

PG-06007-001_v05 | February 2013

Programmer’s Guide

GPUDIRECT FOR VIDEO

GPUDirect for Video PG-06007-001_v05 | ii

DOCUMENT CHANGE HISTORY

PG-06007-001_v05

Version Date Authors Description of Change
01 September 14, 2011 AA, SM Initial Release

02 December 22, 2011 AA, SM • Updated Section 3.1 and Section 3.2

• Updated Sub-section 4.2.1

03 April 27, 2012 AA, SM Updated Chapter 3 and Chapter 4

04 November 8, 2012 TT, SM • Updated Section 3.3
• Minor edits

05 February 21, 2013 AA, SM Updated Chapter 3 and Chapter 4

GPUDirect for Video PG-06007-001_v05 | iii

TABLE OF CONTENTS

Chapter 1. Introduction ... 1
Chapter 2. End User Workflow ... 3
Chapter 3. Setup .. 4

3.1 Initialization ... 4
3.2 System Memory ... 5
3.3 Synchronization Objects .. 12
3.4 GPU Objects .. 15

Chapter 4. Mechanism of Operation ... 17
4.1 DVP Memory Copy.. 17
4.2 Synchronization .. 18

4.2.1 DVP Sync Objects ... 18
4.2.2 dvpMap* APIs .. 20

4.3 Performance Considerations ... 21

―

GPUDirect for Video PG-06007-001_v05 | iv

LIST OF FIGURES

Figure 1-1. GPUDirect for Video Pipeline ... 1

Figure 1-2. Architectural Overview .. 2

LIST OF TABLES

Table 3-1. 32-Bit Layout .. 8

Table 3-2. 24-Bit Layout .. 8

Table 3-3. 16-Bit Layout .. 8

Table 3-4. 8-Bit Layout ... 9

GPUDirect for Video PG-06007-001_v05| 1

Chapter 1.
INTRODUCTION

NVIDIA® GPUDirect for Video™ is a user mode API that allows vendors of video
capture or output devices to facilitate low latency transfers of video and other data in to
and out of NVIDIA graphics processing units (GPUs) for high performance processing
using available graphics and compute libraries.

The GPUDirect for Video data transfer technique permits sharing of a lockable system
memory buffer between video I/O device and the GPU and permits direct DMA
transfers between system memory and GPU memory providing a CPU-independent
way to transfer data in to and out of the GPU (Figure 1-1).

Figure 1-1. GPUDirect for Video Pipeline

Introduction

GPUDirect for Video PG-06007-001_v05 | 2

This API is only exposed to video device vendors for use in device drivers, SDKs or
applications. As a result, end user applications sitting on top of the vendor software
stack and NVIDIA graphics and compute software stacks will automatically make use of
the low latency transfers (Figure 1-2).

 Note: It is up to the SDK vendor which graphics and compute APIs will be
supported.

This programmer’s guide describes programming methodologies for 3rd party video I/O
driver/SDK developers who intend to integrate GPUDirect for Video I/O into their
software.

Figure 1-2. Architectural Overview

GPUDirect for Video PG-06007-001_v05| 3

Chapter 2.
END USER WORKFLOW

Following is a sample outline of an end user application taking advantage of the
GPUDirect for Video while using 3rd party video I/O device SDK.

 Note: : From now on the 3rd party video I/O driver/SDK API will be referred to as
EXT SDK and all the EXT SDK function calls and data types will have the EXT prefix.

OpenGL/DirectX/CUDA will be referred to as GPU API.

The GPUDirect for Video I/O library will be referred to as the DVP library.

 Identify the GPU for the target and source of the data transfer in the EXT SDK.
 Create the GPU object(s) in the GPU API of choice (OpenGL, DirectX, NVIDIA

CUDA®, etc) and the matching system memory that will facilitate the data transfers.
 Create an input or output EXT SDK ring buffer with the allocated GPU objects and

the allocated system memory.
 Set up a loop where the application gets the next available GPU object from the EXT

SDK processes the object and subsequently releases the object back to the EXT SDK.

GPUDirect for Video PG-06007-001_v05| 4

Chapter 3.
SETUP

This chapter details all the aspects of configuring GPUDirect for Video transfers within
the EXT SDK.

3.1 INITIALIZATION

Prior to making any calls into the DVP library and allocating any library resources, the
library must be initialized with a GPU API context/device. The EXT SDK should
generally allow the end user application to specify these.

The allocation is performed with one of the dvpInit* calls and the corresponding de-
allocation is done with its dvpClose* counterpart:

 Note: Special care must be taken when the application initializes a DirectX device.
The user must make sure that the device is initialized with multithreading. For
D3D9, only an IDirect3DDevice9Ex can be used. For D3D10 and D3D11 the device
must be created using D3D10CreateDeviceAndSwapChain and
D3D11CreateDeviceAndSwapChain respectively.

