
close(sql) close(sql)

NAME
close −close cursor

SYNTAX

closecursor-name

DESCRIPTION
The closestatement terminates the specified cursor. The access method automatically releases resources
associated with the closed cursor. The commit and rollback statements, andprepare statement
automatically close all cursors.

Once you have closed a cursor, you cannot issue any more fetch statements against that cursor unless you
explicitly re-open it with anotheropenstatement. Recordsselected for that cursor’s active set are no longer
available to your program.The active set of the cursor is said to be ‘‘undefined.’’

ARGUMENTS
cursor-nameIdentifies the cursor you want to close.

EXAMPLE
The following example declares a cursor, opens it, accesses records in its active set, and then closes the
cursor:

. sql_8a.epas

program mapper (input_output);

exec sql

begin declare section;

exec sql

end declare section;

var

statecode : array [1..2] of char;

cityname : array [1..15] of char;

begin

exec sql

declare bigcities cursor for

select city, state from cities

where population > 1000000;

exec sql

open bigcities;

1

close(sql) close(sql)

exec sql

fetch bigcities into :cityname, :statecode;

writeln (’ ’);

while (sqlcode = 0) do

begin

writeln (cityname, ’ is in ’, statecode);

exec sql

fetch bigcities into :cityname, :statecode;

end;

exec sql

close bigcities;

exec sql

rollback release;

end.

SEE ALSO
See the entries in this chapter for:

• open

• commit

• rollback

DIAGNOSTICS
The access method returns errors if:

• You fetch beyond the last record of an active set, automatically closes the cursor and returns an
end-of-file error.

• You try to close a cursor that has not been opened, returns an error.

The following values may be returned toSQLCODE:

• SQLCODE < 0indicates that the statement did not complete.

• SQLCODE = 0indicates success.

• SQLCODE > 0 and < 100indicates an informational message or warning.

See Chapter 6 for a discussion of error handling.

2

commit(sql) commit(sql)

NAME
commit −write changes to database

SYNTAX

commit [work] [release]

DESCRIPTION
Thecommit statement:

• Ends the current transaction

• Makes the transaction’s changes visible to other users

• Closes open cursors

• Does not affect the contents of host variables

ARGUMENTS
work An optional noiseword.

releaseBreaks your program’s connection to the attached database, thus making system resources available
to other users.

EXAMPLE
The following program illustrates the use of multiple cursors in a single transaction, terminated by a single
commit that makes all changes permanent:

. sql_110a.epas

program update_census (input_output);

exec sql

include sqlca;

var

newcity, oldcity : array [1..15] of char;

state : array [1..2] of char;

first : boolean;

option : char;

begin

write (’Enter the city name that’’ s changing: ’);

readln (oldcity);

write (’Enter the new city name: ’);

readln (newcity);

writeln (’Changing ’, oldcity, ’ to ’, newcity, ’ in all relations’);

1

commit(sql) commit(sql)

exec sql

declare cities_cursor cursor for

select state from cities

where city = :oldcity

for update of city;

exec sql

declare tourism_cursor cursor for

select state from tourism

where city = :oldcity

for update of city;

exec sql

declare ski_areas_cursor cursor for

select state from ski_areas

where city = :oldcity

for update of city;

exec sql

open ski_areas_cursor;

exec sql

open tourism_cursor;

exec sql

open cities_cursor;

first := true;

while sqlcode = 0 do begin

if not first then

begin

write (’Change ’, oldcity, state, ’ in cities? ’);

readln (option);

if (option = ’y’) then

exec sql update cities

set city = :newcity

where current of cities_cursor;

end;

exec sql

fetch cities_cursor into :state;

first := false;

end;

sqlcode := 0;

first := true;

while sqlcode = 0 do begin

if not first then

begin

2

commit(sql) commit(sql)

write (’Change ’, oldcity, state, ’ in tourism? ’);

readln (option);

if (option = ’y’) then

exec sql

update tourism

set city = :newcity

where current of tourism_cursor;

end;

exec sql

fetch tourism_cursor into :state;

first := false;

end;

sqlcode := 0;

first := true;

while sqlcode = 0 do begin

if not first then

begin

write (’Change ’, oldcity, state, ’ in ski areas? ’);

readln (option);

if (option = ’y’) then

exec sql

update ski_areas

set city = :newcity

where current of ski_areas_cursor;

end;

exec sql

fetch ski_areas_cursor into :state;

first := false;

end;

exec sql

close ski_areas_cursor;

exec sql

close tourism_cursor;

exec sql

close cities_cursor;

exec sql

commit release;

end.

SEE ALSO
See the entry in this chapter forrollback.

3

commit(sql) commit(sql)

DIAGNOSTICS
The following values may be returned toSQLCODE:

• SQLCODE < 0indicates that the statement did not complete.

• SQLCODE = 0indicates success.

• SQLCODE > 0 and < 100indicates an informational message or warning.

• SQLCODE = 100indicates the end of the active set.

See Chapter 6 for a discussion of error handling.

4

declare(sql) declare(sql)

NAME
declare cursor −define cursor

SYNTAX

declarecursor-namecursor for select-statement
[for update ofdatabase-field-commalist]
[order by sort-key-commalist]

sort-key ::= field-reference[asc| desc]

field-reference::= { database-field| integer }

DESCRIPTION
The declare cursor declaration defines a cursor by associating a name with the active set of records
determined by aselectstatement.

ARGUMENTS
cursor-nameProvides a name for the cursor you are declaring.

select-statementA selectstatement that specifies search conditions to determine the active set of the cursor.

order by Specifies the order in which the retrieved records are to be delivered to the program.You can sort
records by named fields in the source relation(s) or by aninteger that references by position one of the
fields in theselectstatement.

for update Indicates that your program may update one or more fields of records in the active set.
Standard restricts you to updating only the listed fields; however, does not enforce this restriction.

