
Kazimir’s Users Manual

Philippe DENIEL

July 2, 2008

Chapter 1

Introduction

This is the documentation for the Kazimir software. Kazimir is a log stream
analyzer. It looks at several logs of several different types, try to find user defined
problematic or pathologic situations in these logs and eventually (based on user-
defined configuration) does action to signal or correct the situation. The reason
why I developed such a tool is my own job: I was working as a sysadm and
it’s hard to keep an eye on every log at all time to locate problems when they
occur. The detection’s procedire could be easily automated, so I write Kazimir
to do this work instead of me. Kazimir is written in PERL for two main reasons:
it is a fully portable language, and I needed an interpretor for several part of
Kazimir, and regexp management was also critical; PERL has such features,
and it was a good thing to use the PERL interpretor (that is fully tested and
validated) instead of re-writing one from my own. There are several similar tool
like Kazimir, some are very simple, some are very complicated. I made Kazimir
to be a kind of compromise between all the tools that I’ve seen. I also added
chronological pattern matching (see below), a feature that I needed and found
nowhere. I also wanted a tool that I would know well enough to modify it quickly
if I had a new need. Writing a new tool was far the best way to achieve this.

1

Chapter 2

The syntax of the configuration
file

In this section, you will learn a little more about the Kazimir objects and how to
define them.

2.1 A few definitions

The syntax of the Kazimir configuration file is relatively simple. Each line or
group of lines is identified by a leading tag that provides the information about
the kind of thing the line is supposed to define.

The basis of all the work to be done by Kazimir is the logs. In all of this
document, the word ’log’ is used to represented a set of line in ASCII format, not
necessarily a text file on a file system.

A log can be:

• a text file on a filesystem

• the standard output of a background process

• the lines read for a TCP client socket

In fact, Kazimir is designed to manage every Unix entities that can be access
through a file descriptor on which the getline PERL function 1 . It would be
an easy thing to modify Kazimir to make it manage another kind of logs if it fits
these criteria.

Once you have the logs defined, you can search for ’Pattern’ in a log. A pattern
is a regular expression that can occur in a log. When the regular expression is
found in the log, the time of the detection (based on log characteristics) is kept

1see perldoc FileHandle for more information.

2

Patterns are combined to define events. An event is the combination of the
realization of pattern in logs. This combination is both based on boolean and
chronological bases. For example, an event can be ” If this pattern occurs AND
this other pattern occur” or ”If one of theses patterns occur and this other one
in the following 30 seconds” Once the events are defined, you have to associate
them with actions, this association is called an ’Order’. An ’Action’ is basically
the operation that launches an external command.

2.2 About duration definitions

Severals Kazimir settings are duration or intervals of time to be used to compare
two dates. For examples, in the rest of this document, you will have parameters
like SelectTime or EventUpdateInt . All these values follow the same syntax in
Kazimir. Basically, a value has a suffix, valid suffixes are:

Suffix Meaning Value
s seconds 1s
m minutes 60s
h hour 3600s
d day 86400s
w week 7 days
M month 30 days
y year 365,25 days
(no suffix) seconds 1s

That means that ’300s’ is equivalent to ’5m’ or ’300’. A value of a full day
can be specified as ’1d’ or ’24h’ or ’86400s’

2.3 Writing the configuration file and using the

tags

The Kazimir configuration file is organized in sectionis, each of them identified by
a tag. Each of the ’tag identified section’ will define an object that can be a log
to watch, an action or an order, a pattern or an event to look for. Each of these
objects have specific aspects that must be clearly defined. For doing this, each
tag will be followed by a list of definition looking like < keyword >=< value >.
The definitions are separated by semicolons. A valid configuration line will be
looking like this:

<tag> : <keyword1> = < value1 > ; <keyword2 = value2 > ; ...

An example is always clearer than a long explanation, these are valid configura-
tion lines:

3

Log : Name = test_cmd ; TimeFormat = NONE ; Type = CMND_OUT ; Path = date ; UpdateInt = 4

Order: Name = ordre1 ; Event = event4 ; Action = action1 ;

Action: Name = Action1 ; Path = echo ’Perl programming is not a crime !!’ ;

The tag that can be used are:

• Kazimir:

• Include:

• Log:

• Pattern:

• Event:

• Order:

• Action:

• Trigger:

• Repetition:

• Variable:

I did not tell you about the variable within the Kazimir configuration file.
For the moment, you just need to know that a variable is initiated by the tag
’Variable:’ . The way to use them will be shown later in this document.

What we will do now is having a look at each of the other tags.

Comments

Every line whose first non-blank character is a ’#’ is considered to be a comment
and is ignored. Everything that follows a ’#’ will be ignore. Full blank line (only
spaces or tab character) are accepted but ignored, but I strongly recommend to
put some in the configuration file because it makes it a lot more readable.

Continuous lines

For some Kazimir’s tags, the line can become quite long (I think more especially
about the ’Kazimir’ tag). Splitting a long line in several shorter lines is then
natural. In most UNIX’s scripting languages, the backslash character is used at
the end of the line to tell to the parser that is next line is to be concatenated
with the current one. This syntax is also available in the Kazimir’s configuration
file. Each line whose last non-blank character is a backslash will continue on the
next one.

4

Protecting a ”=” character in a command

There are objets in the kazimir configuration file that are defined by commands
to be executed. These commands may contain the ”=” character. This character
must always be protected by a backslash. Example: never use

Path = Mycmd | grep "="

But use

Path = Mycmd | grep "\="

2.3.1 The ’Kazimir’ tag

The ’Kazimir’ tag is used to define the characteristics of the Kazimir program
itself. This tag is the only one that should be found only once in the configuration
file. It is of course possible to put several Kazimir tag but only the last one in the
config file will be used (because it will be the last to be parsed). Each of these
characteristic is associated with a keyword . All this keywords are mandatory,
but not TmpDir, PrologueCmd and EpilogueCmd.

The keyword and and significance are

• LogFile : the location of the Kazimir log

• EventDir: the path of the directory that will receive the event completion
records

• OutputDir: the path of the directory for the external command output
records.