DVPAPI_INTERFACE dvpInitGLContext(uint32_t flags);

DVPAPI_INTERFACE dvpInitCUDAContext(uint32_t flags);

DVPAPI_INTERFACE dvpInitD3D9Device(IDirect3DDevice9 *pD3D9Device,

 uint32_t flags);

Setup

GPUDirect for Video PG-06007-001_v05 | 5

DVPAPI_INTERFACE dvpInitD3D10Device(ID3D11Device *pD3D11Device,

 uint32_t flags);

DVPAPI_INTERFACE dvpInitD3D11Device(ID3D11Device *pD3D11Device,

 uint32_t flags);
DVPAPI_INTERFACE dvpCloseGLContext();

DVPAPI_INTERFACE dvpCloseCUDAContext();

DVPAPI_INTERFACE dvpCloseD3D9Device(IDirect3DDevice9 *pD3D9Device);

DVPAPI_INTERFACE dvpCloseD3D10Device(ID3D11Device *pD3D11Device);

DVPAPI_INTERFACE dvpCloseD3D11Device(ID3D11Device *pD3D11Device);

 Note: If OpenGL or CUDA are used, then the OpenGL and CUDA context must be
current at the time of the dvpInit*/dvpClose* calls, and
dvpInit*/dvpClose* must be called for each of the contexts that contain
resources used by the library.

The dvpInit* call tells the library which context (for OpenGL or CUDA) or device (for
DirectX) the GPU objects will reside within. The DVP library currently has two flags
available: 0 or DVP_DEVICE_FLAGS_SHARE_APP_CONTEXT. If the value of flags is 0, then
an internal context will be created, which shares all the resources with the current
context. If the value of flags is DVP_DEVICE_FLAGS_SHARE_APP_CONTEXT, then the
library will use whichever context is current at the time for a context dependent DVP
function call.

The behavior of the library is different for every GPU API:

 For OpenGL, both flags are supported.
 For DirectX, there is no option of sharing the EXT SDK/application device and 0 is the

only supported flag.
 For CUDA, sharing of the context is the only supported behavior and

DVP_DEVICE_FLAGS_SHARE_APP_CONTEXT is the only supported flag.

3.2 SYSTEM MEMORY

Once the context/device has been established the EXT SDK needs to allocate system
memory to be used for transferring video data in/out of the 3rd party device and the
GPU.

Setup

GPUDirect for Video PG-06007-001_v05 | 6

Depending on the EXT SDK vendor, the memory can be allocated either by the EXT SDK
or by the end user application and passed to the EXT SDK.

Each system memory buffer is required to fill out the DVPSysmemBufferDesc structure
describing the dimensions and storage format of the buffer and allocate a
DVPBufferHandle handle in the library.

 typedef struct DVPSysmemBufferDescRec {
 uint32_t width;
 uint32_t height;
 uint32_t stride;
 uint32_t size;
 DVPBufferFormats format;
 DVPBufferTypes type;
 void *bufAddr;
 } DVPSysmemBufferDesc;

For system memory buffers that correspond to a texture object on the GPU, the width,
height, and stride fields will be used. And if a system memory buffer corresponds to a
GPU buffer object, then the size field will be used.

 Note: When performing a DMA between system memory and a 3rd party board, it is
important to note that the buffer stride might have some padding at the end of
each line for system memory buffers corresponding to GPU texture objects.

For optimal performance when graphics APIs are used, some forms of data translation
can be performed by the driver during data transfer. These transformations are defined
by the format and layout of the system memory and the format and layout of the GPU
buffer defined by the graphics API. When possible, GPU hardware features will be used
for these transformations.

 Note: The driver will not perform any color space conversion as part of the data
translation step. These must be done separately, in a shader or in a compute
program.

DVPBufferFormats describe all the supported pixel formats and DVPBufferTypes
describe all the supported pixel component storage type and bit layout of the system
memory buffer.

 typedef enum
 {
 DVP_BUFFER,
 DVP_DEPTH_COMPONENT,

Setup

GPUDirect for Video PG-06007-001_v05 | 7

 DVP_RGBA,
 DVP_BGRA,
 DVP_RED,
 DVP_GREEN,
 DVP_BLUE,
 DVP_ALPHA,
 DVP_RGB,
 DVP_BGR,
 DVP_LUMINANCE,
 DVP_LUMINANCE_ALPHA,
 DVP_CUDA_1_CHANNEL,
 DVP_CUDA_2_CHANNELS,
 DVP_CUDA_4_CHANNELS,
 } DVPBufferFormats;

 typedef enum
 {
 DVP_UNSIGNED_BYTE,
 DVP_BYTE,
 DVP_UNSIGNED_SHORT,
 DVP_SHORT,
 DVP_UNSIGNED_INT,
 DVP_INT,
 DVP_FLOAT,
 DVP_HALF_FLOAT,
 DVP_UNSIGNED_BYTE_3_3_2,
 DVP_UNSIGNED_BYTE_2_3_3_REV,
 DVP_UNSIGNED_SHORT_5_6_5,
 DVP_UNSIGNED_SHORT_5_6_5_REV,
 DVP_UNSIGNED_SHORT_4_4_4_4,
 DVP_UNSIGNED_SHORT_4_4_4_4_REV,
 DVP_UNSIGNED_SHORT_5_5_5_1,
 DVP_UNSIGNED_SHORT_1_5_5_5_REV,
 DVP_UNSIGNED_INT_8_8_8_8,
 DVP_UNSIGNED_INT_8_8_8_8_REV,
 DVP_UNSIGNED_INT_10_10_10_2,
 DVP_UNSIGNED_INT_2_10_10_10_REV,
 } DVPBufferTypes;

 Note: The GPU operates with data formats that are multiples of 8-bit. Therefore,
textures with 12-bit pixel formats need to be packed into multiples of 8-bit words.