EXAMPLE
The following example declares a cursor a search condition and a sorting clause:

. sql_116a.epas

program sql (input, output);

exec sql

include sqlca;

var

statecode : array [1..2] of char;

cityname : array [1..15] of char;

min_pop : integer32;

option : char;

begin

1

declare(sql) declare(sql)

min_pop := 100;

(* the crude way *)

exec sql

delete from cities

where population < :min_pop;

exec sql

rollback;

(* with finesse *)

exec sql

declare small_cities cursor for

select city, state

from cities

where population < :min_pop;

exec sql

open small_cities;

exec sql

fetch small_cities into :cityname, :statecode;

while sqlcode = 0 do

begin

write (’Eliminate ’, cityname, ’ ’ , statecode, ’? ’);

readln (option);

if (option = ’Y’) or (option = ’y’) then

exec sql

delete from cities

where current of small_cities;

exec sql

fetch small_cities into :cityname, :statecode;

end;

exec sql

close small_cities;

exec sql

rollback release;

end.

The following example declares a cursor for two relations:

2

declare(sql) declare(sql)

. sql_31a.epas

program sql (input, output);

exec sql

include sqlca;

var

city, lat, long : array [1..15] of char;

state : array [1..20] of char;

begin

exec sql

declare city_state_join cursor for

select c.city, s.state_name, c.latitude, c.longitude

from cities c, states s where c.state = s.state

order by s.state, c.city;

exec sql

open city_state_join;

exec sql

fetch city_state_join into :city, :state, :lat, :long;

while (sqlcode = 0) do begin

writeln (city, state, lat, long);

exec sql

fetch city_state_join into :city, :state, :lat, :long;

end;

exec sql

rollback release;

end.

The following program declares a cursor with the union of three relations.

. sql_31c.epas

program sql (input, output);

exec sql

include sqlca;

var

city : array [1..25] of char;

state : array [1..2] of char;

3

declare(sql) declare(sql)

begin

exec sql

declare all_cities cursor for

select city, state from cities

union

select city, state from ski_areas

union

select capitol, state from states

order by 2, 1;

exec sql

open all_cities;

exec sql

fetch all_cities into :city, :state;

while (sqlcode = 0) do begin

writeln (city, state);

exec sql

fetch all_cities into :city, :state;

end;

exec sql

rollback release;

end.

SEE ALSO
See the entry forselectin this chapter.

DIAGNOSTICS
The following values may be returned toSQLCODE:

• SQLCODE < 0indicates that the statement did not complete.

• SQLCODE = 0indicates success.

• SQLCODE > 0 and < 100indicates an informational message or warning.

See Chapter 6 for a discussion of error handling.

4

delete(sql) delete(sql)

NAME
delete −erase record

SYNTAX

delete from relation-name[alias]
[wherepredicate| where curr ent of cursor-name]

DESCRIPTION
Thedeletestatement erases one or more records in a relation or in the active set of a cursor:

If you do not provide a search condition (where...), all records in the specified relation are deleted.Be very
careful with this option.

ARGUMENTS
relation-nameSpecifies the relation from which a record is to be deleted.

alias Qualifies field references with an identifier that indicates the source relation.Thealias can be useful
if the predicatereferences fields from different relations.

Thealias can contain up to 31 alphanumeric characters, dollar signs ($), and underscores (_).However, it
must start with an alphabetic character (A—Z, a—z).Except forC programs,gpre is not sensitive to the
case of the alias.For example, it treatsB andb as the same character. For C programs, you can control the
case sensitivity of the alias with theeither_caseswitch when you preprocess your program.

wherepredicateDetermines the record to be deleted.

where curr ent Specifies that the current record of the active set is to be deleted.This form ofdeletemust
follow:

• The declaration of the cursor with adeclare cursor statement

• The opening of that cursor with anopenstatement

• The retrieval of a record from the active set of that cursor with afetch statement

EXAMPLES
The following statement erases the entire relation namedVILLA GES (which does not exist in the sample
database):

. tcs:

. delete_2.epas in a manner of speaking

exec sql delete from villages;

1

delete(sql) delete(sql)

The following program deletes all records fromCITIESwith a population less than that of the host variableMIN_POP:

. sql_116a.epas

program sql (input, output);

exec sql

include sqlca;

var

statecode : array [1..2] of char;

cityname : array [1..15] of char;

min_pop : integer32;

option : char;

begin

min_pop := 100;

(* the crude way *)

exec sql

delete from cities

where population < :min_pop;

exec sql

rollback;

(* with finesse *)

exec sql

declare small_cities cursor for

select city, state

from cities

where population < :min_pop;

exec sql

open small_cities;

exec sql

fetch small_cities into :cityname, :statecode;

while sqlcode = 0 do

begin

write (’Eliminate ’, cityname, ’ ’ , statecode, ’? ’);

readln (option);

if (option = ’Y’) or (option = ’y’) then

exec sql

2

delete(sql) delete(sql)

delete from cities

where current of small_cities;

exec sql

fetch small_cities into :cityname, :statecode;

end;

exec sql

close small_cities;

exec sql

rollback release;

end.

SEE ALSO
See the entries in this chapter for:

• predicate

• declare cursor

• open

• fetch

• select

DIAGNOSTICS
The following values may be returned toSQLCODE:

• SQLCODE < 0indicates that the statement did not complete.

• SQLCODE = 0indicates success.

• SQLCODE > 0 and < 100indicates an informational message or warning.

See Chapter 6 for a discussion of error handling.

3

FETCH(sql) FETCH(sql)

NAME
fetch −advance cursor

SYNTAX

fetch cursor-name[into host-item-commalist]

host-item::= :host-variable

DESCRIPTION
Thefetch statement advances the position of the cursor to the next record of the active set.

