program starts a namednsistencymode transaction to update t&eDGE relation:

gdnml _164a. epas
program get _badge (input, output);
dat abase enp = fil enane 'enp. gdb’;

var
get _badge_tr : gds_$handl e;
begi n
get _badge_tr :=nil;
start_transaction get_badge_tr
consi stency read_wite reserving
badge_num for protected wite;
for (transaction_handl e get_badge_tr) b in badge_num
get _badge : = b. badge;
nmodi fy b using
b. badge : = b.badge + 1;
end_nodi fy;
end_for;

request-option(gdml) request-option(gdml)

conmit get_badge_tr;
end.

The follonving program hiresverybody's dfspring and assigns themwwbadge numbersNote that each request (that is, efarhand
store) must use the same request optiongnehough thg are nested.The modify statement is not a separate request and does not
require a transaction handl@he outerfor statement is in the dailt transaction so that it will not read thevhestored records and
start prompting for empie@e grandchildren.

gdm _137a. epas
program nested_for (input, output);
dat abase db = fil enanme 'enp. gdb’;

var
update_tr : gds_$handle := nil;
check . char;
fnl, Inl : integer;

begi n

ready;

start_transaction update_tr consistency read_wite reserving
badge_num enpl oyees for protected wite;

start_transacti on;

for e in enpl oyees

fnl =1,
while (e.first_name [fnl] <> ') do
fnl :=fnl + 1,
Inl =1,
while (e.last_nane [Inl] <> ') do
Inl :=1Inl + 1;
wite ('Should we hire ', e.first_nane:fnl, e.last_nane:Inl-1,
”'s kid? ’);

readl n (check);
if (check ="'y’) or (check ="'Y) then

begi n
for (transaction_handl e update_tr) b in badge_num
begi n
store (transaction_handl e update_tr) n_e in enpl oyees using
begi n

wite ("What”s the kid"s first nane? ’);
readln (n_e.first_nane);
n_e.last_nane := e.last_nane;

request-option(gdml) request-option(gdml)

wite ("What”s the kid"s date of birth? ’);
readln (n_e.birth_date.char[20]);
n_e. badge : = b. badge + 1;

n_e. departnent := 'NEP';
n_e. supervisor := 13;
end;
end_store;

nmodi fy b using
b. badge : = b.badge + 1;
end_nodi fy;
end;
end_for;
end;
end_for;
commit update_tr;
commi t;
finish;
end.
SEE ALSO
See the entries in this chapter for:

. transaction_handle
. for,

. start_stream

. store

DIAGNOSTICS
See Chapter 8 for a discussion of errors and error handling.

rollback(gdml) rollback(gdml)

NAME
rollback —undo changes made during transaction
SYNTAX
rollback [transaction-handlg on-error]
on-ermor ::= on_error statement..end_error
DESCRIPTION
The rollback statement restores the database to its state prior to the current transiichfbects all
databases in the transaction, discarding all modifiéfénis and closing gnopen record streams.
The rollback statement ends a transaction and undoes all changes made to the database since the most
recentstart_transaction statement or since the start of the transaction specified by the transaction handle.
ARGUMENTS

transaction-handl&pecifies the transaction yowamt to roll back.If the transaction you ant to roll back
has a transaction handle associated with it, you must use that handle when you roll back the transaction.

If you do not specify a transaction handle awliback statement, commits th&éfault” transaction. The
default transaction is what gets started when you starfa transaction statement without a handle.

on-ermor Specifies the action to be performed if an error occurs during the rollback operation.

EXAMPLES
The following statements modify tH@ADGE relation, lut rollback the transaction if there is an error:

. gdm _166a. epas
for (transaction_handl e get_badge_tr) b in badge_num
get _badge : = b. badge;
nodi fy b using
b. badge : = b.badge + 1;
end_nodi fy on_error
if gds_S$status [2] = gds_$deadl ock then
get _badge := 0

el se get_badge := -1;
rol | back get_badge_tr;
return;

end_error;
end_for;

rollback(gdml)

SEE ALSO
See the entries in this chapter for:
. start_transaction
. transaction-handle
. on_error
DIAGNOSTICS

A rollback statement cannoail.

rollback(gdml)

rse(gdml) rse(gdml)

NAME
rse —search condition and other aities
SYNTAX
[first-clausé record-source [with-clausé [reduced-clausk sorted-clauske
record-souce::= { relation-clause| cross-souce}
relation-clause::= [contet-variable ifj relation-name
cross-soute ;= relation-clausecrossrecord-souce
DESCRIPTION

Therse (record selectionx@ression) clause specifies the search andedgiconditions for record retngl.