Setup

GPUDirect for Video PG-06007-001_v05 | 8

The following tables describe the bit layout of several buffer formats and types in the big
endian bit order:

Table 3-1. 32-Bit Layout

Format Type 1st Byte 2nd Byte 3rd Byte 4th Byte

RGBA

UNSIGNED_BYTE RRRRRRRR GGGGGGGG BBBBBBBB AAAAAAAA

UNSIGNED_INT_8_8_8_8 RRRRRRRR GGGGGGGG BBBBBBBB AAAAAAAA

UNSIGNED_INT_8_8_8_8_REV AAAAAAAA BBBBBBBB GGGGGGGG RRRRRRRR

UNSIGNED_INT_10_10_10_2 RRRRRRRR RRGGGGGG GGGGBBBB BBBBBBAA

UNSIGNED_INT_2_10_10_10_REV AABBBBBB BBBBGGGG GGGGGGRR RRRRRRRR

BGRA

UNSIGNED_BYTE BBBBBBBB GGGGGGGG RRRRRRRR AAAAAAAA

UNSIGNED_INT_8_8_8_8 BBBBBBBB GGGGGGGG RRRRRRRR AAAAAAAA

UNSIGNED_INT_8_8_8_8_REV AAAAAAAA RRRRRRRR GGGGGGGG BBBBBBBB

UNSIGNED_INT_10_10_10_2 BBBBBBBB BBGGGGGG GGGGRRRR RRRRRRAA

UNSIGNED_INT_2_10_10_10_REV AARRRRRR RRRRGGGG GGGGGGBB BBBBBBBB

Table 3-2. 24-Bit Layout

Format Type 1st Byte 2nd Byte 3rd Byte

RGB UNSIGNED_BYTE RRRRRRRR GGGGGGGG BBBBBBBB

BGR UNSIGNED_BYTE BBBBBBBB GGGGGGGG RRRRRRRR

Table 3-3. 16-Bit Layout

Format Type 1st Byte 2nd Byte

RGB
UNSIGNED_SHORT_5_6_5 RRRRRGGG GGGBBBBB

UNSIGNED_SHORT_5_6_5_REV BBBBBGGG GGGRRRRR

RGBA

UNSIGNED_SHORT_5_5_5_1 RRRRRGGG GGBBBBBA

UNSIGNED_SHORT_1_5_5_5_REV ABBBBBGG GGGRRRRR

UNSIGNED_SHORT_4_4_4_4 RRRRGGGG BBBBAAAA

UNSIGNED_SHORT_4_4_4_4_REV AAAABBBB GGGGRRRR

BGRA

UNSIGNED_SHORT_5_5_5_1 BBBBBGGG GGRRRRRA

UNSIGNED_SHORT_1_5_5_5_REV ARRRRRGG GGGBBBBB

UNSIGNED_SHORT_4_4_4_4 BBBBGGGG RRRRAAAA

UNSIGNED_SHORT_4_4_4_4_REV AAAARRRR GGGGBBBB

Setup

GPUDirect for Video PG-06007-001_v05 | 9

Table 3-4. 8-Bit Layout

Format Type 1st Byte

RGB
UNSIGNED_SHORT_3_3_2 RRRGGGBB

UNSIGNED_SHORT_3_3_2_REV BBGGGRRR

The DVP_BUFFER buffer format provides an unspecified format type – in this case the
buffer is copied to GPU memory without any interpretation of the stored bytes and
shaders or compute programs must be used by the EXTSDK or the end user application
to interpret the data.

 Note: If DVP_BUFFER buffer format is used then the DVPSysmemBufferDesc size
field must be correctly set. The width and height fields are ignored.

Once the DVPSysmemBufferDesc has been configured, the buffer must be registered
with the DVP library using dvpCreateBuffer function, and prior to destruction it must
be unregistered using the dvpDestroyBuffer.

DVPAPI_INTERFACE dvpCreateBuffer(DVPSysmemBufferDesc *desc,
 DVPBufferHandle *hBuf);
DVPAPI_INTERFACE dvpDestroyBuffer(DVPBufferHandle hBuf);

The buffer then must be bound to the GPU API of choice using one of dvpBindTo*
functions:

DVPAPI_INTERFACE dvpBindToGLCtx(DVPBufferHandle hBuf);

DVPAPI_INTERFACE dvpBindToCUDACtx(DVPBufferHandle hBuf);

DVPAPI_INTERFACE dvpBindToD3D9Device(DVPBufferHandle hBuf,
IDirect3DDevice9 *pD3D9Device);

DVPAPI_INTERFACE dvpBindToD3D10Device(DVPBufferHandle hBuf,
ID3D10Device *pD3D10Device);

DVPAPI_INTERFACE dvpBindToD3D11Device(DVPBufferHandle hBuf,
ID3D11Device *pD3D11Device);