If the fetch statement immediately follows anopenstatement, the cursor is set before the first record in that
cursor. Thefetch statement advances the cursor to the first record.

If you try to fetch beyond the last record in the active set, automatically closes the cursor and returns an
end-of-file message.

Once thefetch statement has advanced the cursor, it writes the fields of that record into the listed host
variables. Becausethe selectsubstatement in thedeclare cursor statement explicitly lists database field
names, you must make sure that the host variables correspond exactly to the order of declaration in the
cursor, the datatypes, and lengths of the database fields.For example, if you want to fetch a database field
of 10 characters that appears as the third item in the cursor declaration, make sure that the host variable:

• Is also a text field with a minimum of 10 characters

• Appears in the third position of the host variable list

If you want to update or delete a record in a cursor’s active set, you must first fetch it.You can then use the
updatestatement to modify one or more of its field values, or use thedeletestatement to erase it.

If you want to loop through the records selected by the cursor, enclose thefetch statement in a host
language looping construct.

ARGUMENTS
cursor-nameSpecifies the open cursor from which you want to fetch records.

host-itemSpecifies a host language variable into which fields from records in the active set of the cursor
will be fetched.The into list is not required if thefetch gets records to be deleted or updated; however, if
you display the record before you delete or update it, you need theinto list.

EXAMPLE
The following example declares a cursor, opens it, accesses records in its active set, and then closes the
cursor:

. sql_8a.epas

program mapper (input_output);

1

FETCH(sql) FETCH(sql)

exec sql

begin declare section;

exec sql

end declare section;

var

statecode : array [1..2] of char;

cityname : array [1..15] of char;

begin

exec sql

declare bigcities cursor for

select city, state from cities

where population > 1000000;

exec sql

open bigcities;

exec sql

fetch bigcities into :cityname, :statecode;

writeln (’ ’);

while (sqlcode = 0) do

begin

writeln (cityname, ’ is in ’, statecode);

exec sql

fetch bigcities into :cityname, :statecode;

end;

exec sql

close bigcities;

exec sql

rollback release;

end.

The following program extract uses afetch statement in a loop that modifies records:

. sql_120a.epas

program popupdate (input_output);

exec sql

begin declare section;

exec sql

end declare section;

2

FETCH(sql) FETCH(sql)

var

statecode, st : array [1..2] of char;

cityname : array [1..15] of char;

multiplier : integer32;

pop, new_pop : integer32;

begin

write (’Enter state with population needing adjustment: ’);

readln (statecode);

exec sql

declare pop_mod cursor for

select city, state, population from cities

where state = :statecode

for update of population;

exec sql

open pop_mod;

exec sql

fetch pop_mod into :cityname, :st, :pop;

writeln (’ ’);

while (sqlcode = 0) do

begin

write (’Change for ’, cityname,

st, ’ (5 => 5% bigger; -5 => 5% smaller): ’);

readln (multiplier);

new_pop := trunc (pop * (multiplier + 100) / 100);

writeln (’ old population: ’, pop, ’ new population: ’, new_pop);

exec sql

update cities

set population = :new_pop

where current of pop_mod;

exec sql

fetch pop_mod into :cityname, :st, :pop;

end;

exec sql

close pop_mod;

exec sql

rollback release;

end.

3

FETCH(sql) FETCH(sql)

SEE ALSO
See the entries in this chapter for:

• open

• declare cursor

• select

• update

• delete

• whenever

DIAGNOSTICS
The following values may be returned toSQLCODE:

• SQLCODE < 0indicates that the statement did not complete.

• SQLCODE = 0indicates success.

• SQLCODE > 0 and < 100indicates an informational message or warning.

• SQLCODE = 100indicates the end of the active set.

See Chapter 6 for a discussion of error handling.

4

insert(sql) insert(sql)

NAME
insert −store a record

SYNTAX

insert into relation-name[database-field-commalist]
{ values insert-item-commalist| select-statement}

insert-item::= { constant| host-variable| null }

DESCRIPTION
The insert statement stores a new record into the specified relation.

You can assign field values by inserting values, by picking up values from an existing record, or by a
combination of both.

ARGUMENTS
relation-nameSpecifies the relation into which you want to store a new record.

database-fieldLists the field inrelation-namefor which you are providing a value.

by itself does not support manipulation of the blob datatype.You can store a null value for a blob field, but
you must use orgdscalls if you want to do anything else with blobs.

If the field you are assigning is a date, you cannot handle the field directly with Instead, you must use date
handling functions such asgds_$encode_dateand gds_$decode_dateto convert your external date
representation to a host variable in the date format (that is, an array of two 32-bit integers). Thenuse the
assignment to assign the host variable to the database field.

N O T E

The database field list is optional.If it is omitted, values are assigned to all the fields in the relation in their
normal order. Leaving out the field list isnot recommended because changes to the relation, such as adding
or reordering fields, will cause the assignment list to change without warning when the program is next
precompiled withgpre.

insert-itemProvides a value fordatabase-field. The value can be a constant, host variable, ornull .

select-statementSpecifies that the values for the new record are to come from the record identified by a
selectstatement.

1

insert(sql) insert(sql)

EXAMPLES
The following program stores a record, assigning quoted constants for field values:

. sql_125a.epas

program sql (input, output);

exec sql

include sqlca;

begin

exec sql

insert into river_states

(river, state)

values (’Croton’, ’NY’);

exec sql

rollback release;

end.