ARGUMENTS
first-clauseLimits the records in a stream to the number you specify with ageint&dhe format of the
first-clauseollows:

Syntax: first-clause of RSE

first integer

Any fractional portion of the intger is truncatedUnless you sort the record stream when you usérsie
clause integer random records are returned.

relation-clauseldentifies the taget relation. The format of theelation-clausefollows:

Syntax: relation-clause of RSE

contt-variablein [database-handlielation-name

The contegt variable is used for name recognition, and is associated with a relaticontext variable can
contain up to 31 alphanumeric characters, dollar signs ($), and underscotdeveyer, it must start with
an alphabetic character

Except forC programsgpreis not sensitie 1 the case of the contevariable. Br example, it treat® and
b as the same charactefor C programs, you can control case sewigjtiof contet variables with the
either_caseswitch when you preprocess your program.

The optionabatabase-handlaentifies the database for multiple database access.

rse(gdml) rse(gdml)

cross-clauséerforms a join operationThe format of theross-clausédollows:

Syntax: relation-clause of RSE

crossrelation-clausgover field-name-commalikt

The cross-clausgoins records from te or more different relations in the same databagke relationship

can be based on the equality of common fields (equijoin), inequalities (non-equijoin), or where no
relationship gists (cross product)Unlike most other clauses of the record selectigpression, theross-
clausecan be repeated to include as meglations as are necessary

Theove clause is semantically egalent to awith-clausethat equates a field in one relation with a field in
another The field-namemust be ractly the same in both relation©therwise, you must use théth-
clause even if both fields are based on the same field.

with-clause Specifies a search condition or combination of search conditibne. format of thewith-
clausefollows:

Syntax: with-clause of RSE

with boolean-&pression

When you pass the search conditions to the access metheau#tes the condition for each record that
might possibly qualify Conceptually performs a record-by-record search, comparing thkiev you
supplied with the alue in the database field you specifidfl.the two values are in the relationship
indicated by the operator you specified (feample, equals), the search conditionl@ates to ‘true” and
that record becomes part of the record stredme search condition can result in alue of ‘true;
“false; or “missing” f or each record.

reduced-clauséPerforms a project operation, rettiieg only the unique alues for a field.The format of
thereduced-clauséollows:

Syntax: reduced-clause of RSE

reduced[to] dbfield-epression-commalist

dbfield-expression:= [contet-variable]field-name

When you ask for a record stream projected on a field, the access method considers a list of fields and
eliminates records that do noteaa wmique combination ofalues for the listed fields.

When you reduce a record stream, you an only reference fields that were mentioneeldudbeclause.

rse(gdml) rse(gdml)

sorted-clauséOrders the output, returning the record stream sorted byathesvof one or more soréys.
The format of thesorted-clausdollows:

Syntax: sorted-clause of RSE

sorted [by] sort-key-commalist
sort-key ::= [ascending| descending] dbfield-epression

dbfield-epression:= contet-variablefield-name

You can sort a record stream alphabeticatiymerically by date, and by ancombination of theseThe

sort-clausdets you hae & mary sort keys & you want. Generallyspeaking, the greater the number of sort

keys, the longer it tads for the database sofire to &ecute the query

Each sort ky an specify whether the sorting order of the sest k ascending(the de&ult order for the
first sort ley) or descending The sorting order is'sticky”; that is, if you do not specify whether a
particular sort Ry is ascendingor descending gpre assumes that youamt the order specified for the most
recent lkey. Therefore, if you list seeral sort leys, kut only include the &word descendingfor the first
key, sorts all leys in descending order

EXAMPLES

The folloving query uses dirst-clause a relation-clause and a sorted-clauseto display the tw
“youngest’states:

for first 2 s in states sorted by descendi ng s. statehood
witeln (s.state_nane |
was admitted to the Union on ' | s.statehood);
end_for;

The folloving query uses tarelation-clauseand across-clauséo list a ski area, cifyand state in which it is located:

for s in states cross ski in ski_areas over state
witeln (ski.name, ski.city, s.state_nane);
end_for;

