
The RFB Protocol

Tristan Richardson
Kenneth R. Wood

RealVNC Ltd
Formerly of Olivetti Research Ltd / AT&T Labs Cambridge

Version 3.3
January 1998

Revised 16 July 1998

Revised 11 July 2002

Contents

1 Introduction 2

2 Display Protocol 2

3 Input Protocol 3

4 Representation of pixel data 3

5 Protocol Messages 4

5.1 Initial Handshaking Messages. 5

5.1.1 ProtocolVersion 6

5.1.2 Authentication 7

5.1.3 ClientInitialisation .. 8

5.1.4 ServerInitialisation .. 9

5.2 Client to server messages . .. 11

5.2.1 SetPixelFormat 12

5.2.2 FixColourMapEntries . 13

5.2.3 SetEncodings. 14

5.2.4 FramebufferUpdateRequest 15

5.2.5 KeyEvent .. 16

5.2.6 PointerEvent. 17

5.2.7 ClientCutText. 18

1

CONTENTS 2

5.3 Server to client messages . .. 19

5.3.1 FramebufferUpdate .. 20

5.3.2 SetColourMapEntries. 21

5.3.3 Bell . 22

5.3.4 ServerCutText 23

5.4 Encodings. 24

5.4.1 Raw encoding. 25

5.4.2 CopyRect encoding .. 26

5.4.3 RRE encoding 27

5.4.4 CoRRE encoding . .. 28

5.4.5 Hextile encoding . .. 29

5.4.6 ZRLE encoding 31

1 INTRODUCTION 3

1 Introduction

RFB (“remote framebuffer”) is a simple protocol for remote access to graphical user
interfaces. Because it works at the framebuffer level it is applicable to all windowing
systems and applications, including X11, Windows 3.1/95/NT and Macintosh.

The remote endpoint where the user sits (i.e. the display plus keyboard and/or pointer)
is called the RFB client. The endpoint where changes to the framebuffer originate
(i.e. the windowing system and applications) is known as the RFB server.

RFB Server RFB Client

RFB
Protocol

RFB is truly a “thin client” protocol. The emphasis in the design of the RFB protocol
is to make very few requirements of the client. In this way, clients can run on the
widest range of hardware, and the task of implementing a client is made as simple as
possible.

The protocol also makes the client stateless. If a client disconnects from a given server
and subsequently reconnects to that same server, the state of the user interface is pre-
served. Furthermore, a different client endpoint can be used to connect to the same
RFB server. At the new endpoint, the user will see exactly the same graphical user
interface as at the original endpoint. In effect, the interface to the user’s applica-
tions becomes completely mobile. Wherever suitable network connectivity exists, the
user can access their own personal applications, and the state of these applications is
preserved between accesses from different locations. This provides the user with a
familiar, uniform view of the computing infrastructure wherever they go.

2 Display Protocol

The display side of the protocol is based around a single graphics primitive:“put
a rectangle of pixel data at a given x,y position”. At first glance this might seem
an inefficient way of drawing many user interface components. However, allowing

3 INPUT PROTOCOL 4

various different encodings for the pixel data gives us a large degree of flexibility in
how to trade off various parameters such as network bandwidth, client drawing speed
and server processing speed.

A sequence of these rectangles makes aframebuffer update(or simply update). An
update represents a change from one valid framebuffer state to another, so in some
ways is similar to a frame of video. The rectangles in an update are usually disjoint
but this is not necessarily the case.

The update protocol is demand-driven by the client. That is, an update is only sent
from the server to the client in response to an explicit request from the client. This
gives the protocol an adaptive quality. The slower the client and the network are, the
lower the rate of updates becomes. With typical applications, changes to the same area
of the framebuffer tend to happen soon after one another. With a slow client and/or
network, transient states of the framebuffer can be ignored, resulting in less network
traffic and less drawing for the client.

3 Input Protocol

The input side of the protocol is based on a standard workstation model of a keyboard
and multi-button pointing device. Input events are simply sent to the server by the
client whenever the user presses a key or pointer button, or whenever the pointing
device is moved. These input events can also be synthesised from other non-standard
I/O devices. For example, a pen-based handwriting recognition engine might generate
keyboard events.