• TmpDir: the path to the directory for temporary files (usually stdout and
stderr from coroutines). Default value is /tmp

• LockFile: the location of the lockfile. Kazimir does nothing as long as this
file exists.

• EventUpdateInt: shows the delay between two event check passes. This is
a time postfixed notation (see below)

• IdleTime: an optional tag used to define the number of seconds to stay idle
between two events’ checks. This could be used for avoiding a load on the
CPU due to Kazimir. This value should not be to large in order not to
collide with the other definitions.

• SelectTime: an optional tag, for advanced use only. The Kazimir software
is mostly a loop that checks for new information coming from the logs. This

5

is do by a call to the ’select’ function 2. There is a timeout interval to be
specified for the select. The duration for the timeout is to be set here. The
default is 450ms. A value of -1 will totally disable the timeout. This is
pretty useful for saving CPU (Kazimir does nothing if no new informations
come), BUT it prevents you from detecting the non-production of a pattern
and nothing will be displayed in the Kazimir’s log if nothing happens in
any log (the call to select will hang until something occurs)

• PrologueCmd : an optional tag, used to specify a command to be ran at
the time Kazimir starts, before proceeding into the main event loop. The
command can contain variables managed by Kazimir (see the section about
variables for details). This is not a mandatory field, no command will be
executed if it is not specified.

• EpilogueCmd : an optional tag, used to specify a command to be ran at
the time Kazimir ends, after a SIGINT or SIGTERM was received. The
command can contain variables managed by Kazimir (see the section about
variables for details). I strongly suggest to put ”clean up” commands in
this field. This is not a mandatory field, no command will be executed if it
is not specified.

A valid line will look like this:

Kazimir: LogFile = /var/kazimir.log ; EventDir =/var/eventdir ; OutputDir = /var/outputdir ; LockFile = /tmp/kazimir.lock ; \

EventUpdateInt = 5s

The IdleTime is a field that is optional and to be used very carefully. When
set it makes Kazimir sleep the duration indicated just after the Event Checking
pass. During this time Kazimir does nothing. This is a good way of making
Kazimir consume less CPU, but it can badly interfere with Event processing and
make you looses event occurrences if set too big

2.3.2 The ’Include’ tag

The ’Include’ tag is simply used for including another configuration file the cur-
rent configuration file. By working this way, it is possible to avoid huge configu-
ration files (more difficult to handle) by splitting them to smaller parts.

Only one keyword is used for this tag (it is a mandatory keyword):

• Path : the path of the location of the include file to use

Example:

Include: Path = /etc/kazimir.conf.include

2this function from the PERL standard packages does the same as the function which the
same name in C

6

2.3.3 The ’Log’ tag

The ’Log’ tag is used to defined a log. As I said before, a log is not just an ASCII
file, it is a set of line, so log managed by Kazimir can be of several types. As all
Kazimir objects, a log as a name that must be used to identify the log object in
the config file. The keyword for ’Log’ are:

• Name : The name of the log object. Mandatory

• Type : the type of the log. Mandatory. It can have the following values:

– ASCII : the log is a regular ASCII file

– CMND OUT : the log is the stderr and stdout of an external command.
An additional keyword UpdateInt exists. If the external command
ends, it is relaunched after UpdateInt seconds.

– COROUTINE: the coroutine is very similar to the CMND OUT, the
only difference is that a coroutine is never re-spawned.

– TCPCLIENT: the log is what we read from a TCP client socket

• Path : the path of the log. Mandatory. This is not necessary a pathname,
it could be a network address or a command line. For each type, the syntax
will differ:

– with a ASCII log, ’Path’ should be a regular path, for example /var/adm/messages

– with a COROUTINE or CMND OUT, ’Path’ is a command line, for
example ’binary log interpreter.pl /var/my log.binary’

– with a TCPCLIENT, ’Path’ as the shape < portorservice > @ <
host >, for example ’daytime@localhost’, ’13@127.0.0.1’, ’13@local-
host’ or ’daytime@127.0.0.1’

• UpdateInt : the time to wait between two run of a log defined by a command
line. This is a postfixed time value (see below). Optional, default value is
5 minutes.

• TimeFormat: the format of the time representation in the log. This keyword
is a little more touchy, so I dedicated a subsection to it. Optional, default
value is NONE.

The ’TimeFormat’ keyword

A log is usually organized as an ordinated set of records. The date of the informa-
tion recorded in a line is often explicitly provided in the line (like /var/log/messages).
When a pattern is found in a log, Kazimir has to know the ’time of the pattern’,
which is basically the date of the record that fits the regexp associated with the

7

pattern. These ”pattern’s date” will be used in the event combination as we’ll
see in the next section. If the log is showing a date in each of its lines, then
Kazimir should be able to interpret it from the processed line itself, but for this,
it is necessary to tell to Kazimir where the date is located in the line, and how
the date is displayed. The syntax for this definition is specific to Kazimir, it is a
kind of regexp with additional signs that shows what part of the date is where.
All the signs are ’%< character >’ and are very close to the syntax used by the
’strftime’ standard C library’s function.

For example, let’s have a look at /var/log/messages: a line looks like this

Feb 20 02:35:43 gandalf unix: devinfo0 is /pseudo/devinfo@0

More generally a syslog line on my workstation will be : the date, the name of
my workstation right after and a message. A date like the ones you can find in
/var/log/messages are created via C function strftime with a format argument
like ”%b %e %H:%M:%S” Let’s imagine that I want to define a TimeFormat for
making /var/log/messages processed by Kazimir, something like

^%b %e %H:%M:%S trekking

will fit my needs.
The time conversion signs that you can use are shown in the following list.

I still think that a example is a good way of explaining something, so I will use
the date ’Thursday July 5, 2001 16:45:08’ as basis and show for every conversion
sign the correspondence with this date.