The folloving query does the same thing as the preceding dogruses anxlicitly qualified join condition in place of theross
shortcut:

for s in states cross ski in ski_areas with s.state = ski.state
witeln (ski.name, ski.city, s.state_nane);
end_for;

rse(gdml) rse(gdml)

The follonving query uses eeduced-claus¢o list the states in which there are ski areas:

for ski in ski_areas reduced to ski.state
witeln (ski.state);
end_for;

The folloving query uses aith-clauseto limit the display cities in 8xas for which the alue of theropuLATION field is not
missing:

for cincities with c.state = 'TX and c. popul ati on not m ssing
witeln (c.city, c.population, c.altitude);
end_for;

The folloving statement displays the names of cities that agerdanan the capitols of their states:

gdm _171a. epas
for s in states cross c in cities over state cross

cs incities with cs.state = c.state and

cs.city = s.capitol and

cs. popul ati on < c. popul ati on

sorted by s.state, c.city

witeln (c.city, s.state_nane, ' is larger than ', s.capitol);

end_for;

The folloving statement displays only the names of states in which the capitol is nogts Gty:

for s in states cross c in cities over state cross

cs in cities with cs.state = c.state and
cs.city = s.capitol and
cs. popul ati on < c. popul ati on
sorted by s.state
reduced to s.state, s.capitol
witeln (s.state_nane, ' contains cities larger than ', s.capitol);
end_for;

commi t;

finish;

end.

SEE ALSO
See the entries in this chapter for:

. boolean-a&pression

rse(gdml) rse(gdml)

. value-epression

DIAGNOSTICS
See Chapter 8 for a discussion of errors and error handling.

start_stream(gdml) start_stream(gdml)

NAME
start_stream —create record stream
SYNTAX
start_stream[request-optioh stream-name
using rse [on-ermor]
statement...
end_streamstream-namegon-eror]
on-ermr ::= on_error statement..end_error
DESCRIPTION
Thestart_streamstatement declares and opens a record stream.
You can start a stream with tHer statement or with thetart_stream statement. Théor statement is
generally recommendeddowever, you may vant to use atart_streamstatement if you are:
. Processing seeral streams in parallel.
. Processing a stream until some condition is met, and ttigngefrom the stream.
ARGUMENTS

request-optionSpecifies a transaction handle and/or request handle that determine the transaction and/or

request in which thetart_streamstatementxecutes.

stream-nameéNames the streaniThe name can contain up to 31 alphanumeric characters, dollar signs ($),

and underscores ().

The contat of the stream name is the whole module that containsttre stream statement, so you
cannot re-use a stream name in the same module.

rse Specifies the record selection criteria used to create the record stream.

on-eror Specifies the action to be performed if an error occurs when you start the stream or when it

terminates. Errorsn theend_stream generally occur only inxtreme cases, such as a natwpartition
while the stream is still open.

statementSpecifies or host language statements toxeeuéed within the streamThe statements you
include are subject to the folling rules:

. If you include more than orsatementyou must separate them using the host language
convention.
. If you use other statements while the stream is open, those statements can use only the

contet variables declared in thetart_stream’end_stream block, in outer blocks, or in

start_stream(gdml) start_stream(gdml)

inner blocks.You can re-use the comtevariables outside those blocks.

EXAMPLE
The followving program illustrates the use of thiart_stream statement in a loop that may be terminated

by user interaction:

gdm _173a. epas
program map (i nput_output);

dat abase db = filenane 'atl as. gdb’;
var end_of _stream : bool ean;
genug . char;

begi n
start_stream geodata using c in cities
sorted by c.latitude, c.l|ongitude;
end_of _stream : = fal se;
whi l e not end_of _stream do begin
fetch geodata
at end end_of _stream:= true;
end_fetch;
if not end_of_streamthen
begi n
witeln (c.latitude, c.longitude, c.altitude,
c.city, c.state);
wite ('Seen enough? (Y/N) ');
readl n (genug);
if genug = 'Y then
end_of _stream:= true;

end;
end;
end_stream geodat a;
commi t;
finish;
end.
SEE ALSO
See the entries in this chapter for:
. request-option
. rse
. on_error

start_stream(gdml) start_stream(gdml)

DIAGNOSTICS
See Chapter 8 for a discussion of errors and error handling.