The following statement stores a new record intoSTATESusing host variables andnull as sources for values:

. sql_123b.epas

program sql (input, output);

exec sql

include sqlca;

var

state : array [1..2] of char;

state_name : array [1..20] of char;

capitol : array [1..15] of char;

date : gds_$quad;

date_array : gds_$tm;

begin

date_array.tm_sec := 0;

date_array.tm_min := 0;

date_array.tm_hour := 0;

date_array.tm_mday := 1;

date_array.tm_mon := 1;

date_array.tm_year := 90;

date_array.tm_wday := 0;

2

insert(sql) insert(sql)

date_array.tm_yday := 0;

date_array.tm_isdst := 0;

gds_$encode_date (date_array, date);

state := ’GU’;

state_name := ’Guam’;

capitol := ’Agana’;

exec sql

insert into states

(state, state_name, area, capitol, statehood)

values (:state, :state_name, null, :capitol, :date);

exec sql

commit release;

end.

The following program stores a new record using values from an existing record and the value of a host variable for assignments:

. sql_123c.epas

program sql (input, output);

exec sql

include sqlca;

var

villeancienne : array [1..15] of char;

villenouvelle : array [1..15] of char;

begin

write (’Enter city to clone: ’);

readln (villeancienne);

write (’Enter new name for city: ’);

readln (villenouvelle);

exec sql insert into cities (city, state, population,

altitude, latitude_degrees, latitude_minutes,

latitude_compass, longitude_degrees, longitude_minutes,

longitude_compass)

select :villenouvelle, state, population,

altitude, latitude_degrees, latitude_minutes,

3

insert(sql) insert(sql)

latitude_compass, longitude_degrees, longitude_minutes,

longitude_compass

from cities where city = :villeancienne;

end.

The following program uses the non-recommended form of theinsert statement, in which the database field list is omitted:

. sql_123d.epas

program sql (input, output);

exec sql

include sqlca;

var

state : array [1..2] of char;

state_name : array [1..20] of char;

capitol : array [1..15] of char;

begin

state := ’GU’;

state_name := ’Guam’;

capitol := ’Agana’;

exec sql

insert into states

values (:state, :state_name, null, null, :capitol);

exec sql

commit release;

end.

SEE ALSO
See the entry forselectin this chapter.

DIAGNOSTICS
The following values may be returned toSQLCODE:

• SQLCODE < 0indicates that the statement did not complete.

• SQLCODE = 0indicates success.

• SQLCODE > 0 and < 100indicates an informational message or warning.

See Chapter 6 for a discussion of error handling.

4

open(sql) open(sql)

NAME
open −activate cursor

SYNTAX

opencursor-name

DESCRIPTION
The open statement activates a cursor. This statement causes the access method to evaluate the search
conditions associated with the specified cursor. Once the access method has determined the set of records
that satisfies the query, it activates the cursor and makes the selected records the ‘‘active set’’ of that cursor.

The access method then places the cursor itself before the first record in the active set. If you want to
retrieve or update records in that set, use thefetch statement. Onceyou open the cursor, the first fetch
statement operates on the very first record in the active set. Subsequentfetch statements advance the cursor
through the results table associated with that cursor.

The access method does not re-examine the host variables or values passed to the search conditions until
you close the cursor and re-open it.Changes you make to their values are not reflected in the active set
until you close and re-open the cursor. If someone else accesses the database after you open a cursor,
makes changes, and commits them, the active set may be different the next time you open that cursor if you
commit your transaction.

If you need a stable active set, use theconsistencyoption of thestart_transaction statement.

ARGUMENTS
cursor-nameSpecifies the declared cursor you want to access.

EXAMPLE
The following example declares a cursor, opens it, accesses records in its active set, and then closes the
cursor:

. sql_8a.epas

program mapper (input_output);

exec sql

begin declare section;

exec sql

end declare section;

var

statecode : array [1..2] of char;

cityname : array [1..15] of char;

begin

1

open(sql) open(sql)

exec sql

declare bigcities cursor for

select city, state from cities

where population > 1000000;

exec sql

open bigcities;

exec sql

fetch bigcities into :cityname, :statecode;

writeln (’ ’);

while (sqlcode = 0) do

begin

writeln (cityname, ’ is in ’, statecode);

exec sql

fetch bigcities into :cityname, :statecode;

end;

exec sql

close bigcities;

exec sql

rollback release;

end.

SEE ALSO
See the entries in this chapter for:

• declare cursor

• fetch

• close

• commit

• rollback

• whenever

DIAGNOSTICS
The following values may be returned toSQLCODE:

• SQLCODE < 0indicates that the statement did not complete.

• SQLCODE = 0indicates success.

• SQLCODE > 0 and < 100indicates an informational message or warning.

See Chapter 6 for a discussion of error handling.

2

predicate(sql) predicate(sql)

NAME
predicate −specify Boolean expression

SYNTAX

predicate ::= { condition | condition and predicate |
condition or predicate | not predicate }

condition ::= { compare-condition | between-condition|
like-condition | in-condition | exists-condition | (predicate) }

DESCRIPTION
The predicateclause is used to select the records to be affected by the statement.It is used in thewhere
clause of thedeleteandupdatestatements and in theselect-expression.

ARGUMENTS
compare-conditionThe compare-conditiondescribes the characteristics of a single scalar expression (for
example, a missing or null value) or the relationship between two scalar expressions (for example,x is
greater thany).

Syntax: compare-condition of Predicate

{ scalar-expression comparison-operator scalar-expression |
scalar-expression comparison-operator (column-select-expression) |
scalar-expression is [not] null }

comparison-operator ::= { = | ˆ= | < | ˆ< | <= | > | >̂ | >= }

column-select-expression ::=
select [distinct] scalar-expression from-clause[where-clause]

between-conditionThebetween-conditionspecifies an inclusive range of values to match.

Format: between-condition of Predicate

database-field[not] betweenscalar-expression-1
and scalar-expression-2

like-conditionMatches a string with the whole or part of a field value. Thetest is case-sensitive.