• %a : locale’s abbreviated weekday name — Thu

• %A : locale’s full weekday name — Thursday

• %f : same as %a but in french 3 — Jeu

• %F : same as %A but in french — Jeudi

• %b : locale’s abbreviated month name — Jul

• %B : locale’s full month name — July

• %g : same as %b but in french — Jui

• %G : same as %B but in french – Juillet

• %m : month number [1,12]; single digits are preceded by 0 — 07

3In fact, I am french and I manipulate many logs with ’french’ time format. Later, this sign
could be use for another local langage date specification, for example with a switch based on
an environment variable

8

• %d : day of month [1,31]; single digits are preceded by 0 — 05

• %j : day number of year [1,366]; single digits are preceded by 0 — 186

• %e : day of month [1,31]; single digits are preceded by a space — ” 5”

• %q : daylight saving, can take value 0,H,h,w in winter (inactive daylight
savings) and 1,e,E,S,s in summer (active daylight savings) – ”W”

• %y : year within century [00,99] — 01

• %Y : year, including the century — 2001

• %H : hour (24-hour clock) [0,23]; single digits are preceded by 0 — 16

• %I : hour (12-hour clock) [1,12]; single digits are preceded by a 0 — 04

• %p : 12 hour period, AM or PM — PM

• %k : hour (24-hour clock) [0,23]; single digits are preceded by a blank —
16

• %S : seconds on one or two digits. Leading 0 can be used or not — 08

• %M : minutes. Leading 0 is permitted but not required — 45

• %E : Epoch time. The number of seconds since 1/1/1970 (usual Unix’s
date format)

There is predefined TimeFormat: the ’NONE’ TimeFormat. If TimeFormat
as the value ’NONE’, then it means that no time is shown within the line taken
from the log. In this case, the time when the line was seen by Kazimir is used
(aka the current time). If no time format is specified, NONE is the default value
for TimeFormat.

Last but not least: The TimeFormat is very similar to a regexp, so take care
of additional space characters you would leave in it. The TimeFormat will be
defined by something like TimeFormat =%b %e %H:%M:%S; , but remember
that the regexp begins IMMEDIATLY after the ’=’ sign and ends right before
the semicolon or the end of the line. Be careful not to put TimeFormat = %b
%e %H:%M:%S; or TimeFormat =%b %e %H:%M:%S ; instead of TimeFormat
=%b %e %H:%M:%S;. This could make the TimeFormat impossible to find in
the line.

Time coherency within the log is also checked. Imagine that you have a log
that result in the conversion of some information received through UDP. If you
are a little familiar with UDP, you know that messages are not guaranteed to
be received in the order they were sent. So you can have a line whose date is
older than the date of the line just written before. Kazimir will do this check:

9

if a pattern is seen in the log and if the date computed for the pattern is older
that the date of the previous occurrence of this pattern, then the previous (and
earlier !!) date is kept and a warning is printed is Kazimir’s log. What happens
if the TimeFormat is NONE in this specific case: nothing because the NONE
TimeFormat will time-stamp every line with the time when it was seen, so they
can’t be time incoherency, but only in appearance because in fact you are not
warned of a potentially pathologic situation. This is one of the reason why I
strongly recommend not to use the NONE TimeFormat.

Here are valid Kazimir configuration line for some logs:

Log: Name = syslog ; Type = ASCII ; Path = /var/adm/messages ; TimeFormat=%b %e %H:%M:%S;

Log: Name = cmd_respawned ; TimeFormat = NONE ; Type = CMND_OUT ; Path = /bin/my_command ; UpdateInt = 40s

Log: Name = cmd_not_respawned ; TimeFormat = NONE ; Type = COROUTINE ; Path = /bin/my_bg_diagnostics ;

Log: Name = remote_log ; Type = TCPCLIENT ; Path = logport@loghost ; TimeFormat=%m/%d/%Y %H:%M:%S;

The ’kazimir.debug.TimeFormat’ tool

Writing a correct TimeFormat is, in my opinion, one of the most difficult thing
when writing a Kazimir configuration file. It is pretty easy to use a bad for-
mat and there is a need for a debugging tool. So I wrote a tool called kaz-
imir.debug.TimeFormat: it’s a command line script with two arguments: the
first is a TimeFormat to test, and the second is a sample of a line from the log
where the TimeFormat is supposed to work on. This tools displays several pieces
of information like: the regexp computed from the TimeFormat, and several in-
formation got from the parsing process. It says at the end if the format is correct,
the epoch time read in ’integer’ format and in ’localtime’ format too. So checking
the coherency is possible. Again, I think that an example is better than a long
discussion: I have to cop with file /var/adm/messages, but I don’t know which
one of these two time format I should be using between ’%b %e %H:%M:%S’ and
’%b %d %H:%M:%S’ .

I will use the two following commands (based on a sample from my worksta-
tion) :

kazimir.debug.TimeFormat ’%b %e %H:%M:%S’

\ ’Mar 1 13:43:35 trekking.bruyeres.s last message repeated 4 times’

kazimir.debug.TimeFormat ’%b %d %H:%M:%S’

\ ’Mar 1 13:43:35 trekking.bruyeres.s last message repeated 4 times’

Here, I see that both seems correct with this line, but try now this

kazimir.debug.TimeFormat ’%b %e %H:%M:%S’

\ ’Mar 11 13:43:35 trekking.bruyeres.s last message repeated 4 times’

kazimir.debug.TimeFormat ’%b %d %H:%M:%S’

\ ’Mar 11 13:43:35 trekking.bruyeres.s last message repeated 4 times’

We see that ’%b %e %H:%M:%S’ is ok, but ’%b %d %H:%M:%S’ is erroneous
(day of month is displayed with a leading space for single digit). With this

10

example, I would like to bring your attention on time element displayed with a
leading space on a leading zero for single digit values. It was one of my most
frequent mistakes when I wrote Kazimir’s configuration file for my machines.

2.3.4 The ’Pattern’ tag

The ’Pattern’ tag will defined a pattern object. A pattern, as every Kazimir
objects has a name to identify it, and is also defined by the name of the log
where it should occur and the regexp that defined the pattern. All the keywords
are mandatory.

• Name : the name of the pattern

• RegExp : the regular expression that defines the pattern

• Log : the name of the log where the pattern can be found.