start_transaction(gdml) start_transaction(gdml)

NAME
start_transaction —lgin transaction
SYNTAX
start_transaction [transaction-handle
[concurrency | consistency]
[read_write | read_only]
[wait | nowait]
[reserving-clausk
[on-error]
reserving-clause:= reserving reserved-elation-commalist
reserved-elation::= [database-handlgelation-name
for [protected] { read | write }
on-erior ::= on_error statement..end_error
DESCRIPTION
Thestart_transaction statement bgins a group of statements that axeceited as one logical unit.
A process can start smumber of independent transactionghis capability &cilitates the deslopment of
sener processes and alle system service routines to use databases withieatia§ usetlevel database
actiity.
ARGUMENTS

transaction-handl®eclares a name that you can use when yoa tareference multiple transactions in a
program.

If you start a transaction without specifying a transaction haggles starts the ‘default transactiof.
There is one dalilt transaction per proces$/hen gpre encounters a subsequent statement without a
transaction handle, it generates a test for thauttehandle. If there is no defult transactiongpre starts
one. Inary casegpre applies statements without transaction handles to tlaeiti&fansaction.

concurrency (default)
consistency The concurrency default provides high throughput and concurrgnevith generally
satishctory consistenc No transaction sees wata written by another agé ransaction.

The consistencyoption pravides a high leel of database consistepnthat guarantees that all transactions
are serializable (that is, iag the same &fct on the database as if all transactions were run sequentially in
some order) at thexpense fo concurregc

To ensure a deadlock-free transaction, usectivesistencyoption and resepsthe relations required by the

start_transaction(gdml) start_transaction(gdml)

transaction foread or write depending on the mode in which yheill be used. However, this option does
not allawv concurrent access to the resstvelations.

See Chapter 5 for more information aboomcurrencyandconsistency

read_write (default)
read_only The de#ult intention of a transaction is that it will read and write ddau may choose to
declare a transactiorad_onlyto document its bek#r or as a check on program logic.

wait (default)

nowait The deéult action if your program encounters a ledlobject is to it until the lock goesveay.

The nowait option produces éock_conflicterror wheneer a program encounters a loett object. The

nowait option is not recommended because it requires more error handling in a program and can lead to
unnecessary rollbacks.

resewving Lists the relations to be used in the transactilmtks those relations for your access if you
chooseconsistencymode. You must list each relation that the transaction viduch” (that is, if it is used
at all, in ay capacity). Listrelations indvidually; you can specify diérent relation locking criteria for
each. Huwvever, if you chooseead_only for the transaction (see al®), you cannot reseeva elation for
write.

If you have aconcurrency mode transaction, you can optionally regeavielation forprotected write.

This mode allas other users to read the relatiomt Ipresents them from writing to it. By default,
concurrency mode transactions are reseavfor shared access, an access mode that all users write to the
relation.

The protected writereserving option is the dadlt for consistencymode transactions.

To ensure a deadlock-free transaction, usecthesistencyoption and reseevthe relations required by the
transaction foread or write depending on the mode in which yhe&ill be used.

on-eror Specifies the action to be performed if an error occurs when you start the transaction.

EXAMPLE
The folloving statement starts a transaction that will become theuligfansaction because there is no
transaction handle:

start_transacti on;
The following statement starts a transaction and assigns a transaction handle:

program zi p_update (input_output);
dat abase db = filenane 'atl as. gdb’;
var

start_transaction(gdml)

zi ppity_doo_dah : gds_$handle := nil;
begi n

{startran_2. epas}
start_transaction zi ppity_doo_dah;

commit zippity_doo_dah;
finish;
end.

The folloving statement starts a transaction witleserving clause:

program zi p_update (input_output);
dat abase db = fil enane 'atl as. gdb’;
var
zi ppity_doo_dah : gds_$handle := nil;
begi n

start_transaction zippity_doo_dah
read_write consistency
reserving catal og.catalog_itens for wite;

SEE ALSO
See the entries in this chapter for:

. prepare

. commit

. rollback

. on_error
DIAGNOSTICS

See Chapter 8 for a discussion of errors and error handling.

start_transaction(gdml)

store(gdml) store(gdml)

NAME
store —insert ng record

SYNTAX

store [request-optiohrelation-clauseusing
statement...
end_store [on-ermor]

on-ermor ::= on_error statement..end_error

DESCRIPTION
Thestore statement inserts aweecord into a relation.