4 Representation of pixel data

Initial interaction between the RFB client and server involves a negotiation of thefor-
mat andencodingwith which pixel data will be sent. This negotiation has been de-
signed to make the job of the client as easy as possible. The bottom line is that the
server must always be able to supply pixel data in the form the client wants. However
if the client is able to cope equally with several different formats or encodings, it may
choose one which is easier for the server to produce.

Pixel format refers to the representation of individual colours by pixel values. The
most common pixel formats are 24-bit or 16-bit “true colour”, where bit-fields within
the pixel value translate directly to red, green and blue intensities, and 8-bit “colour
map” where an arbitrary mapping can be used to translate from pixel values to the
RGB intensities.

Encodingrefers to how a rectangle of pixel data will be sent on the wire. Every rectan-
gle of pixel data is prefixed by a header giving the X,Y position of the rectangle on the
screen, the width and height of the rectangle, and anencoding typewhich specifies the
encoding of the pixel data. The data itself then follows using the specified encoding.

The protocol can be extended by adding new encoding types. The encoding types
defined at present areRaw, CopyRect, RRE, CoRRE, HextileandZRLE. In practice we

5 PROTOCOL MESSAGES 5

normally use only theZRLE, Hextile andCopyRectencodings since they provide the
best compression for typical desktops. Other examples of possible encodings include
JPEG for still images and MPEG for efficient transmission of moving images. See
section 5.4 for a description of each of the encodings.

5 Protocol Messages

The RFB protocol can operate over any reliable transport, either byte-stream or message-
based. There are two stages to the protocol; an initial handshaking phase followed by
the normal protocol interaction.

The initial handshaking consists ofProtocolVersion, Authentication, ClientInitialisa-
tion andServerInitialisationmessages, as described below. Note that both client and
server send aProtocolVersionmessage.

The protocol proceeds to the normal interaction stage after theServerInitialisation
message. At this stage, the client can send whichever messages it wants, and may
receive messages from the server as a result. All these messages begin with amessage-
typebyte, followed by any message-specific data.

The following descriptions of protocol messages use the basic typesU8, U16, U32,
S8, S16, S32. These represent respectively 8, 16 and 32-bit unsigned integers and
8, 16 and 32-bit signed integers. All multiple byte integers (other than pixel values
themselves) are in big endian order (most significant byte first).

The typePIXEL is taken to mean a pixel value of��������� ���	 bytes, where� �
��������� ���	 is the number ofbits-per-pixelas agreed by the client and server –
either in theServerInitialisationmessage (section 5.1.4) or aSetPixelFormatmessage
(section 5.2.1).

5.1 INITIAL HANDSHAKING MESSAGES 6

5.1 Initial Handshaking Messages

5.1 INITIAL HANDSHAKING MESSAGES 7

5.1.1 ProtocolVersion

Handshaking begins by the server sending the client aProtocolVersionmessage. This
lets the client know which is the latest RFB protocol version number supported by the
server. The client then replies with a similar message giving the version number of the
protocol which should actually be used (which may be different to that quoted by the
server).

It is intended that both clients and servers may provide some level of backwards com-
patibility by this mechanism. Servers in particular should attempt to provide back-
wards compatibility, and even forwards compatibility to some extent. For example if
a client demands version 3.1 of the protocol, a 3.0 server can probably assume that by
ignoring requests for encoding types it doesn’t understand, everything will still work
OK. This will probably not be the case for changes in the major version number.

The ProtocolVersionmessage consists of 12 bytes interpreted as a string of ASCII
characters in the format"RFB xxx.yyy\n"wherexxx andyyy are the major and
minor version numbers, padded with zeros.