Examples:

Pattern: Name = NoError; RegExp =NoError; Log = my_log

Pattern: Name = CriticalOrMajor ; RegExp =CRIT|MAJOR ; Log = my_other_log

2.3.5 The ’Event’ tag

The ’Event’ tag is the most complicated tag to use. It defines an event as a
boolean and chronological association of realized patterns. Events are check only
during ’Event Check passes’. The delay between two of these passes is defined by
the EventUpdateInt keyword of the ’Kazimir’ tag. An event is generally associated
with a ’time window’. This means that only the patterns realized within the time
window will be considered. The ’time window’ is a duration value (a postfixed
time value). As an example, let’s consider that I set up an event with a 10
minutes time window, so I’ll considered only the event between the current time
and the current time minus 10 minutes. The patterns that were realized before
are simply forgotten. If no window time is defined, then all the pattern detected
form the start of Kazimir will be considered. Be very careful while doing this
because you can makes a configuration file that detects always the same old error
that happened so many time ago that it should not be considered. The ’Event’
tag have two keyword:

• Name: The name of the event. Mandatory

• Window: The window time. Not mandatory, the default is -1 (looks pattern
form the beginning). I strongly recommend to use a window time (see
remark above)

11

But this is not enough for defining an event, you should also describe the ’event
combo’ this is a set of boolean pattern association. The combo begin with a line
with Begin and ends between with a line with End. Each line between this two
statement are combo lines. A combo line is a boolean composition of pattern
realization. Imagine I have to look for pattern named pat1, pat2 , pat3. I can
then define combo line like

I want the line to be realized if pat1 OR pat2 is ok:

pat1 || pat2

I want pat2 AND a realization of pat3 or pat1:

pat2 && (pat3 || pat1)

I want a realization of pat1 with NO realization of pat2

pat1 && !pat2

Each combo line that is realized has a realization time. For the moment this is
the higher value within the pattern realized involved in the combo line 4 . This
realization time is used for chronological association. At this point, your question
should be : But how to do a chronological association ? This is very simply, to
say ’this should happen after this’ just write two combo line, and put the line in
the correct time order. For example, I want to check for pat2 or pat3 happening
after pat1: I just need to write:

pat1

pat2 || pat3

But chronological association can be a little smarter by introducing the idea of
’delay’ between the combo lines. For example I can look for ’pat 2 or pat3’ with
the next 2 minutes after pat1 was realized for the last time. You can do this
by adding the additional (and optional) keyword ’Delay’ at the end of a combo
line (a semicolon is necessary for the parser to know when the combo ends). The
value after the ’Delay’ keyword is a postfixed time value. For example, for the
configuration I described a few lines above, I can write:

pat1

pat2 || pat3 ; Delay = 2m

4This is not a very smart algorithm. It will fit many cases, but is not very precise when
complex boolean expression are used. If anybody has a smarter algorithm to submit please
contact me.

12

By doing this I said that the second line must happen in the 2 minutes that
follows the realization of the first line. Of course the ’Delay’ keyword has no
meaning if used in the first line (there is no previous line with a time realized to
be compared with). At the end of the document, you’ll see an example section
with different configuration files.

2.3.6 The ’Action’ tag

The ’Action’ tag defines a kind of alias for a command to launch when a event is
realized. All the keyword for its definition are mandatory

• Name: The name of the action

• Path: The command line (with all its arguments) to be executed when
using the action.

2.3.7 The ’Order’ tag

The ’Order’ tag is really easy to use: it just defines a relation between an event
and an action. If the event occurs and such an order is defined, then the action
is realized, and the related binary will be launched. The keyword for the ’Order’
definition are all mandatory.

• Name: The name of the order

• Event: The name of the event that we want to be associated with an action

• Action: The name of the action to be associated with the event

2.3.8 The ’Trigger’ tag

The ’Trigger’ defines a trigger. A trigger is a kind of ’meta-event’. It is an event
that occurs when an event that was realized at the last event check is now not
realized. A trigger is then realized when a given event triggers its state from
’activated’ to ’not activated’. A trigger can be associated with an order through
the ’Order’ tag. You can’t define a trigger based on another trigger. The keyword
for the ’Trigger’ are

• Name: The name of the trigger

• Event: The associated event

13

2.3.9 The ’Repetition’ tag

The ’Repetition’ is another ’meta-event’. A repetition is always associated with
another event, it is realized when a given number of realization of a given event
occurred without being triggered off. The keywords associated with the ’Repeti-
tion’ tag are:

• Name: The name of the repetition

• Event: The event correlated with the repetition

• Number: The consecutive number of occurrences of the correlated event to
be found for activating the repetition

It is possible to defined a ’Trigger’ for a repetition (to detect that a repetition
triggered off). It is not possible to define a ’Repetition’ for a repetition.

2.3.10 A few conventions

The time postfixed value

Many Kazimir objects parameters are time value for a duration (Event Window,
Event Delay, Update Interval...). A postfixed notation is defined to write the
value under the shape Numerical Value[Unit Suffix] . The available suffix are:

• no suffix or s : second

• m : minute

• h : hour

• j or d : day 5

• w : week (by week I mean 7 days, so 604800 seconds)

• M : month (this is not really objective, but I consider a month to be a 30
days duration. I know this is not very clean, but I guess nobody will use
such values. If this is a problem, please let me know, I’ll make a modification
for this).

• y : year. I considered that a take is about 365.25 days, which makes
31557600 seconds. Let me know if this value does not fit for some reason.

5’j’ is the abbreviation for jour. Yes, I told you I was french and kazimir spoke totally french
in a former version. I just translated (with more or less success...) some part in English when
I choose to make it a free software

14

What happens if a ASCII logfile is renamed or deleted ?

For the typical case of ASCII logfile, there is something you should know. This
kind of log files often have a ’switch log’ mechanism, when the file becomes to
large or after a given timeout the current version is switched and replaced by an
empty new one. Generally the old version is archived. When managing ASCII
log, what is interesting is to keep an handle on the last version of the log, not
on an archive one, so kazimir has a mechanism for log switch detection based on
the inode number. After every event check pass, it looks for the inode number
of the ASCII log. If the result is different from the one obtain one the previous
pass, or if the log could not be opened before (it was not there), then it Troyes
to re-open the log file. So if the log switches, then kazimir will always keeps an
handle to the latest version as long as the log name does not change.