 DVPAPI_INTERFACE
 dvpUnbindFromGLCtx(DVPBufferHandle hBuf);

 DVPAPI_INTERFACE
 dvpUnbindFromCUDACtx(DVPBufferHandle hBuf);

Setup

GPUDirect for Video PG-06007-001_v05 | 10

 DVPAPI_INTERFACE
 dvpUnbindFromD3D9Device(DVPBufferHandle hBuf,
 IDirect3DDevice9 *pD3D9Device);
 DVPAPI_INTERFACE
 dvpUnbindFromD3D10Device(DVPBufferHandle hBuf,
 ID3D10Device *pD3D10Device);
 DVPAPI_INTERFACE
 dvpUnbindFromD3D11Device(DVPBufferHandle hBuf,
 ID3D11Device *pD3D11Device);

 Note: If OpenGL or CUDA are used, then the OpenGL and CUDA context must be
current at the time of the dvpBind*/dvpUnbind* calls.

The DVP library constrains the address alignment to be used by the GPU DMA engines.
These constraints tend to be architecture and driver specific as well as GPU API specific
and can be queried using the dvpGetRequiredConstantsXXX call:

DVPAPI_INTERFACE
dvpGetRequiredConstantsGLCtx(uint32_t *bufferAddrAlignment,
 uint32_t *bufferGPUStrideAlignment,
 uint32_t *semaphoreAddrAlignment,
 uint32_t *semaphoreAllocSize,
 uint32_t *semaphorePayloadOffset,
 uint32_t *semaphorePayloadSize);

DVPAPI_INTERFACE
dvpGetRequiredConstantsCUDACtx(uint32_t *bufferAddrAlignment,
 uint32_t *bufferGPUStrideAlignment,
 uint32_t *semaphoreAddrAlignment,
 uint32_t *semaphoreAllocSize,
 uint32_t *semaphorePayloadOffset,
 uint32_t *semaphorePayloadSize);

DVPAPI_INTERFACE
dvpGetRequiredConstantsD3D9Device(uint32_t *bufferAddrAlignment,
 uint32_t *bufferGPUStrideAlignment,
 uint32_t *semaphoreAddrAlignment,
 uint32_t *semaphoreAllocSize,
 uint32_t *semaphorePayloadOffset,
 uint32_t *semaphorePayloadSize,
 IDirect3DDevice9 *pD3D9Device);

DVPAPI_INTERFACE
dvpGetRequiredConstantsD3D10Device(uint32_t *bufferAddrAlignment,
 uint32_t *bufferGPUStrideAlignment,
 uint32_t *semaphoreAddrAlignment,

Setup

GPUDirect for Video PG-06007-001_v05 | 11

 uint32_t *semaphoreAllocSize,
 uint32_t *semaphorePayloadOffset,
 uint32_t *semaphorePayloadSize,
 ID3D10Device *pD3D10Device);

DVPAPI_INTERFACE
dvpGetRequiredConstantsD3D11Device(uint32_t *bufferAddrAlignment,
 uint32_t *bufferGPUStrideAlignment,
 uint32_t *semaphoreAddrAlignment,
 uint32_t *semaphoreAllocSize,
 uint32_t *semaphorePayloadOffset,
 uint32_t *semaphorePayloadSize,
 ID3D11Device *pD3D11Device);

This call also provides an alignment recommendation for the stride of the system
memory buffer. The performance of the data transfer could vary depending on the stride
alignment so aligning the stride to certain values, for example, 64 bytes, may give
optimal data rate. The value returned from dvpGetRequiredConstantsXXX will yield
optimal performance, but smaller values may do the same. These values may vary from
GPU to GPU, so testing for the optimal alignment is always recommended. This is
important should the 3rd party hardware require a stride not aligned with the value
from dvpGetRequiredConstantsXXX.

 Note: If OpenGL or CUDA APIs are used, then the OpenGL and CUDA context must
be current at the time of the dvpGetRequiredConstantsXXX call.

In addition, the allocated memory usually needs to be pinned in place for 3rd party
device DMAs which can place additional restrictions on the allocations. Pinning can be
done with the use of OS specific functions. On Windows, MmProbeAndLockPages or
VirtualLock can be used. The application can increase the allowable amount of pinned
memory if necessary by calling SetProcessWorkingSetSize.On Linux,
get_user_pages will provide the necessary functionality.

The following code sample demonstrates how to setup a system memory buffer for DVP
library usage on Linux. In this example the memory is setup for OpenGL usage as a 1920
× 1080 RGBA texture.

 dvpGetRequiredConstantsGLCtx(&g_bufferAddrAlignment,
 &g_bufferGPUStrideAlignment,
 &g_semaphoreAddrAlignment,
 &g_semaphoreAllocSize

 &g_semaphorePayloadOffset
 &g_semaphorePayloadSize);
 DVPSysmemBufferDesc sysMemBuffersDesc;