No. of bytes Value
12 "RFB 003.003\n" (hex 52 46 42 20 30 30 33 2e 30 30 33 0a)

5.1 INITIAL HANDSHAKING MESSAGES 8

5.1.2 Authentication

Once the protocol version has been decided, the server then sends a word indicating
the authentication scheme to be used on the connection:

No. of bytes Type [Value] Description
4 U32 authentication-scheme:

0 connection failed
1 no authentication
2 VNC authentication

This is followed by data specific to theauthentication-scheme:

� connection failed - for some reason the connection failed (e.g. the server cannot
support the desired protocol version). This is followed by a string describing
the reason (where a string is specified as a length followed by that many ASCII
characters):

No. of bytes Type [Value] Description
4 U32 reason-length
reason-length U8 array reason-string

The server closes the connection after sending thereason-string.

� no authentication - no authentication is needed. The protocol continues with
theClientInitialisation message.

� VNC authentication - VNC authentication is to be used. This is followed by a
random 16-byte challenge:

No. of bytes Type [Value] Description
16 U8 challenge

The client encrypts the challenge with DES, using a password supplied by the
user as the key, and sends the resulting 16-byte response:

No. of bytes Type [Value] Description
16 U8 response

The server sends a word to inform the client whether authentication was suc-
cessful. If so, the protocol continues with theClientInitialisation message; if
not the server closes the connection:

No. of bytes Type [Value] Description
4 U32 status:

0 OK
1 failed
2 too-many

If the server decides thattoo-many authentication failures have occurred, it
should not allow immediate reconnection by the same client.

5.1 INITIAL HANDSHAKING MESSAGES 9

5.1.3 ClientInitialisation

Once the client and server are sure that they’re happy to talk to one another, the client
sends an initialisation message:

No. of bytes Type [Value] Description
1 U8 shared-flag

Shared-flagis non-zero (true) if the server should try to share the desktop by leaving
other clients connected, zero (false) if it should give exclusive access to this client by
disconnecting all other clients.

5.1 INITIAL HANDSHAKING MESSAGES 10

5.1.4 ServerInitialisation

After receiving theClientInitialisation message, the server sends aServerInitialistion
message. This tells the client the width and height of the server’s framebuffer, its pixel
format and the name associated with the desktop:

No. of bytes Type [Value] Description
2 U16 framebuffer-width
2 U16 framebuffer-height
16 PIXEL_FORMAT server-pixel-format
4 U32 name-length
name-length U8 array name-string

wherePIXEL_FORMAT is

No. of bytes Type [Value] Description
1 U8 bits-per-pixel
1 U8 depth
1 U8 big-endian-flag
1 U8 true-colour-flag
2 U16 red-max
2 U16 green-max
2 U16 blue-max
1 U8 red-shift
1 U8 green-shift
1 U8 blue-shift
3 padding

Server-pixel-formatspecifies the server’s natural pixel format. This pixel format will
be used unless the client requests a different format using theSetPixelFormatmessage
(section 5.2.1).

Bits-per-pixelis the number of bits used for each pixel value on the wire. This must
be greater than or equal to thedepthwhich is the number of useful bits in the pixel
value. Currentlybits-per-pixelmust be 8, 16 or 32 — less than 8-bit pixels are not yet
supported.Big-endian-flagis non-zero (true) if multi-byte pixels are interpreted as big
endian. Of course this is meaningless for 8 bits-per-pixel.

If true-colour-flagis non-zero (true) then the last six items specify how to extract the
red, green and blue intensities from the pixel value.Red-maxis the maximum red
value (� �� � � where
 is the number of bits used for red). Note this value is always
in big endian order.Red-shiftis the number of shifts needed to get the red value in a
pixel to the least significant bit.Green-max, green-shiftandblue-max, blue-shiftare
similar for green and blue. For example, to find the red value (between 0 andred-max)
from a given pixel, do the following:

� Swap the pixel value according tobig-endian-flag(e.g. ifbig-endian-flagis zero
(false) and host byte order is big endian, then swap).

5.1 INITIAL HANDSHAKING MESSAGES 11

� Shift right byred-shift.

� AND with red-max(in host byte order).

If true-colour-flagis zero (false) then the server uses pixel values which are not directly
composed from the red, green and blue intensities, but which serve as indices into a
colour map. Entries in the colour map are set by the server using theSetColourMapEn-
tries message (section 5.3.2).