You cannot store records into we formed from more than a single relatidRather you must store them
into the source relations.

ARGUMENTS
request-optionSpecifies a transaction handle and/or request handle that determine the transaction and/or
request in which thstore statementxecutes.

If you nest astore statement inside for loop and use anxglicit transaction handle on ther statement,
you must also use the transaction handle orstbee statement. Otherwisghe store statement will be
executed inside the dafilt transaction.

relation-clauseSpecifies the relation into which thewneecord is to be storedSee the entry farse in this
chapter for more information about tredation-clause

on-eror Specifies the action to be performed if an error occurs during the store operation.

statementSpecifies the action to be ®&k in storing the record(s)The statemerg ae typically
assignments. Ifou include more than orgtatementyou must separate them using the host language
corvention.

EXAMPLE
The following statement stores ameecord inSKI_AREAS:

store ski in ski_areas using
wite ('Nane: ');
readl n (ski.nane);
wite ('Cty: ");
readln (ski.city);
wite ('State: ');

store(gdml) store(gdml)

readl n (ski.state);

wite ('Type: ');

readl n (ski.type);
end_store;

The following statements use an oufer loop to create a record stream from whiclstare statement tads some alues, host
variables supply somealues, and unreferenced fields are set to missing:

for oldcity in cities with oldcity.city_name = hostvarl

store newcity in cities using
newcity.city = hostvar?2;
newcity.state = oldcity.state;
newcity. popul ati on = ol dcity. popul ati on * hostvar 3;
newcity.altitude = oldcity.altitude;

end_store;

end_for;

The follonving program hiresverybody’s dfspring and assigns themwbadge numbersNote that each request (that is, efarhand
store) must use the same request optionenehough thg are nested.The modify statement is not a separate request and does not
require a transaction handl@he outeffor statement is in the dailt transaction so that it will not read thevhestored records and
start prompting for empie@e grandchildren.

gdm _137a. epas
program nested_for (input, output);
dat abase db = fil enanme 'enp. gdb’;

var
update_tr : gds_$handle := nil;
check . char;
fnl, Inl : integer;

begi n

ready;

start_transaction update_tr consistency read_wite reserving
badge_num enpl oyees for protected wite;

start_transacti on;

for e in enpl oyees

fnl := 1,

while (e.first_name [fnl] <> ') do
fnl :=1fnl + 1;

Inl = 1;

store(gdml) store(gdml)

while (e.last_nane [Inl] <> ') do

Inl :=1Inl + 1;
wite ('Should we hire ', e.first_nane:fnl, e.last_nane:Inl-1,
”s kid? ’);

readl n (check);
if (check ="'y’) or (check ="'Y) then

begi n
for (transaction_handl e update_tr) b in badge_num
begi n
store (transaction_handl e update_tr) n_e in enpl oyees using
begi n

wite ("What”s the kid"s first nane? ’);
readln (n_e.first_nane);

n_e.last_nane := e.last_nane;

wite ('What”s the kid"s date of birth? ’);
readln (n_e.birth_date.char[20]);

n_e. badge : = b. badge + 1;

n_e.departnent := 'NEP';
n_e. supervisor := 13;
end;
end_store;

nmodi fy b using
b. badge : = b.badge + 1;
end_nodi fy;
end;
end_for;
end;
end_for;
commit update_tr;
commi t;
finish;
end.
SEE ALSO
See the entries in this chapter for:

. request-option
. rse
. on_error

DIAGNOSTICS
See Chapter 8 for a discussion of errors and error handling.

transaction-handle(gdml) transaction-handle(gdml)

NAME
transaction-handle —identify transaction
SYNTAX
host-variable
DESCRIPTION
Thetransaction-handlelause specifies the name of a transactionveraestatements.
If you do not start a transaction with thgart_transaction statement, choosing instead to dgtre start
transactions as needed, you can still specify the transaction under whichapbla wtatement to be
executed by declaring a transaction handle inrduiest-optiorclause of thdor, store, and start_stream
statements. Ifhat transaction does notist, gpre starts it.
ARGUMENTS
host-variableA host language progranasiable that seles as the transaction handle.
. For BASIC, the transaction handle must be declaredcasG and set to O.
. For C programs, the transaction handle must be declared as a logerimgialized to
null (0).
. For COBOL, the transaction handle must be declaredi@ss(9) COMP
. For FORTRAN programs, the transaction handle must be declared ast to 0.
. For Pascal programs, the transaction handle muskpkcély declared in the program as
a pointer to ay type and initialized tail before use.The \ariablegds_$handleis pre-
declared as a type foaBcal.
. For PL/I, the transaction handle must be declared as a pointer and initialixedlLt() .
EXAMPLE