Setup

GPUDirect for Video PG-06007-001_v05 | 12

 //Use GPU constrains
 bufferWidth = 1920;
 bufferHeight = 1080;
 bufferStride = bufferWidth*4;
 bufferStride += g_bufferGPUStrideAlignment-1;
 bufferStride &= ~(g_bufferGPUStrideAlignment-1);

 sysMemBuffersDesc.width = bufferWidth;
 sysMemBuffersDesc.height = bufferHeight;
 sysMemBuffersDesc.stride = bufferStride;
 sysMemBuffersDesc.format = DVP_RGBA;
 sysMemBuffersDesc.type = DVP_UNSIGNED_INT_8_8_8_8;
 size = bufferHeight*bufferStride;
 //allocate host memory
 void *sysMemAlloc, *sysMemBuffer;
 sysMemAlloc=calloc(1, size + g_bufferAddrAlignment - 1);
 //Align buffer
 sysMemBuffer=(void *)(((uint64_t)sysMemAlloc+g_bufferAddrAlignment-1)

 & ~((uint64_t)g_bufferAddrAlignment - 1));
 sysMemBuffersDesc.bufAddr = sysMemBuffer;
 //allocate a library handle
 DVPBufferHandle sysMemHandle;
 dvpCreateBuffer(sysMemBuffersDesc, &sysMemHandle);
 //bind the library handle to the GL context
 dvpBindToGLCtx(sysMemHandle);

3.3 SYNCHRONIZATION OBJECTS

The DVP sync objects are used for bi-directional synchronization between the GPU and
the 3rd party device. This way the 3rd device party SDK and driver knows when the GPU
is done transferring data and the GPU knows when the data is ready to be transferred.

The sync objects defined in this API are implemented as increasing semaphores with
two types of operations: a release and an acquire operation. In this document a
semaphore refers to a shared memory primitive containing a 32-bit integer value. A
release operation on a semaphore writes an integer value to the memory location, while
an acquire operation blocks until the semaphore value is greater than or equal to a
specified value.

To setup, the following DVPSyncObjectDesc structure must be initialized:

 typedef struct DVPSyncObjectDescRec {
 uint32_t *sem;
 uint32_t flags;
 DVPStatus (*externalClientWaitFunc) (DVPSyncObjectHandle sync,
 uint32_t value,

Setup

GPUDirect for Video PG-06007-001_v05 | 13

 bool GEQ,
 uint64_t timeout);
 } DVPSyncObjectDesc;

DVP library provides two semaphore acquire methods for the EXT SDK.

 DVPAPI_INTERFACE
 dvpSyncObjClientWaitComplete(DVPSyncObjectHandle syncObject,
 uint64_t timeout);
 DVPAPI_INTERFACE
 dvpSyncObjClientWaitPartial(DVPSyncObjectHandle syncObject,
 uint32_t value,
 uint64_t timeout);

The object must be imported and then later released from the library using the following
functions:

 DVPAPI_INTERFACE
 dvpImportSyncObject(DVPSyncObjectDesc *desc,
 DVPSyncObjectHandle *syncObject);
 DVPAPI_INTERFACE
 dvpFreeSyncObject(DVPSyncObjectHandle syncObject);

The library provides a way to query sync object for the time of completion of the last
GPU release operation. This time is in nanoseconds and it is in the GPU domain:

 DVPAPI_INTERFACE

 dvpSyncObjCompletion(DVPSyncObjectHandle syncObject,
 uint64_t *timeStamp);

 Note: If OpenGL is being used and the library was initialized with
DVP_DEVICE_FLAGS_SHARE_APP_CONTEXT, then an OpenGL context must be
current when calling dvpSyncObjCompletion. This call bounds the sync object
to the context, and therefore dvpFreeSyncObject must also be called with each
application context to unbind the object. Otherwise, if there are outstanding
contexts from which the sync object needs to freed, dvpFreeSyncObject will
return DVP_STATUS_SYNC_STILL_BOUND.

Setup

GPUDirect for Video PG-06007-001_v05 | 14

dvpSyncObjClientWaitComplete blocks until the corresponding sync object's
semaphore is greater than or equal to the last release value issued by the DVP library
whereas dvpSyncObjClientWaitPartial blocks until the semaphore value is greater
than or equal to the supplied value. Both methods must be encapsulated in dvpBegin()
and dvpEnd() calls.

 Note: The first time dvpSyncObjClientWaitComplete function is called it will
return DVP_STATUS_INVALID_OPERATION if the syncObject has yet to be used
by the library. The dvpSyncObjClientWait* calls will silently fail if they are
not encapsulated in dvpBegin/dvpEnd function calls.

When the flags field is set to DVP_SYNC_OBJECT_FLAGS_USE_EVENTS and the library gets
a call to dvpSyncObjClientWait*, it will prefer to use native operating system event
waits instead of spin-loops.

 Note: GPU hardware level semaphore and wait operations are supported on
Windows XP and Linux but not supported on Windows 7.

EXT SDK can specify a callback for the DVP library semaphore wait operations using
externalClientWaitFunc function. This allows the application or the EXT SDK to
create events, which can be triggered on device interrupts and consequently, these
events can be waited upon instead of using spin loops inside the DVP library. This
function should return DVP_STATUS_OK on success, non-zero for failure and
DVP_STATUS_TIMEOUT on timeout.

The DVP library constrains the alignment and allocation size of the system memory
devoted for the sync object in the same way it constrains the allocation properties of the
system memory used for transfers. These constraints are also obtained during the
dvpGetRequiredConstantsXXX call as it can be seen by the function call signature.