5.2 CLIENT TO SERVER MESSAGES 12

5.2 Client to server messages

5.2 CLIENT TO SERVER MESSAGES 13

5.2.1 SetPixelFormat

Sets the format in which pixel values should be sent inFramebufferUpdatemessages.
If the client does not send aSetPixelFormatmessage then the server sends pixel values
in its natural format as specified in theServerInitialisationmessage (section 5.1.4).

If true-colour-flagis zero (false) then this indicates that a “colour map” is to be used.
The server can set any of the entries in the colour map using theSetColourMapEntries
message (section 5.3.2). Immediately after the client has sent this message the colour
map is empty, even if entries had previously been set by the server.

No. of bytes Type [Value] Description
1 U8 0 message-type
3 padding
16 PIXEL_FORMAT pixel-format

wherePIXEL_FORMAT is as described in section 5.1.4:

No. of bytes Type [Value] Description
1 U8 bits-per-pixel
1 U8 depth
1 U8 big-endian-flag
1 U8 true-colour-flag
2 U16 red-max
2 U16 green-max
2 U16 blue-max
1 U8 red-shift
1 U8 green-shift
1 U8 blue-shift
3 padding

5.2 CLIENT TO SERVER MESSAGES 14

5.2.2 FixColourMapEntries

This message no longer exists. It used to be message-type one.

5.2 CLIENT TO SERVER MESSAGES 15

5.2.3 SetEncodings

Sets the encoding types in which pixel data can be sent by the server. The order of the
encoding types given in this message is a hint by the client as to its preference (the first
encoding specified being most preferred). The server may or may not choose to make
use of this hint. Pixel data may always be sent inraw encoding even if not specified
explicitly here.

No. of bytes Type [Value] Description
1 U8 2 message-type
1 padding
2 U16 number-of-encodings

followed bynumber-of-encodingsrepetitions of the following:

No. of bytes Type [Value] Description
4 U32 encoding-type

0 Raw encoding
1 CopyRect encoding
2 RRE encoding
4 CoRRE encoding
5 Hextile encoding
16 ZRLE encoding

Other registered encodings

6,7,8 zlib, tight, zlibhex
0xffffff00 to 0xffffffff tight options

5.2 CLIENT TO SERVER MESSAGES 16

5.2.4 FramebufferUpdateRequest

Notifies the server that the client is interested in the area of the framebuffer specified
by x-position, y-position, width andheight. The server usually responds to aFrame-
bufferUpdateRequestby sending aFramebufferUpdate. Note however that a single
FramebufferUpdatemay be sent in reply to severalFramebufferUpdateRequests.

The server assumes that the client keeps a copy of all parts of the framebuffer in which
it is interested. This means that normally the server only needs to send incremental
updates to the client.

However, if for some reason the client has lost the contents of a particular area which it
needs, then the client sends aFramebufferUpdateRequestwith incrementalset to zero
(false). This requests that the server send the entire contents of the specified area as
soon as possible. The area will not be updated using theCopyRectencoding.

If the client has not lost any contents of the area in which it is interested, then it
sends aFramebufferUpdateRequestwith incrementalset to non-zero (true). If and
when there are changes to the specified area of the framebuffer, the server will send a
FramebufferUpdate. Note that there may be an indefinite period between theFrame-
bufferUpdateRequestand theFramebufferUpdate.

In the case of a fast client, the client may want to regulate the rate at which it sends
incrementalFramebufferUpdateRequests to avoid hogging the network.

No. of bytes Type [Value] Description
1 U8 3 message-type
1 U8 incremental
2 U16 x-position
2 U16 y-position
2 U16 width
2 U16 height

5.2 CLIENT TO SERVER MESSAGES 17

5.2.5 KeyEvent

A key press or release.Down-flagis non-zero (true) if the key is now pressed, zero
(false) if it is now released. Thekey itself is specified using the “keysym” values
defined by the X Window System. For full details, see The Xlib Reference Manual,
published by O’Reilly & Associates, or see the header file<X11/keysymdef.h>
from any X Window System installation.