2.4 Using the variables

This is in fact the second version of kazimir that I write. For previous version
(that I used only internally within the company with which I work) had no
variable and it was a problem to keep track of a given ’state’ for precise problem
detection. So I decided that the new version (the one you have downloaded) will
have such feature. The idea behind variable is a make the kazimir configuration
file a little more dynamic by putting for variable part within some of the values as-
sociated with the object’s keyword. Variable can be use in the following keyword
(this also mean that they can’t be used in the other keywords): Order::Action,
Action::Cmd, Pattern::RegExp, Event::Window, Event::Delay, Log::TimeFormat,
Log::UpdateInt, Kazimir::OutputDir, Kazimir::EventDir and within a line in the
event combo definition Each time one a this value has to be used, it is first eval-
uated to change the variable into its value. Variable can be modified when:

• a pattern is found

• an event is realized

• an order is used

• an action is used

2.4.1 The ’Variable’ tag

The ’Variable’ tag is used to define a variable with a default value. It is not
mandatory to use this tag to define a variable before using it, in fact if the
variable was not defined with a ’Variable’ tag, then its value will be the PERL
default for variable as long as a different value was not put in it. Use the ’Variable’
tag to have variables with an initial value that you fully want to control. This
tags require two keyword that are both mandatory:

15

• Name: The name of the variable

• Default: The default value for the variable

2.4.2 The variable syntax

Every variable (previously defined of not) can be use in the configuration file with
a syntax looking like $(varname). For example, I defined a variable ’myvar’ with
initial value 10 by a ’Variable’ tag like this:

Variable: Name = myvar ; Default = 10 ;

I can access it (for both read and write) by using $(myvar).

operators to be used with variables

Operators to be used on variable are more or less the less than in PERL, except
that the ’=’ sign is replaced by ′ < −′ . But the following operator will change
the value of the variable on which they are used .

Operator PERL equivalent what it does
< − = affectation

+ < − += increment
− < − -= decrememt
∗ < − *= multiplication
/ < − /= division
& < − &= AND operation
< −˜ =˜ regexp operation
. < − .= strings concatenation

And more generally, every operator in PERL with ’=’ in it can be use by just
replacing the ’=’ character by < −. When operating with variables for anything
but affectation, every classical operator can be used (+, *, - , / ,) .

The internal variables

The following variable are managed by kazimir internally. They can be used by
the user, but remember that kazimir will use these variables to make informa-
tion available. They can be read, but not be written by the user (kazimir will
immediately overwrite them).

• $(EPOCH) : The current epoch time

• $(SECOND): The seconds of the current time

• $(MINUTE): The minutes of the current time

• $(HOUR) : The hour of the current time

16

• $(DAY) : The day within the month for the current time

• $(MONTH) : The month of the current time

• $(YEAR) : The year of the current time

• $(WEEKDAY) : The day within the week for the current time (1= Sunday,
7= Saturday)

• $(YEARDAY) : The number of the day within the year

• $(ISDST) : Information about local time for the current epoch time

• $(LAST ACTION) : The last action that was used

• $(LAST ORDER) : The last order that was used

• $(LAST EVENT) : The last event that was used

• $(LAST TRIGGER) : The last trigger that was used

• $(LAST PATTERN) : The last pattern to be found in any log objects.

• $(LAST LINE) : The last line to be found in all the log objects.

• $(LAST ACTIVE LINE) : The last line form the log objects where a pat-
tern was found.

• $(LAST EVENT CHECK) : The epoch time of the last ’Event Check’ pass.

• $(FICH EVENT) : The last event file updated by kazimir (useful mostly in
’Action’ definitions).

• $(KAZIMIR START TIME) : The epoch time when kazimir started

Caller’s environment variables

In some case, it would be nice to get the environment variable set in the pro-
cess that launched kazimir. I mean the variables defined in the calling shell by
setenv VAR VAL in csh or export VAR=VAL in ksh. Kazimir defines an
implicit hash table called $(ENV[]) which contains all the caller’s environment.
For example, $(ENV[PATH]) contains the value of the shell’s path. Using this
hash allow closer interaction between kazimir and its caller.

17

2.4.3 The ’Let’ statement. Operation available on vari-
ables

Each time a event, order or action is matched or a pattern is found, it is possible
to modify the value of the variables. This operation is always done after the
operation implicated by the use of the object are done. For example, if an event
is realized, the operation on the variable is made just after the verification of all
the combo lines. To associate the realization of an object with an operation on
variable, an additional keyword was introduced: the ’Let’ keyword. The argument
of this keyword is a string enclosed with ’{’ and ’}’ and using a regular, semicolon
separated variable syntax. Again, I think that a few short examples are better
than a long explanation:

I want to put the value 3 to $(myvar1) :

Let = { $(myvar) <- 3 ; }

I want to put the value 3 to $(myvar1) and to put 4 to $(my other var) :

Let = { $(myvar) <- 3 , $my_other_var <-4 ; }

I want to put $(var) plus $(var2) in $(my var):

Let = { $(my_var) <- $(var1) + $(var2) ;}

I want every numerical character to disappear from variable $(my var):

Let = { $(myvar) <-~ s/(\d+)//g ; }

I want to increment a counter called $(cpt):

Let = { $(cpt) +<- 1 ;}

As I said before, the ’Let’ keyword is just to be added to a ’Order’, ’Action’,
’Event’ or ’Pattern’ definition, for example:

Pattern: Name = MyPattern ; Log = MyLog ; \

RegExp=Something; Let = { $(my_var) <- 0 ;} ;

You can use let to modify several variables in the same ’Let’ statement, but
you must used the comma “,” as a separator to each operation. For example:

Pattern: Name = MyPattern ; Log = MyLog ; \

RegExp=Something; \

Let = { $(a) <- 2 , $(b) +<- 3 , $(c) <- $(d) + 4 ;} ;

18

Using a ’Let’ statement in the Kazimir tag parameters

It is possible to use a ’Let’ keyword with the ’Kazimir:’ definition. In the case,
the variable operation in the Let statement will be done at the end of every event
check This is an example:

Kazimir: LogFile = /dev/tty ; EventDir =/tmp/eventdir ; \

OutputDir = /tmp/outputdir ; LockFile = /tmp/kazimir.lock ;\

EventUpdateInt = 5s ; IdleTime= 1 ; Let = { $(evcheckcounter) +<- 1 }

Variable: Name = evcheckcounter ; Default = 0

In this example, we can see that the variable named ’evcheckcounter’ is a
counter of the number of events checks, because it is initialized to 0 and incre-
mented by one at the event check by using a ’Let’ in the ’Kazimir’ tag.