The following code sample demonstrates how to setup a DVP sync object and import it
into the DVP library.

DVPSyncObjectDesc syncObjectDesc;
DVPSyncObjectHandle syncObj;
uint32_t semOrg = (uint32_t *)
malloc(g_semaphoreAllocSize+g_semaphoreAddrAlignment-1);
// Correct alignment
uint64_t val = (uint64_t)semOrg;
val += g_semaphoreAddrAlignment-1;
val &= ~(g_semaphoreAddrAlignment-1);

// setup the DVPSyncObjectDesc structure
syncObjectDesc.sem = sem;

Setup

GPUDirect for Video PG-06007-001_v05 | 15

syncObjectDesc.externalClientWaitFunc = NULL;
syncObjectDesc.flags = 0;
// Import the DVP Sync Object
dvpImportSyncObject(&syncObjectDesc, &syncObj);

The EXT SDK should allocate two sync objects for every buffer. Each sync object
corresponds to a DMA operation: one for the video device DMA, and another for the
GPU DMA.

 Note: It is legal to use the same memory by two separate sync objects, but could
yield unpredictable results.

Also, a sync object should not be used across GPU APIs. For example, it is illegal to
use it for synchronization while doing data transfers with source or target GL
texture and then use it for synchronization for data transfers with source or target
CUDA buffer.

3.4 GPU OBJECTS

Once the end user application has finished setting up all the GPU objects (buffers or
textures) which will be used as sources or targets of data transfers, it must pass them to
the EXT SDK so they can be registered with the DVP library using one of the
dvpCreateGPU* functions listed in the following code sample. Those objects must later
be unregistered using the dvpFreeBuffer function.

DVPAPI_INTERFACE dvpCreateGPUBufferGL(GLuint bufferID,
DVPBufferHandle *bufferHandle);

 DVPAPI_INTERFACE dvpCreateGPUTextureGL(GLuint texID,
DVPBufferHandle *bufferHandle);

 DVPAPI_INTERFACE dvpCreateGPUCUDAArray(CUarray array,
DVPBufferHandle *bufferHandle);

DVPAPI_INTERFACE dvpCreateGPUCUDADevicePtr(CUdeviceptr devPtr,
DVPBufferHandle *bufferHandle);

 DVPAPI_INTERFACE dvpCreateGPUD3D9Resource(IDirect3DResource9
*pD3DResource, DVPBufferHandle *bufferHandle);

 DVPAPI_INTERFACE dvpCreateGPUD3D10Resource(ID3D10Resource
*pD3DResource, DVPBufferHandle *bufferHandle);

Setup

GPUDirect for Video PG-06007-001_v05 | 16

 DVPAPI_INTERFACE dvpCreateGPUD3D11Resource(ID3D11Resource
*pD3DResource, DVPBufferHandle *bufferHandle);

 DVPAPI_INTERFACE
 dvpFreeBuffer(DVPBufferHandle hBuf);

 Notes: If OpenGL or CUDA APIs are used, then the OpenGL and CUDA context must
be current at the time of the dvpCreate* calls.

If DirectX API is used, then the texture or buffer resources must be created in
D3DPOOL_DEFAULT memory pool for D3D9 and D3D10_USAGE_DEFAULT and
D3D11_USAGE_DEFAULT for D3D10 and D3D11 respectively.

The following are the only DirectX resource types that are accepted:

For D3D9: IDirect3DSurface9, IDirect3DTexture9,
IDirect3DVolumeTexture9,IDirect3DCubeTexture9,
IDirect3DIndexBuffer9, IDirect3DVertexBuffer9

For D3D10:ID3D10Texture1D, ID3D10Texture2D, ID3D10Texture3D,
ID3D10Buffer

For D3D11:ID3D11Texture1D, ID3D11Texture2D, ID3D11Texture3D,
ID3D11Buffer

GPUDirect for Video PG-06007-001_v05| 17

Chapter 4.
MECHANISM OF OPERATION

This chapter will delve into the DVP library transfers and various synchronization
mechanisms.

4.1 DVP MEMORY COPY

As it was previously mentioned in this programmer’s guide, data transfer between the
shared system memory and the GPU happens as a DMA operation which gets
scheduled when the EXT SDK uses one of the dvpMemcpy* calls. The following is a list
of available dvpMemcpy* functions:

DVPAPI_INTERFACE dvpMemcpy(DVPBufferHandle srcBuffer,
 DVPSyncObjectHandle srcSync,
 uint32_t srcAcquireValue,
 uint64_t timeout,
 DVPBufferHandle dstBuffer,
 DVPSyncObjectHandle dstSync,
 uint32_t dstReleaseValue,
 uint32_t srcOffset,
 uint32_t dstOffset,
 uint32_t count);

DVPAPI_INTERFACE dvpMemcpyLined(DVPBufferHandle srcBuffer,
 DVPSyncObjectHandle srcSync,
 uint32_t srcAcquireValue,
 uint64_t timeout,
 DVPBufferHandle dstBuffer,
 DVPSyncObjectHandle dstSync,
 uint32_t dstReleaseValue,