No. of bytes Type [Value] Description
1 U8 4 message-type
1 U8 down-flag
2 padding
4 U32 key

For most ordinary keys, the “keysym” is the same as the corresponding ASCII value.
Other common keys are:

Key name Keysym value
BackSpace 0xff08
Tab 0xff09
Return or Enter 0xff0d
Escape 0xff1b
Insert 0xff63
Delete 0xffff
Home 0xff50
End 0xff57
Page Up 0xff55
Page Down 0xff56
Left 0xff51
Up 0xff52
Right 0xff53
Down 0xff54

Key name Keysym value
F1 0xffbe
F2 0xffbf
F3 0xffc0
F4 0xffc1
... ...
F12 0xffc9
Shift (left) 0xffe1
Shift (right) 0xffe2
Control (left) 0xffe3
Control (right) 0xffe4
Meta (left) 0xffe7
Meta (right) 0xffe8
Alt (left) 0xffe9
Alt (right) 0xffea

5.2 CLIENT TO SERVER MESSAGES 18

5.2.6 PointerEvent

Indicates either pointer movement or a pointer button press or release. The pointer is
now at (x-position, y-position), and the current state of buttons 1 to 8 are represented
by bits 0 to 7 ofbutton-maskrespectively, 0 meaning up, 1 meaning down (pressed).

No. of bytes Type [Value] Description
1 U8 5 message-type
1 U8 button-mask
2 U16 x-position
2 U16 y-position

5.2 CLIENT TO SERVER MESSAGES 19

5.2.7 ClientCutText

The client has new ASCII text in its cut buffer. End of lines are represented by the
linefeed / newline character (ASCII value 10) alone. No carriage-return (ASCII value
13) is needed.

No. of bytes Type [Value] Description
1 U8 6 message-type
3 padding
4 U32 length
length U8 array text

5.3 SERVER TO CLIENT MESSAGES 20

5.3 Server to client messages

5.3 SERVER TO CLIENT MESSAGES 21

5.3.1 FramebufferUpdate

A framebuffer update consists of a sequence of rectangles of pixel data which the client
should put into its framebuffer. It is sent in response to aFramebufferUpdateRequest
from the client. Note that there may be an indefinite period between theFramebuffer-
UpdateRequestand theFramebufferUpdate.

No. of bytes Type [Value] Description
1 U8 0 message-type
1 padding
2 U16 number-of-rectangles

This is followed bynumber-of-rectanglesrectangles of pixel data. Each rectangle
consists of:

No. of bytes Type [Value] Description
2 U16 x-position
2 U16 y-position
2 U16 width
2 U16 height
4 U32 encoding-type:

0 Raw encoding
1 CopyRect encoding
2 RRE encoding
4 CoRRE encoding
5 Hextile encoding
16 ZRLE encoding

Other registered encodings

6,7,8 zlib, tight, zlibhex
0xffffff00 to 0xffffffff tight options

followed by the pixel data in the specified encoding. See section 5.4 for the format of
the data for each encoding.

5.3 SERVER TO CLIENT MESSAGES 22

5.3.2 SetColourMapEntries

When the pixel format uses a “colour map”, this message tells the client that the spec-
ified pixel values should be mapped to the given RGB intensities.

No. of bytes Type [Value] Description
1 U8 1 message-type
1 padding
2 U16 first-colour
2 U16 number-of-colours

followed bynumber-of-coloursrepetitions of the following:

No. of bytes Type [Value] Description
2 U16 red
2 U16 green
2 U16 blue

5.3 SERVER TO CLIENT MESSAGES 23

5.3.3 Bell

Ring a bell on the client if it has one.

No. of bytes Type [Value] Description
1 U8 2 message-type

5.3 SERVER TO CLIENT MESSAGES 24

5.3.4 ServerCutText

The server has new ASCII text in its cut buffer. End of lines are represented by the
linefeed / newline character (ASCII value 10) alone. No carriage-return (ASCII value
13) is needed.

No. of bytes Type [Value] Description
1 U8 3 message-type
3 padding
4 U32 length
length U8 array text

5.4 ENCODINGS 25

5.4 Encodings

5.4 ENCODINGS 26

5.4.1 Raw encoding

The simplest encoding type is raw pixel data. In this case the data consists of�����
���� pixel values (where���� and���� are the width and height of the rectan-
gle). The values simply represent each pixel in left-to-right scanline order. All RFB
clients must be able to cope with pixel data in this raw encoding, and RFB servers
should only produce raw encoding unless the client specifically asks for some other
encoding type.