The following Pascal @ample starts tav named transactions, performs some unspecified data manipulation
in each, then writes the changes for only the specified transaction to the database, and continues with the
other transaction committing it:

start_transaction store_resort;
start_transaction drop_resort;

for (transaction_handle store_resort)

transaction-handle(gdml)

for (transaction_handl e drop_resort)

conmit store_resort;

commit drop_resort;

SEE ALSO

See the entries in this chapter for:

DIAGNOSTICS

See Chapter 8 for a discussion of errors and error handling.

commit

prepare

rollback
start_transaction
for

store
start_stream

request-option

transaction-handle(gdml)

value-expression(gdml) &lue-epression(gdml)

NAME
value-expression —calculatingalue
SYNTAX
value-epression::= { arithmetic-pression| dbfield-epression|
numeric-liteal-expression | quoted-string-gpression |
(value-epression | - value-epression}
DESCRIPTION

The value-epressionis a symbol or string of symbols from calculatesatue. useshe result of the
expression whenxecuting the statement in which thepeession appears.

ARGUMENTS
arithmetic-expressionCombines alue &pressions and arithmetic operatoiiie format of thearithmetic-
expressionfollows:

Syntax: arithmetic-expression \Alue Expression

value-expression-1{+ |- | *| /| } value-&pression-2

You can add (+), subtract (-), multiply (*), andvidie (/) walue &pressions in record selectiorpeessions.
Arithmetic operators arevdluated in the normal ordetJse parentheses to change the ordevabtiation.

dbfield-epressionReferences database fieldShis expression can occur in\s&al clauses ofse and
boolean-a&pression The format of thalbfield-epressionfollows:

Syntax: dbfield-expression \alue Expression

contet-variablefield-namé.null | .datatypé

The contet-variable qualifies the database field for multi-relation operatidbsclare the conie variable
for a relation in theelation-clauseof the record selectiorkpression.

The optional.null qualifier allavs access to the null flag for the field.you reference the null flag in a
store or modify statement, you must set xgdicitly. If the null flag remains true (that is, non-zero), the
field will be stored as missingen if you supply a &lue.

The optional.datatypequalifier lets you‘tast” a database field with a datatype other than that with which
it is stored. Gpre automatically taks care of datatype ogausion, hut you can‘tonvert” a field for the

value-expression(gdml) &lue-epression(gdml)
duration of a request to the datatype of your cho@eapter 4 discusses casting in more detail and lists the
datatype cowversions supported by casting.

numeric-liteal-expressionRepresents a decimal number as a string of digits with an optional decimal
point. Theformat of thenumeric-liteal-expressionfollows:

Syntax: numeric-literal-expression \alue Expression

string[.string]

guoted-string-gpressionA string of ASCII characters enclosed in single () or double (") quotation marks,
depending on host language requiremeiitse format of thejuoted-string-gpressionfollows:

Syntax: quoted-string-expression \alue Expression

"string"

ASCII printing characters are:

. Uppercase alphabetié:—Z

. Lowercase alphabetiece—z

. Numerals0—9

. Special characters: ' @ #$% " & * () _-+=[1{}<>;:""\|/?.,

EXAMPLES
The following statement usetbfield-epressiors to display the city and state, amithmetic-epressionthat
calculates and displays the altitude in metensyraeric-liteal-expression(0.3048) used in the arithmetic
operation, and tavquoted-string-gpressiors to anglicize the Rscalwriteln display:

for cincities cross s in states over state
witeln (c.city, s.state_nane, ' is situated at ’
c.altitude * 0.3048, ' neters above sea |evel.’);
end_for;

See ap of the other manual pages in this chapter f@meples of the alue expression.

SEE ALSO
See the entries in this chapter for:

. boolean-&pression

value-expression(gdml) &lue-epression(gdml)

i rse

DIAGNOSTICS
See Chapter 8 for a discussion of errors and error handling.