1

predicate(sql) predicate(sql)

Format: lik e-condition of Predicate

database-field[not] lik escalar-expression

The scalar-expressionusually represents an alphanumeric literal, and can contain wildcard characters.
Wildcard characters are:

• The underscore, _, that matches a single character.

• The percent sign, %, that matches any sequence of characters, including none.You
should begin and end wildcard searches with the percent sign so that you match leading
or trailing blanks.

in-conditionLists a set of scalar expressions as possible values.

Format: in-condition of Pr edicate

scalar-expression [not] in (set-of-scalars)

set-of-scalars ::= { constant-commalist| column-select-expression}

column-select-expression ::=
select [distinct] scalar-expression from-clause[where-clause]

exists-conditionTests for the existence of at least one qualifying record identified by theselectsubquery.
Because theexists-condition uses the parenthesizedselect statement only to retrieve a record for
comparison purposes, it requires only wildcard (*) field selection.

A predicate containing anexists-condition is true if the set of records specified byselect-expression
includes at least one record.If you addnot, the predicate is true if there areno records that satisfy the
subquery.

Format: exists-condition of Predicate

[not] exists (select * where-clause)

EXAMPLES
The following cursor retrieves all fields from CITIES records for which thePOPULATION field is not
missing:

. sql_130a.epas

exec sql

declare inhabited cursor for

2

predicate(sql) predicate(sql)

select city, state, population

from cities

where population is not null;

The following cursor retrieves theCITY andSTATE fields from cities with populations between 100000 and 125000:

. sql_130a.epas

exec sql

declare midsized_cities cursor for

select city, state

from cities

where population between 100000 and 125000;

The following cursor retrieves the CAPITOL andSTATE from STATES records in which theCAPITOL
field contains the string ‘‘ville’ ’ preceded or followed by any number of characters:

. sql_130a.epas

exec sql

declare ville cursor for

select capitol, state

from states

where capitol like ’%ville%’;

SEE ALSO
See the entries in this chapter for:

• select-expression

• scalar-expression

• delete

• update

DIAGNOSTICS
See Chapter 6 for a discussion of error handling.

3

rollback(sql) rollback(sql)

NAME
rollback −undo transaction

SYNTAX

rollback [work] [release]

DESCRIPTION
The rollback statement restores the database to its state prior to the current transaction.It also closes open
cursors.

ARGUMENTS
work An optional noiseword.

releaseBreaks your program’s connection to the attached database, thus making system resources available
to other users.

EXAMPLE
The following non-working code extract includes awhenever statement and the rollback routine to which it
branches:

. sql_131a.epas

program update_census (input_output);

label

error, warn, terminate;

warn:

(* since no warnings are defined, fall into error *)

error:

writeln (’Encountered SQL error code ’, sqlcode);

writeln (’Expanded error listing: ’);

gds_$print_status (gds_$status);

if (sqlcode = -16) then

begin

exec sql

rollback;

work ();

end

else

exec sql

rollback release;

1

rollback(sql) rollback(sql)

terminate:

end.

SEE ALSO
See the entries in this chapter for:

• commit

• whenever

DIAGNOSTICS
The following values may be returned toSQLCODE:

• SQLCODE < 0indicates that the statement did not complete.

• SQLCODE = 0indicates success.

• SQLCODE > 0 and < 100indicates an informational message or warning.

See Chapter 6 for a discussion of error handling.

2

scalar-expression(sql) scalar-expression(sql)

NAME
scalar-expression −calculating value

SYNTAX

scalar-expression ::= [+ | -] scalar-value [arithmetic-operator scalar-expression]

scalar-value ::= { field-expression | constant-expression |
statistical-function| (scalar-expression) }

arithmetic-operator ::= { + | - | * | / }

DESCRIPTION
The scalar-expressionis a symbol or string of symbols used in predicates to calculate a value. usesthe
result of the expression when executing the statement in which the expression appears.

You can add (+), subtract (-), multiply (*), and divide (/) scalar expressions. Arithmeticoperations are
evaluated in the normal order. You can use parentheses to change the order of evaluation.

ARGUMENTS
field-expressionReferences a database field.The format of thefield-expressionfollows:

Syntax: field-expression of Scalar Expression

[database-handle.] [relation-name. | view-name. | alias.]database-field

The optionalrelation-name, view-name, or alias, each followed by a required period (.), specifies the
relation, view, or alias (synonym for a relation or view) in which the field is located.The alias is assigned
to a relation or a view in aselect-expression.

Use the optionaldatabase-handleonly if you have declared a database handle with aready statement.

constant-expressionA string of ASCII digits interpreted as a number or as a string ofASCII characters. The
format of theconstant-expressionfollows:

1

scalar-expression(sql) scalar-expression(sql)

Syntax: constant-expression Scalar Expression

{ integer-string | decimal-string | float-string | ascii-string }

Integer numeric strings are written as signed or unsigned decimal integers without decimal points.For
example, the following are integers:-14, 0, 9, and +47.

Decimal numeric strings are written as signed or unsigned decimal integers with decimal points.For
example, the following are decimal strings:-14.3, 0.021,9.0, and +47.9.

Floating numeric strings are written in scientific notation (that is,E-format). A number in scientific
notation consists of a decimal string mantissa, the letterE, and a signed integer exponent. For example, the
following are floating numerics:7.12E+7and7.12E-7.

Character strings are written usingASCII printing characters enclosed in single (’) or double (") quotation
marks. ASCII printing characters are:

• Uppercase alphabetic:A—Z

• Lowercase alphabetic:a—z

• Numerals:0—9

• Blank space and tab

• Special characters: ! @ # $ % ˆ & * () _ - + =‘ ˜ [] { } < > ; : ’ " \ | / ? . ,

statistical-functionAn expression that calculates a single value from the values of a field in a relation, view,
or join. The format of thestatistical-functionfollows:

Syntax: statistical-function Scalar Expression

{ count (*) |
function-name(scalar-expression) |
function-name(distinct) field-expression }

function-name ::= {\ count | sum | avg | max | min }

Supported statistical functions are:

• count (*) returns the number of records in a relation and automatically eliminates
duplicates;distinct is not needed.