Mechanism of Operation

GPUDirect for Video PG-06007-001_v05 | 18

 uint32_t startingLine,
 uint32_t numberOfLines);

DVPAPI_INTERFACE dvpMemcpy2D(DVPBufferHandle srcBuffer,
 DVPSyncObjectHandle srcSync,
 uint32_t srcAcquireValue,
 uint64_t timeout,
 DVPBufferHandle dstBuffer,
 DVPSyncObjectHandle dstSync,
 uint32_t dstReleaseValue,
 uint32_t startY,
 uint32_t startX,
 uint32_t height,
 uint32_t width);

dvpMemcpy is designed to only work with a GPU API pure buffer and a DVP system
buffer of DVP_BUFFER format, whereas dvpMemcpyLined and dvpMemcpy2D only work
with a GPU API texture and a DVP system buffer of any format with the exception of
DVP_BUFFER.

 Note: GPU API texture refers to a texture for OpenGL and DirectX, and CUDA array
for CUDA. GPU API pure buffer refers to a buffer object for OpenGL, an
IDirect3DVertexBuffer9 for Direct X 9, a buffer resource for Direct X 10 and 11 and
unformatted CUDA heap memory for CUDA.

4.2 SYNCHRONIZATION

GPUDirect for Video has two different synchronization mechanisms built into the API:
The DVP sync objects and the dvpMap* APIs. Both mechanisms should be utilized by the
EXT SDK to achieve correctness of data in the GPU APIs.

4.2.1 DVP Sync Objects
The DVP Sync Objects exist for synchronization between the NVIDIA driver and EXT
SDK to synchronize DMA operations. It is preferable for performance that the acquire
and the release operations for these objects are done in hardware, but the driver can also
perform the operations on behalf of the hardware.

dvpMemcpy* APIs are used for copying data between system memory and the GPU
memory. They take two DVP sync objects as arguments: srcSync and dstSync, and
two pairs of values acquireValue and releaseValue.

Mechanism of Operation

GPUDirect for Video PG-06007-001_v05 | 19

srcSync should get signaled by the EXT device/driver when the DMA operation
between the device and sysmem is completed. The GPU will wait until srcSync value
reaches the acquireValue. dstSync will get signaled and its value will be set to
releaseValue upon the GPU DMA operation completion. It is up to the EXT SDK to
accurately keep track of the acquire and release values of the sync objects. The sync
objects should be used in a similar fashion for the EXT memcpy operation.

The following is pseudo code for a dvpMemcpy* operation for capture:

WaitOnSemaphore(dstSync, acquireValue);

 InitiateGPUMemcpy(sysmem, gpumem, ...);

The NVIDIA GPU will execute the following in pseudo code once the DMA is complete:

ReleaseSemaphore(dstSync, releaseValue);

A similar code outline should appear in the EXT SDK when scheduling of the 3rd party
device DMA:

WaitOnSemaphore(srcSync, acquireValue);

 InitiateEXTMemcpy(sysmem, devicemem, ...);

The EXT SDK should execute the following in pseudo code once the DMA is complete:

ReleaseSemaphore(srcSync, releaseValue);

Mechanism of Operation

GPUDirect for Video PG-06007-001_v05 | 20

4.2.2 dvpMap* APIs
dvpMap* APIs are used to synchronize DVP operations with application-level GPU API
operations.

DVPAPI_INTERFACE
 dvpMapBufferEndDVP(DVPBufferHandle gpuBufferHandle);
DVPAPI_INTERFACE
 dvpMapBufferWaitDVP(DVPBufferHandle gpuBufferHandle);

DVPAPI_INTERFACE
 dvpMapBufferEndAPI(DVPBufferHandle gpuBufferHandle);
DVPAPI_INTERFACE
 dvpMapBufferWaitAPI(DVPBufferHandle gpuBufferHandle);

DVPAPI_INTERFACE
 dvpMapBufferEndCUDAStream(DVPBufferHandle gpuBufferHandle, CUstream
stream);
DVPAPI_INTERFACE
 dvpMapBufferWaitCUDAStream(DVPBufferHandle gpuBufferHandle,
CUstream stream);

The dvpMapBufferEndAPI call sets up a signal for a buffer in the callers GPU API
context or device. The signal follows all previous GPU API operations up to this point,
thus allowing subsequent DVP calls to know when this buffer is ready for use within the
DVP library. dvpMapBufferWaitDVP allows the DVP command stream to wait for the
recently set up signal to be triggered by the GPU API command stream.

Similarly, dvpMapBufferEndDVP call sets up a signal for a buffer in the DVP command
stream, and this signal follows all previous DVP operations up to this point, thus
allowing subsequent GPU API calls to know when this buffer is ready for use within the
GPU API. dvpMapBufferWaitAPI allows the GPU API command stream to wait for the
recently set up signal for the buffer to be triggered by the DVP command stream. For
best performance, dvpMapBufferEndCUDAStream/dvpMapBufferWaitCUDAStream
should be used instead of dvpMapBufferEndAPI/dvpMapBufferWaitAPI in CUDA.
These calls allow the DVP library to synchronize with a particular computation stream
instead of the default stream, thus providing a finer grained way of doing
synchronization.