2.4.4 How can I use variables ?

Kazimir is a state machine. Variable are a way to keep track of a state at a
given moment and then reuse it when appropriated. I think that variables can
be used for making generic action or order. Imagine we have an action that send
a mail to the administrator when an event occurred, a variable containing the
result of the mail can be use as argument. By using this variable it would be
possible not to write a specific action for every case. Variable are also a way
to react after the modification of a situation: Imagine that you know that a
bad situation will produce a first regexp in general, but another regexp when a
given event is detected. By using a variable in the pattern regexp definition you
can dynamically change the regexp form regexp1 to regexp2 when the expected
event occurred. More generically, variables can introduce more flexibility to the
product, by making the configuration file more dynamic, and look a little more
like a kind of ’event checking’ script than like a basic configuration file.

2.4.5 Using Hash-tables

Hastables are ’associative arrays of variables’. This is a set of variable to be
accessed using a key. Since hashtable are widespread in PERL, it was easy to
implement them into Kazimir. Using hastable is very similar to using variables
only the syntax differs. When a variable looked like $(var), an entry of a hashtable
will look like $(hash[”key”]). In this ”key” can be a string or a variable, so it
allowed to have syntax like $(hash[$(key)]).

Hastable entries can be initialized one by one using the ’Variable’ tag. But if
you have to initialize ten items then you will have to it ten times. So the following
lines are a correct syntax:

19

Variable: Name = hash["value0"] ; Default = 0 ;

Variable: Name = hash["value1"] ; Default = 1 ;

Variable: Name = hash["value2"] ; Default = 2 ;

For the moment, hashtables can not be used recursively in order to be keys
for other hashtables. I mean that a syntax like $(h1[$(h2[”key”])]) is no valid
syntax and will produce an error.

using variables within variables

Since there are hashtables and variables, it is a natural idea to think about using
variables to be keys for hastables, or values from hashtables to be keys from
hastables (may be recursively). In other word, it is natural to think about using
these syntaxes

• $(v)

• $(h[k])

• $(h[$(v)])

• $(h1[$(h2[$(v)])])

• $($v))

• $($(v)[$(w)])

• and so on

Kazimir should accept any of these syntaxes, but there is one restriction:
there should be no space in the syntax. This means that $(h [k]) or $(h[k]) are
no valid syntax.

2.4.6 External command evaluation

In sh, it is very common to use a syntax which looks like

var=‘ls -l | grep mypattern‘

echo $var

The fact of being able to replace a command within back quotes by its output
is something I wanted to have in kazimir, for making the construction of generic
configuration files easier. So I added this feature in kazimir. In any field in which
you can use variables, you can use the syntax ‘cmd‘ in the same way. For example
in a ’Action’ tag you can write

Action: Nom = RespawnToto ; Path = /usr/bin/totod ‘date‘;

20

In this example, this will start the toto service (not an actual one of course) with
the current date as argument. If this does not seem clear enough, try this syntax
in one of your Kazimir’s configuration file. I am sure this will not stay fuzzy for
long.

It is important to notice that the syntax with back quotes is authorized within
’Let’ statement. An example like this one is perfectly correct:

Variable: Name = x ; Default = ‘date‘

Action: Nom = RespawnToto ; Path = /usr/bin/totod $(x); Let = { $(x) <- ‘date‘ ;}

And by doing this is this (perfectly stupid) example, you will start the totod
service with the date of the last re-spawn (contained in variable $(x)).

2.5 Launching Kazimir

Kazimir can be use in two modes: the test mode, and the standard mode. In
test mode, it just parse the configuration file, and write the result of its parsing
to the standard output. This is useful for typo or syntax error detection. The
standard mode is the one to use to detect the problem. Kazimir is to be running
as a background program, generally launches from the command like through
a nohup call. It can also be run by root at machine’s boot time. Kazimir has
several flag to be used on the command line:

• -h : print the syntax help for the command line

• -f < path > : specifies where to find the configuration file. If this flag is
not used, Kazimir looks for /etc/kazimir.conf

• -T : tells that kazimir has to be launched in the test mode.

Imagine that you wrote a configuration file in your home directory, you would
launched kazimir like this:

kazimir -f ~/my_kazimir.conf

Test mode can be obtained by using this command line

kazimir -f ~/my_kazimir.conf -T

2.6 A few file configuration examples

A Basic configuration file

This configuration file just checks for a single pattern in /var/adm/messages. If
found it echoes something in the output file. The pattern it looks for is ”toto was
here”, this pattern is used in event called TotoEvent associated with Action1 via
ordre1.

21

Kazimir: LogFile = /dev/tty ; EventDir = /tmp/eventdir ; OutputDir = /tmp/outputdir ;\

LockFile = /tmp/kazimir.lock ; EventUpdateInt = 5

Log: Name = totolog ; Type = ASCII ; Path = /var/adm/messages ; TimeFormat=%b %e %H:%M:%S;

Pattern: Name =Toto; RegExp =toto was here; Log = totolog ;

Event : Name =TotoEvent; Window = 30 ;

Begin

Toto

End

Order: Name = ordre1 ; Event =TotoEvent; Action = Action1 ;

Action: Name = Action1 ; Path = echo "Toto was here !!" ;

Now, run kazimir with this configuration file, then use logger -p user.err ’toto
was here’ and see kazimir working 6

2.6.1 A boolean composite event

This is the same as the previous config file, when now we look for two patterns:

Kazimir: LogFile = /dev/tty ; EventDir = /tmp/eventdir ; OutputDir = /tmp/outputdir ;\

LockFile = /tmp/kazimir.lock ; EventUpdateInt = 5

Log: Name = syslog ; Type = ASCII ; Path = /var/adm/messages ; TimeFormat=%b %e %H:%M:%S;

Pattern: Name =Toto; RegExp =toto was here; Log = syslog ;

Pattern: Name =Titi; RegExp =titi was here; Log = syslog ;

Event : Name =TotoTitiEvent; Window = 30 ;

Begin

Toto && Titi

End

Order: Name = ordre1 ; Event =TotoTitiEvent; Action = Action1 ;

Action: Name = Action1 ; Path = echo "Toto was here, with Titi !!" ;

Now, do several logger -p user.err ’toto was here’ and logger -p user.err ’toto
was here’ 7, makes sure the messages were output to /var/adm/messages and see
kazimir working

A chronological composite event

I will not comment this one to much. Here, we look for Titi within 10 seconds
after Toto.