If you are programming in Pascal, put a space between the open parenthesis and the
asterisk. BecausePascal uses the sequence(* for comments, failure to leave a space will result in a

compilation error.

2

scalar-expression(sql) scalar-expression(sql)

• count returns the number of values for the field.You must specifydistinct.

• sum returns the sum of values for a numeric field in all qualifying records.

• avg returns the average value for a numeric field in all qualifying records.

• max returns the largest value for the field.

• min returns the smallest value for the field.

EXAMPLES
The following cursor retrieves all fields from theCITIES record that represents the city of Boston:

. sql_135a.epas

exec sql

declare legume_village cursor for

select city, state, altitude, latitude, longitude

from cities

where city = ’Boston’;

The following cursor retrieves selected fields fromCITIESwith a population greater than 1,000,000:

. sql_135a.epas

exec sql

declare big_cities cursor for

select city, state, population

from cities

where population > 1000000;

The following cursor joins records from theCITIESandSTATESrelations:

. sql_135a.epas

exec sql

declare city_states cursor for

select c.city, s.state_name

from states s, cities c

where s.state = c.state;

The following program returns a count of records in theCITIES relation, the maximum population, and the minimum
population of cities in that relation:

. sql_25c.epas

program sql (input, output);

3

scalar-expression(sql) scalar-expression(sql)

exec sql

include sqlca;

var counter : integer32;

minpop, maxpop : integer32;

begin

exec sql

select count (*), max (population), min (population)

into :counter, :maxpop, :minpop

from cities;

writeln (’Count: ’, counter);

writeln (’Max Population: ’, maxpop);

writeln (’Min Population: ’, minpop);

end.

SEE ALSO
See the entry in this chapter forpredicate.

4

select(sql) select(sql)

NAME
select −selecting records

SYNTAX

select-statement::= union-expression[ordering-clause]

union-expression::= select-expression[into-clause] [union union-expression]

ordering-clause::= order by sort-key-commalist

sort-key::= { database-field| integer } [asc| desc]

into-clause::= into host-variable-commalist

DESCRIPTION
The selectstatement finds the record(s) of the relations specified in thefr om clause that satisfy the given
search condition.

You can use theselectstatement by itself or within adeclare cursor statement:

• Standalone. Ifthe search conditions you specify will return at most one record, you can use the
selectstatement by itself.For example, the search condition references a field for which duplicate
values have been disallowed.

returns an error if there is more than one qualifying record.

Use of the standaloneselectrequires theinto clause.

• Within a declare cursor statement. Ifthe search condition identifies an arbitrary number of
records, you must define a cursor for retrieval.

Remember thatdeclare cursor is only declarative. Before you can retrieve records via the cursor,
you mustopen it andfetch records sequentially.

You cannot use theinto clause in aselectstatement that appears in a cursor declaration.

ARGUMENTS
union-expressionCreates dynamic relations by appending relations.The source relations should have
identical structures or at least share some common fields.

ordering-clauseReturns the record stream sorted by the values of one or moredatabase-fields. You can
sort a record stream alphabetically, numerically, by date, or by any combination.

The database-fieldis called thesort key. You can construct anordering-clausethat includes as many sort
keys as you want. Generallyspeaking, the greater the number of sort keys, the longer it takes for to execute
the query.

1

select(sql) select(sql)

For each sort key, you can specify whether the sorting order isasc(ascending, the default order for the first
sort key) or desc (descending). Thesorting order is ‘‘sticky’’; that is, if you do not specify whether a
particular sort key is ascor desc, assumes that you want the order specified for the last key. Therefore, if
you list several sort keys, but only include the word descfor the first key, sorts all keys in descending order.

into-clauseSpecifies the host variables into which you will retrieve database field values. You must preface
each host variable with a colon (:).The colon is a convention that indicates the following variable is not a
database field.

You cannot use theinto-clausein aselectstatement that appears inside a cursor declaration.

EXAMPLE
The following selectstatement includes anordering-clausewith two sort keys:

. sql_137a.epas

exec sql

declare urban_population_centers cursor for

select city, state from cities

order by state, population desc;

The following selectstatement includes aninto-clausethat specifies which database fields are put into which host variables:

. sql_137b.epas

exec sql

select population, altitude, latitude, longitude

into :pop, :alt, :lat, :long

from cities

where city = ’Boston’;

This example assumes that you declared the variablesPOP, ALT, LAT , andLONG to correspond to the database fields
POPULATION, ALTITUDE, LATITUDE, andLONGITUDE from theCITIES relation.

The following cursor declaration joins records from two relations:

. sql_138a.epas

exec sql

declare city_state cursor for

select c.city, s.state_name, c.altitude, c.population

from cities c, states s where c.state = s.state

order by s.state_name, c.city;

The following cursor declaration retrieves the union of two relations:

2

select(sql) select(sql)

. sql_31c.epas

exec sql

declare all_cities cursor for

select distinct city, state from cities

union

select distinct city, state from ski_areas

union

select distinct capitol, state from states

order by 2, 1;

The following example retrieves a record fromSTATESusingSTATE, a field with unique values:

. sql_138c.epas

exec sql

select state_name, capitol

into :statename, :capitol

from states

where state = :st;

The following example declares a cursor for all items that meet the specified criteria:

. sql_138d.epas

exec sql

declare middle_america cursor for

select city, state, population from cities

where latitude_degrees between 33 and 42

and longitude_degrees between 79 and 104;

SEE ALSO
See the entries in this chapter for:

• select-expression

• open

• fetch

• close

• whenever

DIAGNOSTICS
The following values may be returned toSQLCODE:

• SQLCODE < 0indicates that the statement did not complete.