 Note: Each set of dvpMapBufferWaitDVP/dvpMapBufferEndDVP/
dvpSyncObjClientWait* and dvpMemcpy* function calls should be
encapsulated in the dvpBegin / dvpEnd function calls. If there is a thread
specifically devoted to GPU DMA in any one direction, it is enough to call dvpBegin
in the beginning of this thread’s lifetime and dvpEnd at the end.

Mechanism of Operation

GPUDirect for Video PG-06007-001_v05 | 21

4.3 PERFORMANCE CONSIDERATIONS

 Latency Reduction
Simply by using the DVP library for transfers, which uses shared system memory for
GPU and 3rd party device DMA operations, the EXT SDK reduces latency by
eliminating an expensive memcpy between the 3rd party device DMA-able system
memory and GPU DMA-able system memory. Further improvements can be
achieved by overlapping 3rd party device DMA with the GPU DMA. This can be
done by implementing sub-frame DMA transfers in the EXT SDK and scheduling the
dvpMemcpy* operations in sub-frame chunks.
For 3rd party devices with significantly slower DMA operation than the GPU DMA
speed, it’s preferred to have smaller chunks so there is less time waiting for the
device. For devices with DMA speeds matching that of the GPU, two chunks are
recommended. However, it is always best to test to determine for the optimal number
of chunks.

 Threads of Execution
Since any DMA operation is designed to occur in a CPU asynchronous manner the
EXT SDK most likely already provides ways of synchronizing this operation to the
end user application. Therefore, in order to spare the application from coordinating
additional DMA operations when using the GPU, the DVP library provides
convenient ways for the EXT SDK to take on the responsibility of scheduling and
coordinating these DMA operations.
It is recommended for the EXT SDK to either initiate the GPU DMAs on its own, or
provide an API to the application that will invoke the GPU DMAs in the same
threads that are responsible for initiating the EXT device DMAs. By doing so, these
threads will incur any synchronization overhead instead of the end user application,
and help the end user applications to utilize both of the DMA engines on the GPU
when graphics APIs are used.
With the introduction of the Fermi architecture, all Quadro and NVIDIA Tesla® GPUs
feature two asynchronous DMA engines that enable asynchronous data transfers with
concurrent 3-way overlap such that the current set of data can be processed while the
previous set can be readback from the GPU, and the next set is uploaded.
The DVP library already utilizes separate data transfer engines for CUDA, but for
graphics APIs the driver will only utilize both engines if all API processing calls, data
transfer calls into GPU, and data transfer calls out of the GPU reside in separate
threads.

 Note: Introduction of additional threads in the EXT SDK that are responsible for
GPU DMA operations will lift the burden off of the end user to restructure the
application for asynchronous DMA engines utilization.

Mechanism of Operation

GPUDirect for Video PG-06007-001_v05 | 22

For example, the capture data transfer thread would contain the following DVP
library calls:

 dvpBegin();
 dvpMapBufferWaitDVP(dvpTextureHandle);
 dvpMemcpyLined(dvpSysMemHandle, dvpTextureHandle,..)
 …
 dvpMapBufferEndDVP(dvpTextureHandle);
 dvpEnd();

Meanwhile dvpMapBufferWaitAPI() and dvpMapBufferEndAPI() would be
called by the EXT SDK from the application GPU processing thread.

The following pseudo code illustrates the DVP library calls that should be implicitly
made from the application GPU processing thread:

GLuint EXTBegin()
{
 dvpTextureHandle = GetCapturedFrame();

 dvpMapBufferWaitAPI(dvpTextureHandle);
 return GLTexture(dvpTextureHandle);

}

void EXTEnd(GLuint TextureHandle)
{
 dvpTextureHandle = LocateDVPHandle(TextureHandle);
 dvpMapBufferEndAPI(dvpTextureHandle);
}

main()
{

TextureHandle2 = EXTBegin();
Render(TextureHandle2);
EXTEnd(TextureHandle2);

}

 Various Optimizations

It is important to note that when performing a batched copy of multiple frames, there
is no need to call dvpMap* operations for each buffer in the batch. It is enough to call
dvpMap* once in the beginning of the batch and once in the end of the batch, as the
frames will be copied sequentially.

www.nvidia.com

Notice
ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER
DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO
WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR
A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication of otherwise under
any patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to change
without notice. This publication supersedes and replaces all other information previously supplied. NVIDIA
Corporation products are not authorized as critical components in life support devices or systems without
express written approval of NVIDIA Corporation.

Trademarks
NVIDIA, the NVIDIA logo, CUDA, GPUDirect for Video, Quadro, and Tesla are trademarks and/or registered
trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and product names may be
trademarks of the respective companies with which they are associated.

Copyright
© 2011, 2012, 2013 NVIDIA Corporation. All rights reserved.

	Chapter 1. Introduction
	Chapter 2. End User Workflow
	Chapter 3. Setup
	3.1 Initialization
	3.2 System Memory
	3.3 Synchronization Objects
	3.4 GPU Objects

	Chapter 4. Mechanism of Operation
	4.1 DVP Memory Copy
	4.2 Synchronization
	4.2.1 DVP Sync Objects
	4.2.2 dvpMap* APIs

	4.3 Performance Considerations