Kazimir: LogFile = /dev/tty ; EventDir = /tmp/eventdir ; OutputDir = /tmp/outputdir ;\

LockFile = /tmp/kazimir.lock ; EventUpdateInt = 5

6when logging messages with logger remember that syslog will not print the same message
several time in its log but something like last message repeated < n > times

7again, keep in mind the ’last messages repeated....’ message in syslog

22

Log: Name = syslog ; Type = ASCII ; Path = /var/adm/messages ; TimeFormat=%b %e %H:%M:%S;

Pattern: Name =Toto; RegExp =toto was here; Log = syslog ;

Pattern: Name =Titi; RegExp =titi was here; Log = syslog ;

Event : Name =TotoTitiEvent; Window = 30s;

Begin

Toto

Titi ; Delay = 10s

End

Order: Name = ordre1 ; Event =TotoTitiEvent; Action = Action1 ;

Action: Name = Action1 ; Path = echo "Toto was here, with Titi !!" ;

Re-spawning a dead process

This is an actual sample. I would say, that contrarily to the other examples that
were designed for showing the way Kazimir’s works, this one is an event I really
use on my machines. The context is as follows: I have a process (in my example,
the binary is called ’toto’8 and it should be restarted when it crashed. Its path
is /usr/local/bin/toto.

What the following configuration file does is making kazimir use ’ps -edf —
grep toto — grep -v grep’ periodically. If a process named toto exists, I will see
it that way, if no such process exists, when the output will be totally blank. A
pattern is defined to keep track on the last time the process ’toto’ was seen in the
output of the ’ps’ command. It is then use to defined an event, but on a negative
way: event is realized when the pattern could not be found in the event window
time, which means the process was not up in this interval. An action is correlated
to this action, it re-spawns the process, making that way the pattern be realized
and. On this example, I use explicitly ’NONE’ as TimeFormat. I have said in
this document to avoid using this format, but here it is pretty well adapted there,
because ’ps’ provides only an ’instant view’ on the existing process, but nothing
about the past processes, no there is no danger to identify a past information as
up to date.

Kazimir: LogFile = /dev/tty ; EventDir = /tmp/eventdir ; OutputDir = /tmp/outputdir ;\

LockFile = /tmp/kazimir.lock ; EventUpdateInt = 5

Log: Name = PsEdf ; Type = CMND_OUT ; Path = ps -edf | grep toto | grep -v grep ; UpdateInt = 10s ; TimeFormat = NONE

Pattern: Name = PsToto ; Log = PsEdf ; RegExp =toto;

Event : Name = TotoNotHere ; Fenetre = 15s;

Begin

!PsToto

End

Order: Nom = ordre1 ; Event = TotoNotHere ; Action = StartToto;

Action: Nom = StartToto ; Path = /usr/local/bin/toto ;

For testing this create a binary ’toto’ (during my test is was just a test who
ran a ’sleep 5000’). Then run kazimir and look at the log. Then try to kill toto

8Yes, I know, I am very found of the word ’toto’....

23

and see how kazimir restart it. On this example, I have used very short Update
value and window time value. They are clearly too short, but they fit well for a
demo. So if you want to use a similar event and pattern, use a longer ’UpdateInt’
for the PsEdf Log and a longer window size for the event.

A simple usage of variable

I want to look either for Titi and Toto, but want just an action. So, I’ll make
use of internal variable $(LAST PATTERN) to define only one action:

Kazimir: LogFile = /dev/tty ; EventDir = /tmp/eventdir ; OutputDir = /tmp/outputdir ;\

LockFile = /tmp/kazimir.lock ; EventUpdateInt = 5

Log: Name = syslog ; Type = ASCII ; Path = /var/adm/messages ; TimeFormat=%b %e %H:%M:%S;

Pattern: Name =Toto; RegExp =toto was here; Log = syslog ;

Pattern: Name =Titi; RegExp =titi was here; Log = syslog ;

Event : Name =TotoTitiEvent; Window = 30s;

Begin

Toto || Titi

End

Order: Name = ordre1 ; Event =TotoTitiEvent; Action = Action1 ;

Action: Name = Action1 ; Path = echo "$(LAST_PATTERN) was found" ;

A little more complicated: Using a variable counter

This configuration file is close to the previous one. This time I made a single
’echo’ to a file to create the log message, this makes it easy for this example to
have several time the same message in the log. What we want here is to have
kazimir realizes an event every 3 time a pattern is found. So the event will be
realized when 3 messages will be found, when 3 others, and so on. This is just an
example to show variable in action . Before starting, make sure file /tmp/totolog
is empty or does not exists (kazimir will re-open it if necessary).

Kazimir: LogFile = /dev/tty ; EventDir = /tmp/eventdir ; OutputDir = /tmp/outputdir ;\

LockFile = /tmp/kazimir.lock ; EventUpdateInt = 5

Log: Name = totolog ; Type = ASCII ; Path = /tmp/totolog ; TimeFormat=NONE

Variable: Name = cpt ; Default = 0 ;

Pattern: Name =TotoWasHere; RegExp =toto was here; Log = totolog ; Let = { $(cpt) +<- 1 ;} ;

Event : Name = TotoEvent ; Window = 10m; Let = { $(cpt) <- 0 ;} ;

Begin

TotoWasHere && ($(cpt) == 3)

End

Order: Name = ordre1 ; Event = TotoEvent ; Action = Action1;

Action: Name = Action1 ; Path = echo "I have located Toto 3 times" ;

24

Then perform echo ’toto was here’ once, wait about 5 second then do it again,
and so on after a few seconds and see kazimir working. This time the counter
works by being used as a boolean element in the event. This is only an example
to show how variable can be used

An example with a trigger

This is just a simple example that extends one of the former examples that I gave
in this document. It has no other interest than providing a sample of the use of a
trigger. There was an example to start a dead process with use of “ps -edf” as a
CMND OUT log. I just added a trigger to say hello to the newly started process.
The trigger is activated only the the event that is associated to him triggers from
’event activated’ to ’event not activated’.