3

select(sql) select(sql)

• SQLCODE = 0indicates success.

• SQLCODE > 0 and < 100indicates an informational message or warning.

• SQLCODE = 100indicates the end of the active set.

See Chapter 6 for a discussion of error handling.

4

select-expression(sql) select-expression(sql)

NAME
select-expression −selecting records

SYNTAX

select-clause[where-clause] [grouping-clause] [having-clause]

DESCRIPTION
Theselect-expressionspecifies the search and delivery conditions for record retrieval.

ARGUMENTS
select-clauseLists the fields to be returned and the source relation or view. The format of theselect-clause
follows:

Syntax: select-clause of Select Expression

select [distinct] { scalar-expression-commalist| * }
fr om from-item-commalist

from-item::= relation-name[alias]

An asterisk can be used in place of the full selection list.It is the preferred form for the existential qualifier,
exists. For example:

. no_name

select city from cities c

where exists c

select * from ski_areas

where city = c.city;

However, the wildcard isdiscouraged for all other uses, because changes to the database (for example, adding or reordering fields),

will cause the program to fail after its next precompilation.

The optional keyword distinct specifies that only unique values are to be returned.considers the values in thescalar-expressionlist

and returns only one set value for each group of records that meets the selection criteria, and that have duplicate values for thescalar-

expression.

The optionalalias is used for name recognition, and is associated with a relation.An alias can contain up to 31 characters

alphanumeric characters, dollar signs ($), and underscores (_).However, it must start with an alphabetic character. Except for C

programs,gpre is not sensitive to the case of the alias.For example, it treatsB andb as the same character.
For C programs, you can control the case sensitivity of the alias with theeither_caseswitch when you
preprocess your program.

1

select-expression(sql) select-expression(sql)

where-clauseSpecifies search conditions or combinations of search conditions.The format of thewhere-
clausefollows:

Syntax: where-clause of Select Expression

wherepredicate

When you specify a search condition or combination of conditions, the condition is evaluated for each
record that might qualify .Conceptually, performs a record-by-record search, comparing the value you
supplied with the value in the database field you specified.If the two values satisfy the relationship you
specified (for example, equals), the search condition evaluates to ‘‘true’’ and that record becomes part of the
active set. Thesearch condition can result in a value of ‘‘true,’’ ‘‘ false,’’ o r ‘‘missing’’ f or each record.
Such a statement, in which the choice is between the truth or falsity of a proposition, is called a ‘‘Boolean
test’’ and is expressed by apredicate. See the entry forpredicatein this chapter.

grouping-clausePartitions the results of thefrom-clauseor where-clauseinto control groups, each group
containing all rows with identical values for the fields in thegrouping-clause’s field list. Aggregates in the
select-clauseandhaving-clauseare computed over each group.Theselect-clausereturns one row for each
group.

The aggregate operations are count (count), sum (sum), average (avg), maximum (max), and minimum
(min). Seethe entry forscalar-expressionin this chapter.

You can also compute an aggregate value in theselect-clauseand thehaving-clauseof the select-
expression.

Syntax: grouping-clause of Select Expression

group by database-field-commalist

The database-fieldspecifies the field the values of which you want to group.Each set of values for these
fields identifies a group.Chapter 3 discusses thegrouping-clausein more detail.

having-clauseSpecifies search conditions for groups of records.If you use thehaving-clause, you must
first specify agrouping-clause.

2

select-expression(sql) select-expression(sql)

Syntax: having-clause of Select Expression

having predicate

The having-clauseeliminates groups of records, while thewhere-clauseeliminates individual records.
Generally speaking, you can use subqueries to obtain the same results.The main advantage to the use of
this clause is brevity. Howev er, some users may find that a more verbose query with subquery is easier to
understand.

Chapter 3 discusses thehaving-clausein more detail.

EXAMPLES
The following cursor projects theSKI_AREASrelation on theSTATE field:

. sql_142a.epas

exec sql

declare ski_states cursor for

select distinct state from ski_areas;

The following cursor selectsCITIESrecords for which thePOPULATION field is not missing:

. sql_142b.epas

exec sql

declare inhabited cursor for

select city, state, population from cities

where population is not null;

The following cursor joins two relations on theSTATE field for cities whose population is not missing:

. sql_142c.epas

exec sql

declare inhabited_join cursor for

select c.city, s.state_name, c.population

from cities c, states s

where c.state = s.state

and c.population not null;

The following cursor calculates the average population by state:

. sql_143a.epas

exec sql

3

select-expression(sql) select-expression(sql)

declare avg_pop cursor for

select state, avg (population)

from cities

group by state;

The following cursor provides a total population by state of municipalities stored in theCITIES relation, but includes only
those cities for which the latitude and longitude information has been stored, which are located in states
whose names include the word ‘‘New’’, and where the average population of cities in the state exceeds
200,000 people:

. sql_143c.epas

exec sql

declare total_pop cursor for

select sum (c.population), s.state_name

from cities c, states s

where s.state_name like ’%New%’ and

c.latitude is not null and

c.longitude is not null and

c.state = s.state

group by s.state

having avg (population) > 200000;

The following program selects the smallest city in each state that has at least two other cities with recorded population.Otherwise, a

city would qualify as largest and smallest because it was the only city.