No. of bytes Type [Value] Description
����� ���� � ��������� ���	 PIXEL array pixels

5.4 ENCODINGS 27

5.4.2 CopyRect encoding

TheCopyRect(copy rectangle) encoding is a very simple and efficient encoding which
can be used when the client already has the same pixel data elsewhere in its frame-
buffer. The encoding on the wire simply consists of an X,Y coordinate. This gives a
position in the framebuffer from which the client can copy the rectangle of pixel data.
This can be used in a variety of situations, the most obvious of which are when the user
moves a window across the screen, and when the contents of a window are scrolled.
A less obvious use is for optimising drawing of text or other repeating patterns. An
intelligent server may be able to send a pattern explicitly only once, and knowing the
previous position of the pattern in the framebuffer, send subsequent occurrences of the
same pattern using theCopyRectencoding.

No. of bytes Type [Value] Description
2 U16 src-x-position
2 U16 src-y-position

5.4 ENCODINGS 28

5.4.3 RRE encoding

RRE stands forrise-and-run-length encodingand as its name implies, it is essentially
a two-dimensional analogue of run-length encoding. RRE-encoded rectangles arrive at
the client in a form which can be rendered immediately and efficiently by the simplest
of graphics engines. RRE is not appropriate for complex desktops, but can be useful
in some situations.

The basic idea behind RRE is the partitioning of a rectangle of pixel data into rect-
angular subregions (subrectangles) each of which consists of pixels of a single value
and the union of which comprises the original rectangular region. The near-optimal
partition of a given rectangle into such subrectangles is relatively easy to compute.

The encoding consists of a background pixel value,�� (typically the most prevalent
pixel value in the rectangle) and a count� , followed by a list of� subrectangles, each
of which consists of a tuple� �� �� �� �� � where� ��� ��� is the pixel value,��� ��
are the coordinates of the subrectangle relative to the top-left corner of the rectangle,
and ��� � are the width and height of the subrectangle. The client can render the
original rectangle by drawing a filled rectangle of the background pixel value and then
drawing a filled rectangle corresponding to each subrectangle.

On the wire, the data begins with the header:

No. of bytes Type [Value] Description
4 U32 number-of-subrectangles
��������� ���	 PIXEL background-pixel-value

This is followed bynumber-of-subrectanglesinstances of the following structure:

No. of bytes Type [Value] Description
��������� ���	 PIXEL subrect-pixel-value
2 U16 x-position
2 U16 y-position
2 U16 width
2 U16 height

5.4 ENCODINGS 29

5.4.4 CoRRE encoding

Note: the CoRRE encoding is almost never useful - Hextile is a better encoding using
the same ideas.

CoRRE (Compact RRE) is a variant of RRE, where we guarantee that the largest rect-
angle sent is no more than 255x255 pixels. A server which wants to send a rectangle
larger than this simply splits it up and sends several smaller RFB rectangles. Within
each of these smaller rectangles, a single byte can then be used to represent the di-
mensions of the subrectangles. For a typical desktop, this results in better compression
than RRE. In fact, the best compression is achieved when we limit the rectangle size
even more - current implementations use a maximum of 48x48. This is because rectan-
gles which do not encode well (typically those containing image data) are sent as raw,
while the ones which do encode well are sent as CoRRE. The smaller the maximum
rectangle size, the finer the granularity of this decision. With RRE, the whole original
rectangle must either be sent as RRE, or the whole thing sent as raw. However, since
there is a certain overhead incurred by each RFB rectangle, making the maximum
rectangle size too small (and thus increasing the number of RFB rectangles), results in
worse compression.