Kazimir: LogFile = /dev/tty ; EventDir = /tmp/eventdir ; OutputDir = /tmp/outputdir ;\

LockFile = /tmp/kazimir.lock ; EventUpdateInt = 5

Log: Name = PsEdf ; Type = CMND_OUT ; Path = ps -edf | grep toto | grep -v grep ; UpdateInt = 10s ; TimeFormat = NONE

Pattern: Name = PsToto ; Log = PsEdf ; RegExp =toto;

Event : Name = TotoNotHere ; Fenetre = 15s;

Begin

!PsToto

End

Trigger: Name = TototIsBack ; Event = TotoNotHere ;

Order: Name = ordre1 ; Event = TotoNotHere ; Action = StartToto;

Action: Name = StartToto ; Path = /usr/local/bin/toto ;

Order: Name = TotoReturns ; Event = TototIsBack ; Action = SayHelloToto ;

Action: Name = SayHelloToto ; Path = echo ‘‘Hello Toto’’

An example with a repetition

In this example, repetition R1 is associated with TotoNotHere. If this event is
realized 3 times consecutively then the repetition is realized. In this case, the
event window time is 15s, and event are checked very 5s. The repetition value
is 3, this means that if TotoNotHere is activated during at least 3 x 5s = 15s,
the repetition will be activated. This example has a different effect from the one
with a variable used as an event counter. In the former example, the event was
realized at the third occurrence of a pattern. No matter if the time between
the occurrences was 5s of 3 days. The occurrence could be not consecutive and
separated by periods when the event was off. This makes this example quite
different from the ’Repetition’ which imply that all the occurrences are grouped
together with no change of the event state.

Kazimir: LogFile = /dev/tty ; EventDir = /tmp/eventdir ; OutputDir = /tmp/outputdir ;\

LockFile = /tmp/kazimir.lock ; EventUpdateInt = 5

Pattern: Name = PsToto ; Log = PsEdf ; RegExp =toto;

Event : Name = TotoNotHere ; Fenetre = 15s;

25

Begin

!PsToto

End

Repetition: Name = R1 ; Event = TotoNotHere ; Number = 3 ;

Order: Name = ordre1 ; Event = TotoNotHere ; Action = StartToto;

Action: Name = StartToto ; Path = /usr/local/bin/toto ;

Order: Name = Toto3TimeConsecutive ; Event = R1 ; Action = SayHelloToto ;

Action: Name = SayHelloToto ; Path = echo ‘‘Hello Toto’’

A few advices about configuration file

This part contains some tips that could be useful when writing kazimir configu-
ration file. If you think things should be added there, just tell me. This part is
supposed to be the most dynamic part of the document.

• try to avoid ’NONE’ time format with ASCII file, because kazimir reads the
whole file just after opening it. So you could find patterns that occurred a
long time ago, and this could generate detections of problem that did not
occurred in reality.

• when defining the event window time, make sure the Kazimir::EventUpdateInt
is shorter than this value. If not, you could miss some problem. I advice
you to set up the Kazimir::EventUpdateInt half the minimum value in the
event window time that you defined 9. In a future version of Kazimir, I
may automatically adjust the Kazimir::EventUpdateInt that way.

2.6.2 Let’s speak french a little

When I wrote Kazimir for the very first time, I did not have the project to make
it a free software, and since it was supposed to be used by the guys I am working
with (that all are french), all the Kazimir tags and keywords were in french. I
made the translation just after, but I wanted this version of kazimir to work also
with the former (french-speaking) configuration files already in production. So
I kept both the English and french syntax. The table here shows the equivalent
that exists for every tag or keyword were the choice is possible. So you can write
’french’ kazimir configuration but remember that this feature is mostly there for
compatibility reason

9for those of you who are a little familiar with ’Signal Acquisition Theory’, this is relatively
similar to the Shannon’s Theorem

26

Tag or Keyword French equivalent
Name Nom
Log Journal
ASCII fichier
CMND OUT commande
Default Defaut
Pattern Motif
Delay delai
Order Ordre

27

Chapter 3

As a conclusion

This is all I had to say about this product. I hope that you found this document
both readable and understandable. I am no native English speaker and also the
developer of this product, and I have a theory that says you can’t find a worse
documentation writer for a product than its developer himself. I hope that you
will enjoy using kazimir, and that it will fit your need as it fit mines. If you have
any comments, suggestions or bug reports, do not hesitate to contact me. By
making this tool a free software, I’d like people to give me their opinion about
kazimir so that I could make it more and more sophisticated, complete and easier
to use.

28

Contents

1 Introduction 1

2 The syntax of the configuration file 2
2.1 A few definitions . 2
2.2 About duration definitions . 3
2.3 Writing the configuration file and using the tags 3

2.3.1 The ’Kazimir’ tag . 5
2.3.2 The ’Include’ tag . 6
2.3.3 The ’Log’ tag . 7
2.3.4 The ’Pattern’ tag . 11
2.3.5 The ’Event’ tag . 11
2.3.6 The ’Action’ tag . 13
2.3.7 The ’Order’ tag . 13
2.3.8 The ’Trigger’ tag . 13
2.3.9 The ’Repetition’ tag . 14
2.3.10 A few conventions . 14

2.4 Using the variables . 15
2.4.1 The ’Variable’ tag . 15
2.4.2 The variable syntax . 16
2.4.3 The ’Let’ statement. Operation available on variables . . . 18
2.4.4 How can I use variables ? 19
2.4.5 Using Hash-tables . 19
2.4.6 External command evaluation 20

2.5 Launching Kazimir . 21
2.6 A few file configuration examples 21

2.6.1 A boolean composite event 22
2.6.2 Let’s speak french a little 26

3 As a conclusion 28

29