. sql_143b.epas

program sql (input, output);

exec sql

include sqlca;

var

pop : integer32;

city : array [1..15] of char;

state_code : array [1..2] of char;

begin

exec sql

declare small_cities cursor for

select city, state, population

4

select-expression(sql) select-expression(sql)

from cities c1

where c1.population = (

select min (population)

from cities c2

where c2.state = c1.state)

and 2 <= (

select count (*)

from cities c3

where c1.state = c3.state

and c1.city <> c3.city

and c3.population is not null)

order by c1.state;

exec sql

open small_cities;

exec sql

fetch small_cities into :city, :state_code, :pop;

while sqlcode = 0 do

begin

writeln (’The smallest city in ’, state_code, ’ is ’,

city, ’ (pop: ’, pop, ’)’);

exec sql

fetch small_cities into :city, :state_code, :pop;

end;

exec sql

close small_cities;

exec sql

rollback release;

end.

SEE ALSO
See the entries in this chapter for:

• predicate

• scalar-expression

• select

DIAGNOSTICS
See Chapter 6 for a discussion of error handling.

5

update(sql) update(sql)

NAME
update −modify field value

SYNTAX

update relation-name
setassignment-commalist
[wherepredicate| where curr ent of cursor-name]

assignment::= database-field= scalar-expression

DESCRIPTION
Theupdate statement changes the values of one or more fields in a record in a relation or in the active set
of a cursor.

If you do not provide a search condition (where...), updates all records inrelation-name. Be very careful
with this option.

ARGUMENTS
relation-nameSpecifies the relation that contains the record you want to update.

assignmentAssigns thescalar-expressionto database-field. This assignment statement belongs to and not
to the host language.Do not use a host language assignment or equality operator inside aupdate
statement.

If the field you are assigning is a date, you cannot handle the field directly with Instead, you must use date
functions such asgds_$encode_dateandgds_$decode_dateto convert your external date representation to
a host variable in the date format (that is, an array of two 32-bit integers), and then use the assignment to
assign the value of the host variable to the database field.

wherepredicateSelects the record to modify.

where curr ent of cursor-nameSpecifies that the current record of the active set is to be modified.If you
use thewhere curr ent of clause, updates only the record at which the cursor is pointing.This form of
updatemust follow:

• The declaration of the cursor with adeclare cursor statement

• The opening of that cursor with anopenstatement

• The retrieval of a record from the active set of that cursor with afetch statement

EXAMPLE
The following statement updates thePOPULATION field of all records fromCITIES that are located in New
York:

1

update(sql) update(sql)

. no_name

exec sql update cities

set population = population * 1.03

where state = ’NY’;

The following statement modifies thePOPULATION field of all records in theCITIES relation:

. no_name

exec sql update cities

set population = population * 1.03;

The following example declares a cursor, opens it, fetches a record, and then alters that record:

. sql_145c.epas

program popupdate (input_output);

exec sql

begin declare section;

exec sql

end declare section;

var

statecode, st : array [1..2] of char;

cityname : array [1..15] of char;

multiplier : integer32;

pop, new_pop : integer32;

begin

write (’Enter state with population needing adjustment: ’);

readln (statecode);

write (’Percent change (eg 5 => 5% increase; -5 => 5% decrease): ’);

readln (multiplier);

multiplier := multiplier + 100;

exec sql

declare pop_mod cursor for

select city, state, population from cities

where state = :statecode

for update of population;

exec sql

open pop_mod;

exec sql

2

update(sql) update(sql)

fetch pop_mod into :cityname, :st, :pop;

writeln (’ ’);

while (sqlcode = 0) do

begin

new_pop := trunc ((pop * multiplier) / 100);

writeln (cityname, st, ’ old population: ’, pop,

’ new population: ’, new_pop);

exec sql

update cities

set population = :new_pop

where current of pop_mod;

exec sql

fetch pop_mod into :cityname, :st, :pop;

end;

exec sql

close pop_mod;

exec sql

rollback release;

end.

SEE ALSO
See the entries in this chapter for:

• predicate

• declare cursor

• open

• fetch

• select

• whenever

DIAGNOSTICS
The following values may be returned toSQLCODE:

• SQLCODE < 0indicates that the statement did not complete.

• SQLCODE = 0indicates success.

• SQLCODE > 0 and < 100indicates an informational message or warning.

See Chapter 6 for a discussion of error handling.

3

whenever(sql) whenever(sql)

NAME
whenever −handling exceptions

SYNTAX

whenever { not found | sqlerror | sqlwarning }
goto-statement

DESCRIPTION
The whenever statement tests theSQLCODEvalue returned with each execution of anSQL statement. If
the listed condition occurs, thewhenever statement performs thegotostatement.

The following values may be returned toSQLCODE:

• SQLCODE < 0indicates that the statement did not complete.These codes are listed below.

• SQLCODE = 0indicates success.

• SQLCODE > 0 and < 100indicates an informational message or warning.

A whenever statement must precede any statements that might result in an error so that knows what action
to take in case of error.

ARGUMENTS
not found Indicates the end of the input stream.This condition corresponds to theSQLCODEvalue of100.
This option is useful when you are looping through the active set of a cursor.

sqlerror Indicates that the statement did not complete.This condition corresponds to a negative SQLCODE.

sqlwarning Indicates a general system warning or informational message.This condition corresponds to
SQLCODEvalues between1 and99, inclusive.

EXAMPLE
The following example demonstrates thesqlerror option of thewhenever statement:

. sql_131a.epas

program update_census (input_output);

label

error, warn, terminate;

warn:

(* since no warnings are defined, fall into error *)

error:

writeln (’Encountered SQL error code ’, sqlcode);

1

whenever(sql) whenever(sql)

writeln (’Expanded error listing: ’);

gds_$print_status (gds_$status);

if (sqlcode = -16) then

begin

exec sql

rollback;

work ();

end

else

exec sql

rollback release;

terminate:

end.

DIAGNOSTICS
See Chapter 6 for a discussion of error handling inSQL programs,SQLCODEvalues, and the corresponding
errors.

2