The data begins with the header:

No. of bytes Type [Value] Description
4 U32 number-of-subrectangles
��������� ���	 PIXEL background-pixel-value

This is followed bynumber-of-subrectanglesinstances of the following structure:

No. of bytes Type [Value] Description
��������� ���	 PIXEL subrect-pixel-value
1 U8 x-position
1 U8 y-position
1 U8 width
1 U8 height

5.4 ENCODINGS 30

5.4.5 Hextile encoding

Hextile is a variation on the CoRRE idea. Rectangles are split up into 16x16tiles,
allowing the dimensions of the subrectangles to be specified in 4 bits each, 16 bits
in total. Unlike CoRRE, tiles are not top-level RFB rectangles. When splitting the
original rectangle into tiles this is done in a predetermined way. This means that the
position and size of each tile do not have to be explicitly specified - the encoded con-
tents of the tiles simply follow one another in the predetermined order. The ordering
of tiles that we use is starting at the top left going in left-to-right, top-to-bottom order.
If the width of the whole rectangle is not an exact multiple of 16 then the width of
the last tile in each row will be correspondingly smaller. Similarly if the height of the
whole rectangle is not an exact multiple of 16 then the height of each tile in the final
row will also be smaller.

Each tile is either encoded as raw pixel data, or as a variation on RRE. Each tile has
a background pixel value, as before. However, the background pixel value does not
need to be explicitly specified for a given tile if it is the same as the background of the
previous tile. If all of the subrectangles of a tile have the same pixel value, this can be
specified once as a foreground pixel value for the whole tile. As with the background,
the foreground pixel value can be left unspecified, meaning it is carried over from the
previous tile.

So the data consists of each tile encoded in order. Each tile begins with asubencoding
type byte, which is a mask made up of a number of bits:

No. of bytes Type [Value] Description
1 U8 subencoding-mask:

1 Raw
2 BackgroundSpecified
4 ForegroundSpecified
8 AnySubrects
16 SubrectsColoured

If the Raw bit is set then the other bits are irrelevant;���� � ���� pixel values
follow (where���� and���� are the width and height of the tile). Otherwise the
other bits in the mask are as follows:

BackgroundSpecified - if set, a pixel value follows which specifies the background
colour for this tile:

No. of bytes Type [Value] Description
��������� ���	 PIXEL background-pixel-value

The first non-raw tile in a rectangle must have this bit set. If this bit isn’t set then
the background is the same as the last tile.

ForegroundSpecified - if set, a pixel value follows which specifies the foreground
colour to be used for all subrectangles in this tile:

5.4 ENCODINGS 31

No. of bytes Type [Value] Description
��������� ���	 PIXEL foreground-pixel-value

If this bit is set then the SubrectsColoured bit must be zero.

AnySubrects - if set, a single byte follows giving the number of subrectangles fol-
lowing:

No. of bytes Type [Value] Description
1 U8 number-of-subrectangles

If not set, there are no subrectangles (i.e. the whole tile is just solid background
colour).

SubrectsColoured - if set then each subrectangle is preceded by a pixel value giving
the colour of that subrectangle, so a subrectangle is:

No. of bytes Type [Value] Description
��������� ���	 PIXEL subrect-pixel-value
1 U8 x-and-y-position
1 U8 width-and-height

If not set, all subrectangles are the same colour, the foreground colour; if the
ForegroundSpecified bit wasn’t set then the foreground is the same as the last
tile. A subrectangle is:

No. of bytes Type [Value] Description
1 U8 x-and-y-position
1 U8 width-and-height

The position and size of each subrectangle is specified in two bytes,x-and-y-position
andwidth-and-height. The most-significant four bits ofx-and-y-positionspecify the X
position, the least-significant specify the Y position. The most-significant four bits of
width-and-heightspecify the width minus one, the least-significant specify the height
minus one.

5.4 ENCODINGS 32

5.4.6 ZRLE encoding

ZRLE stands for Zlib1 Run-Length Encoding, and combines zlib compression, tiling,
palettisation and run-length encoding. On the wire, the rectangle begins with a 4-byte
length field, and is followed by that many bytes of zlib-compressed data. A single zlib
“stream” object is used for a given RFB protocol connection, so that ZRLE rectangles
must be encoded and decoded strictly in order.

No. of bytes Type [Value] Description
4 U32 	�
��
	�
�� U8 array �	������

The �	������ when uncompressed represents tiles of 64x64 pixels in left-to-right,
top-to-bottom order, similar to hextile. If the width of the rectangle is not an exact
multiple of 64 then the width of the last tile in each row is smaller, and if the height of
the rectangle is not an exact multiple of 64 then the height of each tile in the final row
is smaller.

ZRLE makes use of a new typeCPIXEL (compressed pixel). This is the same as a
PIXEL for the agreed pixel format, except wheretrue-colour-flagis non-zero,bits-
per-pixel is 32, depth is 24 or less and all of the bits making up the red, green and
blue intensities fit in either the least significant 3 bytes or the most significant 3 bytes.
In this case aCPIXEL is only 3 bytes long, and contains the least significant or the
most significant 3 bytes as appropriate.�������������	 is the number of bytes in a
CPIXEL.

Each tile begins with a����
����
� type byte. The top bit of this byte is set if the tile
has been run-length encoded, clear otherwise. The bottom seven bits indicate the size
of the palette used - zero means no palette, one means that the tile is of a single colour,
2 to 127 indicate a palette of that size. The possible values of����
����
� are:

0 - Raw pixel data.���� � ���� pixel values follow (where���� and����
are the width and height of the tile):

No. of bytes Type [Value] Description
���� � ���� � �������������	 CPIXEL array ����	�

1 - A solid tile consisting of a single colour. The pixel value follows:

No. of bytes Type [Value] Description
�������������	 CPIXEL ����	� �	��

2 to 16 - Packed palette types. Followed by the palette, consisting of��	����������
����
����
�� pixel values. Then the packed pixels follow, each pixel repre-
sented as a bit field yielding an index into the palette (0 meaning the first palette

1see http://www.gzip.org/zlib/

5.4 ENCODINGS 33

entry). For��	�������� 2, a 1-bit field is used, for��	�������� 3 or 4 a 2-bit
field is used and for��	�������� from 5 to 16 a 4-bit field is used. The bit fields
are packed into bytes, the most significant bits representing the leftmost pixel
(i.e. big endian). For tiles not a multiple of 8, 4 or 2 pixels wide (as appropri-
ate), padding bits are used to aligneach rowto an exact number of bytes.

No. of bytes Type [Value] Description
��	��������� �������������	 CPIXEL array ��	����
� U8 array ������� ���	�

where� is the number of bytes representing the packed pixels. For��	��������
of 2 this is 	��������� � ��!�� � ����, for ��	�������� of 3 or 4 this is
 	������������!	������, for ��	�������� of 5 to 16 this is 	����������
��!�� � ����.

17 to 127 - unused (no advantage over palette RLE).

128 - Plain RLE. Consists of a number of runs, repeated until the tile is done. Runs
may continue from the end of one row to the beginning of the next. Each run
is a represented by a single pixel value followed by the length of the run. The
length is represented as one or more bytes. The length is calculated as one more
than the sum of all the bytes representing the length. Any byte value other than
255 indicates the final byte. So for example length 1 is represented as [0], 255
as [254], 256 as [255,0], 257 as [255,1], 510 as [255,254], 511 as [255,255,0]
and so on.

No. of bytes Type [Value] Description
�������������	 CPIXEL ����	� �	��
 	�������
"�
��� ��!�

� U8 array 255
1 U8 ���
"�
��� ����

129 - unused

130 to 255 - Palette RLE. Followed by the palette, consisting of��	�������� �
�����
����
� � ���� pixel values:

No. of bytes Type [Value] Description
��	��������� �������������	 CPIXEL array ��	����

Then as with plain RLE, consists of a number of runs, repeated until the tile is
done. A run of length one is represented simply by a palette index:

No. of bytes Type [Value] Description
1 U8 ��	����#
���

5.4 ENCODINGS 34

A run of length more than one is represented by a palette index with the top bit
set, followed by the length of the run as for plain RLE.

No. of bytes Type [Value] Description
1 U8 ��	����#
���� ���

 	�������
"�
��� ��!�

� U8 array 255
1 U8 ���
"�
��� ����

