
DirectFB Fusion kernel module:
introduction and API

Niels Roest
niels@directfb.org

DirectFB Fusion kernel module: introduction and API
by Niels Roest

Copyright © 2009 Niels Roest

This documentation is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc.,

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

For more details see the file COPYING in the source distribution of Linux.

Table of Contents
1. Introduction..1
2. Internal design ...2

2.1. ...2

3. API: Application Programming Interface...3
3.1. Opening the node ..3

3.1.1. synopsis ..3
3.1.2. description ..3
3.1.3. return values ...4

3.2. Other file operations..4
3.2.1. synopsis ..4
3.2.2. description ..4
3.2.3. return values ...5

3.3. IOCTL: Global fusion commands...6
3.3.1. synopsis ..6
3.3.2. FUSION_ENTER...6
3.3.3. FUSION_UNBLOCK ..7
3.3.4. FUSION_KILL...7
3.3.5. FUSION_ENTRY_SET_INFO and FUSION_ENTRY_GET_INFO............................7
3.3.6. FUSION_FORK...8
3.3.7. FUSION_SEND_MESSAGE...8

3.4. IOCTL: CALL primitive...8
3.4.1. synopsis ..9
3.4.2. FUSION_CALL_NEW ..9
3.4.3. FUSION_CALL_EXECUTE...9
3.4.4. FUSION_CALL_RETURN ...10
3.4.5. FUSION_CALL_DESTROY ...11

3.5. IOCTL: REF primitive ..11
3.5.1. synopsis ..11
3.5.2. FUSION_REF_NEW ...12
3.5.3. FUSION_REF_UP_GLOBAL and FUSION_REF_DOWN_GLOBAL12
3.5.4. FUSION_REF_UP and FUSION_REF_DOWN ...12
3.5.5. FUSION_REF_ZERO_LOCK and FUSION_REF_ZERO_TRYLOCK.....................12
3.5.6. FUSION_REF_UNLOCK..13
3.5.7. FUSION_REF_STAT ...13
3.5.8. FUSION_REF_WATCH...13
3.5.9. FUSION_REF_INHERIT ..14
3.5.10. FUSION_REF_UNLOCK..14

3.6. IOCTL: SKIRMISH primitive ..14
3.6.1. synopsis ..14
3.6.2. FUSION_SKIRMISH_NEW ...15
3.6.3. FUSION_SKIRMISH_PREVAIL and FUSION_SKIRMISH_SWOOP.....................15
3.6.4. FUSION_SKIRMISH_DISMISS...15
3.6.5. FUSION_SKIRMISH_DESTROY ..15
3.6.6. FUSION_SKIRMISH_LOCK_COUNT..15
3.6.7. FUSION_SKIRMISH_WAIT...16

iii

3.6.8. FUSION_SKIRMISH_NOTIFY ..16
3.7. IOCTL: PROPERTY primitive ...16

3.7.1. synopsis ..16
3.8. IOCTL: REACTOR primitive...17

3.8.1. synopsis ..17
3.8.2. FUSION_REACTOR_NEW ..17
3.8.3. FUSION_REACTOR_ATTACH and FUSION_REACTOR_DETACH......................17
3.8.4. FUSION_REACTOR_DISPATCH ..18
3.8.5. FUSION_REACTOR_DESTROY ...18
3.8.6. FUSION_REACTOR_SET_DISPATCH_CALLBACK ..19

3.9. IOCTL: SHMPOOL primitive ..19
3.9.1. synopsis ..20
3.9.2. FUSION_SHMPOOL_NEW ...20
3.9.3. FUSION_SHMPOOL_ATTACH ...20
3.9.4. FUSION_SHMPOOL_DETACH...21
3.9.5. FUSION_SHMPOOL_DISPATCH..21
3.9.6. FUSION_SHMPOOL_DESTROY ..22

4. Information from /proc/fusion..23
4.1. fusionees..23
4.2. calls ...23
4.3. properties...24
4.4. reactors ..24
4.5. refs...24
4.6. shmpools ...25
4.7. skirmishs ...25
4.8. stat ...25

iv

Chapter 1. Introduction

Fusion is a Inter-Process-Communication (IPC) kernel module with a high level of abstraction. It offers
primitives like skirmishes (locks), calls, properties and shared memory pools. You can query the status of
the primitives via an entry in the /proc filesystem.

This chapter aims at giving you an overview about what Fusion is, so that the dry API listing in the
following chapters makes sense as a whole.

Fusion is the central spider in the web of IPC. In the Fusion philosophy, processes can ’speak’ to each
other through Fusion only. They speak to each other by using Fusion primitives. Any process can request
Fusion to create a primitive instance, which can then be accessed and used by all connected Fusion
processes through a simple ID. Refer to the API chapter for explanation of each primitive type in more
detail.

The primivites are in short: call: to perform (a)synchronous calls to other processes; ref : reference
counter with watch functionality; reactor: asynchronous event distribution with reception confirmation;
skirmish: counting lock; property: multi-level locking; shmpool: shared memory usage arbitration.

You can use the primitives with the ioctl() API as described in this document, but within the DirectFB
project (www.directfb.org) a wrapper has been written which can be used as an entry point instead. This
library is simply called Fusion too. In some cases the wrapper adds extra abstraction, for instance: if you
do a synchronous call to another process you need to have a dispatcher thread running in that process; the
fusion library creates this thread and offers a callback handler subscription.

Fusion relies for a large part on shared memory to not hamper the speed of data transmission. For
instance, with DirectFB (build on top of Fusion) processes are allowed to write to the display buffer
themselves, where Fusion takes care of arbitrating access and sharing information.

Fusion has the concept of World. A world is the environment in which fusion users operate and
communicate; it provides the plaform for clients to discover each other. For example, Fusion primitives
are identified and used with a Worldwide ID. Each World has its own filesystem node. Fusion allows
multiple worlds to run at the same time, separate from each other. This makes it possible to have multiple
Fusion-based protocols running alongside.

A participant in a world is called a fusionee. Every user-space application that opens and enters a World
will obtain a unique Fusion ID. Note that it is therefore possible, but unusual, for an application to get
multiple Fusion IDs. The Fusion ID is used as a handle to target other fusionees. To simplify the
implementation of single-acces hardware, every world has at most one fusionee which is also Master, the
others being Slave fusionees.

1

Chapter 2. Internal design

..todo..

2.1. ...

...

2

Chapter 3. API: Application Programming
Interface

This section describes how to use the Fusion kernel module. It mainly lists all ioctls of Fusion.

3.1. Opening the node

All Fusion communication is done via /dev nodes. In the current installment, Fusion uses a "char" node
with major 250. By convention, the nodes are called /dev/fusion0, /dev/fusion1, etc. with minor 0,1, etc.
for a total of 8 nodes. Each separate node is a separate, independent Fusion World. All applications
wishing to IPC with each other shall open the same node.

3.1.1. synopsis

To open a Fusion node:

int fd;
fd = open("/dev/fusion/0", flags);

3.1.2. description

The flags argument has the following meaning:
flags = O_RDWR; default value.
flags |= O_NONBLOCK; add this for a non-blocking read call.
flags |= O_EXCL; add this to be the Fusion Master of this World.
flags |= O_APPEND; add this to be a Fusion Slave in this World.

Master is the other word for being the first Fusionee. You can use the special open call to make sure you
are Master. If you happen to be the first to open a World, you will be its Master as well. If you wish to be
a Fusion Slave, but the World is still to be opened, a subsequent ioctl to enter the world will block until
the Master has ’unblocked’ the World. These ioctls are explained further on. Please note that Fusion does
not safeguard the Master role after the open call! The role is only fixed after the World enter ioctl. There
are two options to protect the Master role: either unify the open-enter pair in your code, or make sure that
all intended Slaves will use the slave open call variant.

The terms Master and Slave have no significance other than startup-behaviour and World-wide
initialization calls (so noted where applicable). In DirectFB context, the Master role is generally reserved
for the process that controls the graphic hardware: communication to the graphic’s card IO-space is

3

Chapter 3. API: Application Programming Interface

handled with Fusion calls towards the Fusion Master process, which will simplify to regular C-calls if
initiated by the Master itself.

3.1.3. return values

EBUSY request to be Master, but this world already has a Fusion Master.
EINTR an interrupt occurred. No changes were made.
ENOMEM insufficient kernel memory.

3.2. Other file operations

If your process has successfully opened the fusion node, the following operations can be performed
additionally.

3.2.1. synopsis
int close(int fd);
ssize_t read(int fd, void *buf, size_t count);
int ioctl(int fd, int request, ...);
void *mmap(void *start, size_t length, int prot, int flags, int fd, off_t offset);

There is no write call. In tandem with the read call, if it is non-blocking, you should use the select call to
implement non-busy waiting. The parameters for these functions are all standard and are not further
explained.

3.2.2. description

The close call will leave the World and close the node for this Fusionee. If all Fusionees in a World have
left, the World will be closed and cleaned-up. A left Fusion Master will not be replaced, not even by a
new open call.

The read call will try to read as many complete messages (in order) as will fit in the provided buffer.
Messages are always 4-byte aligned (see example below) so you may find stuff bytes between
consecutive messages. The return value is the byte size of the returned messages (including stuffing). It is
not possible to write messages. All messages are created as a result of ioctl calls. The receivable
messages are defined together with the corresponding ioctl description, but follow the following basic
structure:

typedef struct {
FusionMessageType msg_type;
int msg_id;

4

Chapter 3. API: Application Programming Interface

int msg_size;
int msg_channel;

/* message data follows */
} FusionReadMessage;

msg_type is one of FMT_CALL, FMT_REACTOR, FMT_SHMPOOL or FMT_SEND, which means that this
message is due to activity from call, reactor or shared memory handling, or as the result of a
SEND_MESSAGE ioctl. msg_id is the free format message identifier (for FMT_SEND) or the call,
reactor or pool ID. msg_size is the payload size. msg_channel is the optional or reactor channel. The
payload data is located immediately after the header.

The following simplified example reads messages:

char buf[BUF_SIZE]
char *buf_p = buf;
int fd = open("/dev/fusion/0", O_RDWR | O_NONBLOCK);
int len = read(fd, buf, BUF_SIZE);
while (buf_p < buf + len)
{

FusionReadMessage *header = (FusionReadMessage*) buf_p;
void *data = buf_p + sizeof(FusionReadMessage);
...handle message...
buf_p = data + ((header->msg_size + 3) & ~3);

}

The ioctl calls are described in more detail in the following sections. Basically, the Fusion ioctls accept 1
argument, which is normally a pointer to a struct that can hold input and output parameters. For example,
if the synopsis is ioctl(fd, FUSION_ENTER, FusionEnter) then you can use something like
this:

#include <fusion.h>
int fd = open("/dev/fusion/0", O_RDWR | O_NONBLOCK);
FusionEnter enter;
...init enter.api...
ret = ioctl(fd, FUSION_ENTER, &enter);
...store fusion_id...

With the mmap call a shared area is created. This is a small area of memory, the provided size may not
be over a kernel page size (commonly minimally 4KB). The same memory area will be mapped for all
Fusionees of the same World, so it is possible to share a World global data. The first mmap call must be
done by the Fusion Master, this reserves the kernel memory.

3.2.3. return values

The following can be returned by any of the functions:
0 on success.

5

Chapter 3. API: Application Programming Interface

EINVAL Input parameter out-of-range.
EFAULT Kernel memory fault.
EINTR an interrupt occurred. No changes were made.

The following are additional return values of the read call:
EMSGSIZE If the first message does not fit in the buffer.
EAGAIN For a non-blocking read: no messages available.

The following are aditional return values of the mmap call:
EPERM First mmap not performed by Fusion Master.
ENOMEM No kernel memory left.

3.3. IOCTL: Global fusion commands

Described are the basic ioctl operations.

3.3.1. synopsis
ioctl(fd, FUSION_ENTER , FusionEnter)
ioctl(fd, FUSION_UNBLOCK)
ioctl(fd, FUSION_KILL , FusionKill)
ioctl(fd, FUSION_ENTRY_SET_INFO , FusionEntryInfo)
ioctl(fd, FUSION_ENTRY_GET_INFO , FusionEntryInfo)
ioctl(fd, FUSION_FORK , FusionFork)
ioctl(fd, FUSION_SEND_MESSAGE , FusionSendMessage)

3.3.2. FUSION_ENTER
typedef struct {

struct {
int major; /* [in] */
int minor; /* [in] */

} api;

FusionID fusion_id; /* [out] */
} FusionEnter;

Enter this Fusion World. You must enter the World after opening the Fusion node. Only then, you will be
assigned a unique communication handle: your Fusion ID. For all Slaves, this ioctl will block until the
Master has ’unblocked’ the World with FUSION_UNBLOCK.

major and minor must be filled with the requested API. Supported are 3.x, 4.x and 8.x, which
correspond to DirectFB 1.0, 1.1 and >= 1.2 respectively. This document only describes 8.x, which is
recommended for new development. The Master will determine the API. The Slaves must be in the

6

Chapter 3. API: Application Programming Interface

interval [major.0, major.minor]. The fusion_id is returned on successful completion. This is
FUSION_ID_MASTER for the Master.

Return values (besides 0, EFAULT and EINTR):
ENOPROTOOPT Unsupported API version, or Master has selected a non-compatible API version.

3.3.3. FUSION_UNBLOCK

Unblocks the Fusion World. Must be called by the Fusion Master to allow Slaves in this World.

Return values (besides 0, EFAULT and EINTR):
EPERM Not called by Fusion Master.

3.3.4. FUSION_KILL
typedef struct {

FusionID fusion_id;
int signal;
int timeout_ms;

} FusionKill;

Send a signal to other fusionees, corresponding to the ’kill’ program. fusion_id is the target fusionee,
0 means all but ourself. The ioctl will return success if there is no such fusionee. signal is the signal to
be delivered, e.g. SIGTERM. timeout_ms is the requested time-out in milliseconds, -1 means no timeout,
0 means infinite, otherwise the maximum time to wait until at least one fusionee is terminated. This
means that if you send a non-terminating signal with a specified timeout this ioctl will not return.

Return values (besides 0, EFAULT and EINTR):
ETIMEDOUT Timeout expired.

3.3.5. FUSION_ENTRY_SET_INFO and
FUSION_ENTRY_GET_INFO
typedef struct {

FusionType type;
int id;
char name[FUSION_ENTRY_INFO_NAME_LENGTH]; /* [in] or [out] */

} FusionEntryInfo;

Store or read a human readable name to a Skirmish, Property, Reactor, Ref or Shmpool. This name is
only used for these ioctls and in the /proc filesystem. type is one of FT_REF, FT_SKIRMISH,

7

Chapter 3. API: Application Programming Interface

FT_PROPERTY, FT_REACTOR or FT_SHMPOOL, for respectively reference, skirmish, property, reactor and
shared memory pool. id is the object identifier. name is the name of the object.

Return values are ENOSYS, EFAULT or EINTR for failure, 0 for success.

3.3.6. FUSION_FORK
typedef struct {
FusionID fusion_id;

} FusionFork;

Perform a ’fork’ of shared memory pools, reactors and local references. This will copy these entities from
fusiuonee fusion_id to the calling fusionee. Upon return, fusion_id holds the calling fusionee ID.

Return values are EFAULT or EINTR for failure, 0 for success.

3.3.7. FUSION_SEND_MESSAGE
typedef struct {

FusionID fusion_id;
int msg_id;
int msg_channel;
int msg_size;
const void *msg_data;

} FusionSendMessage;

Send a Fusion message. The receiver will call read() to receive the message. A fusion message is
simply a packet of data which is send from one fusionee (the one calling this ioctl) to another (the one
calling read(). The sender specifies the receiver by fusion ID, the receiver can extract the sender ID
from the received mesage. Check the description of read() for additional info.

fusion_id is the ID of the fusionee to receive the message. msg_id is a free-format message identifier.
msg_channel is an optional channel number. msg_size is the message payload size, which lies in the
range [0,65536] inclusive. msg_data points to the payload data. must not be NULL.

Return values (besides 0, EFAULT and EINTR):
EINVAL msg_size too small (below 0).
EMSGSIZE msg_size too big (above 65536).
ENOMEM out of kernel memory. Try a smaller msg_size.

8

Chapter 3. API: Application Programming Interface

3.4. IOCTL: CALL primitive

Describes the CALL primitive related ioctls. Use this to make a syncronous call to another fusionee. A
Fusion call can be compared to an RPC (Remote Procedure Call). First, the receiving fusionee creates
the call. Then, any fusionee can ’execute’ it - this will block the calling thread until the receiver has
’returned’ it. The receiver has to poll/select the read() function to wait for an incoming call. Since this
is hardly how a proper call would work, the Fusion user-space library has abstraction code that allows
the receiver to register a handler function, so the whole ’execute’ - ’return’ path is hidden and the
primitive acts like a call proper.

3.4.1. synopsis
ioctl(fd, FUSION_CALL_NEW , FusionCallNew)
ioctl(fd, FUSION_CALL_EXECUTE , FusionCallExecute)
ioctl(fd, FUSION_CALL_RETURN , FusionCallReturn)
ioctl(fd, FUSION_CALL_DESTROY , int)

3.4.2. FUSION_CALL_NEW
typedef struct {

int call_id; /* [out] */
void *handler; /* [in] */
void *ctx; /* [in] */

} FusionCallNew;

Create a new Fusion call primitive. This will return a unique call ID. A user of the call primitive can use
this call ID to perform (or ’execute’) a call with some arguments. Fusion will switch context, if needed,
to the creator of the call; it will then receive a fusion message, perform the call and send back the return
value with FUSION_CALL_RETURN. With this ioctl you specify a call handler (a.k.a. callback
function) and a call context. Both are opaque to Fusion, and are simply passed back when a call is
executed.

Fusion CALLs are synchronous or, optionally, one-way only. If synchronous, the execute will block until
the call has been completed with FUSION_CALL_RETURN. If one-way, the execute will return
immediately, and a FUSION_CALL_RETURN should not be send.

call_id is the returned unique call ID. handler and ctx are opaque handles, which are intended for
the callback function. This will be passed in every message that results from an execute.

Return values (besides 0, EFAULT and EINTR):
ENOMEM Out of kernel memory.

9

Chapter 3. API: Application Programming Interface

3.4.3. FUSION_CALL_EXECUTE
typedef struct {

int ret_val; /* [out] */
int call_id; /* [in] */
int call_arg; /* [in] */
void *call_ptr; /* [in] */
FusionCallExecFlags flags; /* [in] */

} FusionCallExecute;

Execute a call on an existing Fusion call primitive. This will send a Fusion message to the owner/creator
of the call ID. This means that the receiving end has the responsability to listen to this message, and to
call FUSION_CALL_RETURN.

In ret_val the return value is returned. call_id is the target call ID. call_arg and call_ptr are
optional arguments that will be passed to the receiver inside the message. flags is FCEF_NONE for a
synchronous or FCEF_ALL for an asynchronous call.

The Fusion message that is send consists of the following two structures, send back-to-back. The total
message size is thus sizeof(FusionReadMessage) + sizeof(FusionCallMessage) rounded up
for 4-byte alignment.

typedef struct {
FusionMessageType msg_type;
int msg_id;
int msg_size;
int msg_channel;

} FusionReadMessage;
typedef struct {

void *handler;
void *ctx;
int caller;
int call_arg;
void *call_ptr;
unsigned int serial;

} FusionCallMessage;

The first 4 elements have already been described by read(), but notice that msg_type is FMT_CALL.
handler and ctx are the parameters that were provided with FUSION_CALL_NEW. caller is the
fusion ID of the caller. Note that Fusion internally also generates calls (e.g. for reactors), in which case
this is 0. call_arg and call_ptr are provided with FUSION_CALL_EXECUTE. serial is the call
serial which is to be used for FUSION_CALL_RETURN.

Return values (besides 0, EINVAL, EFAULT and EINTR):
ENOMEM Out of kernel memory.

10

Chapter 3. API: Application Programming Interface

3.4.4. FUSION_CALL_RETURN
typedef struct {

int call_id;
int val;
unsigned int serial;

} FusionCallReturn;

Return the return value to the caller. This will unblock the caller. Only to be called on a synchronous call.

call_id is the call ID you want to return. val is the return value. serial, as received from
FUSION_CALL_EXECUTE.

Return values (besides 0, EINVAL, EFAULT and EINTR):
EOPNOTSUPP Trying to return a one-way call.
EIDRM Caller was already unblocked due to a signal. Return value lost.
ENOMSG No waiter found. Can point to halted waiting fusionee.

3.4.5. FUSION_CALL_DESTROY

Destroys this call primitive. This will destroy the call, and unlock any pending execute. This can be done
only by the same fusionee that created the call primitive. The passed int is the call ID.

Return values (besides 0, EINVAL, EFAULT and EINTR):
EIO We didn’t create the call.

3.5. IOCTL: REF primitive

Describes the reference primitive related ioctls. A reference simply implements reference counting. Each
instance has a global count and for each fusionee a local count. These counts can be adjusted, tested and
watched. Counts must be 0 or higher.

3.5.1. synopsis
ioctl(fd, FUSION_REF_NEW , int)
ioctl(fd, FUSION_REF_UP , int)
ioctl(fd, FUSION_REF_UP_GLOBAL , int)
ioctl(fd, FUSION_REF_DOWN , int)
ioctl(fd, FUSION_REF_DOWN_GLOBAL , int)
ioctl(fd, FUSION_REF_ZERO_LOCK , int)
ioctl(fd, FUSION_REF_ZERO_TRYLOCK, int)
ioctl(fd, FUSION_REF_UNLOCK , int)

11

Chapter 3. API: Application Programming Interface

ioctl(fd, FUSION_REF_STAT , int)
ioctl(fd, FUSION_REF_WATCH , FusionRefWatch)
ioctl(fd, FUSION_REF_INHERIT , FusionRefInherit)
ioctl(fd, FUSION_REF_DESTROY , int)

3.5.2. FUSION_REF_NEW

Create a new reference primitive. The int contains the created reference ID. The reference’s global and
local counts are set to 0. Return values are EFAULT or EINTR for failure, 0 for success.

3.5.3. FUSION_REF_UP_GLOBAL and
FUSION_REF_DOWN_GLOBAL

Increase or decrease the global count of this reference by 1. The int contains the reference ID. The
reference shall not be in a locked state.

Return values (besides 0, EINVAL, EFAULT and EINTR):
EAGAIN Reference is locked.
EIO Count is 0, cannot be decreased further.

3.5.4. FUSION_REF_UP and FUSION_REF_DOWN

Increase or decrease the local count of this reference by 1. A reference has, besides a single global count,
for every fusionee a local count, which is only visible that fusionee. The int contains the reference ID.
The reference shall not be in a locked state.

Return values (besides 0, EINVAL, EFAULT and EINTR):
ENOMEM No kernel memory left.
EAGAIN Reference is locked.
EIO Count is 0, cannot be decreased further.

3.5.5. FUSION_REF_ZERO_LOCK and
FUSION_REF_ZERO_TRYLOCK

Lock a reference to zero. The total count (the global count and all local counts) must be zero. On
success, the counts are not modifiable anymore. If the total count is not zero yet, LOCK will wait
indefinately, while TRYLOCK will return an error code. The int contains the reference ID. The
reference shall not be in a locked or, for LOCK, watched state.

12

Chapter 3. API: Application Programming Interface

Return values (besides 0, EINVAL, EFAULT and EINTR):
EIO You already locked this reference.
EAGAIN Reference is locked by another fusionee.
EACCES LOCK is tried, but the reference is being watched.
ETOOMANYREFS TRYLOCK is tried, but the total count is not 0.
EIDRM Internal error.

3.5.6. FUSION_REF_UNLOCK

Unlock the reference. The int contains the reference ID.

Return values (besides 0, EINVAL, EFAULT and EINTR):
EIO Not the lock owner, or not locked.

3.5.7. FUSION_REF_STAT

Return the total count of this reference (the global count and all local counts). The int contains the
reference ID. Return values are EINVAL, EFAULT or EINTR for failure, 0 for success.

3.5.8. FUSION_REF_WATCH
typedef struct {

int id;
int call_id;
int call_arg;

} FusionRefWatch;

Watch a reference. If the total count drops to 0, a call will be executed.

id contains the reference ID. call_id is the call ID that will be executed. call_arg is an optional
parameter that will be part of the call message. The call message is scheduled below:

typedef struct {
FusionMessageType msg_type;
int msg_id;
int msg_size;
int msg_channel;

} FusionReadMessage;
typedef struct {

void *handler;
void *ctx;
int caller;
int call_arg;

13

Chapter 3. API: Application Programming Interface

void *call_ptr;
unsigned int serial;

} FusionCallMessage;

caller is 0. call_arg is provided by this ioctl. call_ptr is set to NULL. serial is not used. The
call is send asynchronously, so do not send a FUSION_CALL_RETURN. For an explanation of the other
fields inside the call message, check FUSION_CALL_EXECUTE.

Return values (besides 0, EINVAL, EFAULT and EINTR):
EACCES Current process ID is not the creating process ID.
EIO The total count is already 0. No watch installed.
EBUSY Reference is already being watched.

3.5.9. FUSION_REF_INHERIT
typedef struct {

int id;
int from;

} FusionRefInherit;

Inherit the local count from another reference. id is the own ID, from is the ID to inherit from.

Return values (besides 0, EINVAL, EFAULT and EINTR):
EBUSY Reference is already inherited.

3.5.10. FUSION_REF_UNLOCK

Unlock the reference. The int contains the reference ID.

Return values (besides 0, EINVAL, EFAULT and EINTR):
EIO Not the lock owner, or not locked.

3.6. IOCTL: SKIRMISH primitive

Describes the skirmish primitive related ioctls. A skirmish can be seen as a counting lock.

3.6.1. synopsis
ioctl(fd, FUSION_SKIRMISH_NEW , int)
ioctl(fd, FUSION_SKIRMISH_PREVAIL , int)

14

Chapter 3. API: Application Programming Interface

ioctl(fd, FUSION_SKIRMISH_SWOOP , int)
ioctl(fd, FUSION_SKIRMISH_DISMISS , int)
ioctl(fd, FUSION_SKIRMISH_DESTROY , int)
ioctl(fd, FUSION_SKIRMISH_LOCK_COUNT , int[2])
ioctl(fd, FUSION_SKIRMISH_WAIT , FusionSkirmishWait)
ioctl(fd, FUSION_SKIRMISH_NOTIFY , int)

3.6.2. FUSION_SKIRMISH_NEW

Create a new skirmish primitive. The int contains the created skirmish ID. Return values are EFAULT or
EINTR for failure, 0 for success.

3.6.3. FUSION_SKIRMISH_PREVAIL and
FUSION_SKIRMISH_SWOOP

Tries to take the skirmish. The int contains the reference ID. If the skirmish is already taken, PREVAIL
will wait forever until it is dismissed, SWOOP will always return directly with an error. If the call is
successful, the skirmish count will be increased by 1.

Return values (besides 0, EINVAL, EFAULT and EINTR):
EAGAIN returned by SWOOP: reference is locked by another fusionee.

3.6.4. FUSION_SKIRMISH_DISMISS

Releases the skirmish. The int contains the reference ID. PREVAIL will wait forever, SWOOP will
always return directly. If the call is successful, the skirmish count will be decreased by 1. If the count is
0, a skirmish notification is send.

Return values (besides 0, EINVAL, EFAULT and EINTR):
EIO The skirmish is not taken, or not taken by this fusionee.

3.6.5. FUSION_SKIRMISH_DESTROY

Destroys a skirmish primitive. The int contains the skirmish ID. Return values are EINVAL, EFAULT or
EINTR for failure, 0 for success.

15

Chapter 3. API: Application Programming Interface

3.6.6. FUSION_SKIRMISH_LOCK_COUNT

Returns the skirmish count. int[0] contains the skirmish ID. On output, int[1] contains the skirmish
count for this fusionee only. This means that if you were not the fusionee that did PREVAIL or SWOOP,
the count will be 0. Return values are EINVAL, EFAULT or EINTR for failure, 0 for success.

3.6.7. FUSION_SKIRMISH_WAIT
typedef struct {

int id;
unsigned int timeout;
unsigned int lock_count;
unsigned int notify_count;

} FusionSkirmishWait;

Wait for somebody else to take, and subsequently release, the skirmish. You must first take the skirmish
yourself with either PREVAIL or SWOOP. Then you can call WAIT. This will release the skimish, and
wait for another fusionee to take it, NOTIFY, and release it. Then the skirmish will be taken again. It is
possible that the skirmish is taken and released more than once during one WAIT.

id contains the skirmish ID. timeout is a timeout in milliseconds. 0 means forever. lock_count and
notify_count are required for interrupt handling. You must initialize both with 0. When the WAIT
returns with EINTR, you must not touch these fields, and simply call the ioctl again.

Return values (besides 0, EINVAL, EFAULT and EINTR):
EIO You did not take this skirmish.

3.6.8. FUSION_SKIRMISH_NOTIFY

Notify waiting skirmishes. As soon as you release the skirmish, any fusionees having performed a WAIT
will be allowed to continue. The int id is the skirmish ID. Return values are EINVAL, EFAULT or EINTR
for failure, 0 for success.

3.7. IOCTL: PROPERTY primitive

Describes the property primitive related ioctls.

3.7.1. synopsis
ioctl(fd, FUSION_PROPERTY_NEW , int)

16

Chapter 3. API: Application Programming Interface

ioctl(fd, FUSION_PROPERTY_LEASE , int)
ioctl(fd, FUSION_PROPERTY_PURCHASE , int)
ioctl(fd, FUSION_PROPERTY_CEDE , int)
ioctl(fd, FUSION_PROPERTY_HOLDUP , int)
ioctl(fd, FUSION_PROPERTY_DESTROY , int)

3.8. IOCTL: REACTOR primitive

Describes the reactor primitive related ioctls. A reactor is used to distribute events. If a fusionee uses the
DISPATCH ioctl, all attached fusionees will receive a call message. It is possible to fine-grain the target
audience by using channels: each reactor supports 1024 channels, and each channel can be independantly
attached, detached, or dispatched to.

3.8.1. synopsis
ioctl(fd, FUSION_REACTOR_NEW , int)
ioctl(fd, FUSION_REACTOR_ATTACH , FusionReactorAttach)
ioctl(fd, FUSION_REACTOR_DETACH , FusionReactorDetach)
ioctl(fd, FUSION_REACTOR_DISPATCH , FusionReactorDispatch)
ioctl(fd, FUSION_REACTOR_DESTROY , int)
ioctl(fd, FUSION_REACTOR_SET_DISPATCH_CALLBACK , FusionReactorSetCallback)

3.8.2. FUSION_REACTOR_NEW

Create a new reactor primitive. The int contains the created reactor ID. Return values are EFAULT or
EINTR for failure, 0 for success.

3.8.3. FUSION_REACTOR_ATTACH and
FUSION_REACTOR_DETACH
typedef struct {

int reactor_id;
int channel;

} FusionReactorAttach;

typedef struct {
int reactor_id;
int channel;

} FusionReactorDetach;

17

Chapter 3. API: Application Programming Interface

Attach or detach a fusionee to a reactor. Both are counting, so the amount of attaching must match the
amount of detaching to be completely detached. reactor_id is the reactor ID, channel is the selected
reactor channel number. This number can range from 0 to 1023, inclusive. Note that the current
implementation uses less memory if you avoid high channel numbers.

Return values (besides 0, EINVAL, EFAULT and EINTR):
EIO for DETACH: not attached.
ENOMEM No more kernel memory.
EIDRM Reactor destruction is pending.

3.8.4. FUSION_REACTOR_DISPATCH
typedef struct {

int reactor_id;
int channel;
int self;
int msg_size;
const void *msg_data;

} FusionReactorDispatch;

Dispatch a message in a reactor. All attached fusionees will receive this message, and optionally the
sender as well, if attached. reactor_id is the reactor ID. channel is channel number. self (boolean)
0 means the sending fusionee will not receive the message. msg_size is the size of the message data.
msg_data is a pointer to the message data. The message data will be copied for each attached fusionee.
Note that in the current implementation, when copying the message data, an out-of-kernel-memory error
will be discarded (not reported). The message header has the following layout (check read() for more
info):

typedef struct {
FusionMessageType msg_type;
int msg_id;
int msg_size;
int msg_channel;

} FusionReadMessage;

msg_type is FMT_REACTOR. msg_id is the reactor ID. msg_size is the total message size, inclusive
payload. msg_channel is the channel number. The message data itself will be send directly after this
header.

Return values (besides 0, EINVAL, EFAULT and EINTR):
ENOMEM Out of kernel memory.
EIDRM Reactor is pending destruction.
EMSGSIZE Message size exceeds 65536 bytes.

18

Chapter 3. API: Application Programming Interface

3.8.5. FUSION_REACTOR_DESTROY

Destroys the reactor. If there are still fusionees attached, the destruction will be delayed until the last
fusionee detaches itself. The provided int is the reactor ID. Return values are EINVAL, EFAULT or
EINTR for failure, 0 for success.

3.8.6. FUSION_REACTOR_SET_DISPATCH_CALLBACK
typedef struct {

int reactor_id;
int call_id;
int *call_ptr;

} FusionReactorSetCallback;

Install a callback handler on dispatch. This will execute a single call after a dispatch has been performed
on this reactor and all attached fusionees have read the messages (via read()). The call will always
execute, also when nobody has attached to the reactor’s channel of the dispatch. reactor_id is the
reactor ID to watch. call_id is the call ID to send the call to. call_ptr is an optional parameter that
will be passed back in the call. The call execute will result in the following message:

typedef struct {
FusionMessageType msg_type;
int msg_id;
int msg_size;
int msg_channel;

} FusionReadMessage;
typedef struct {

void *handler;
void *ctx;
int caller;
int call_arg;
void *call_ptr;
unsigned int serial;

} FusionCallMessage;

The first 4 elements have already been described by read(), but notice that msg_type is FMT_CALL.
handler and ctx are the parameters that were provided with FUSION_CALL_NEW. caller is 0.
call_arg is the reactor’s channel number. call_ptr is the call_ptr provided above. serial is 0.
The call is asynchronous so you must not do a CALL_RETURN.

Return values (besides 0, EINVAL, EFAULT and EINTR):
EIDRM Reactor is pending destruction.

19

Chapter 3. API: Application Programming Interface

3.9. IOCTL: SHMPOOL primitive

Describes the shared memory pool primitive related ioctls. Fusion provides the means to share memory
areas, but does not implement the necessary mapping. Conceptually, Fusion controls a single contiguous
memory area, and each request for a pool will reserve a chunk from this area. In principle, the location of
this area in real memory is up to the application. An easy implementation will be to follow the address
suggestions done by Fusion and perform a fixed mapping (mmap with MAP_FIXED); the suggested
addresses are normally located in non-occupied virtual memory space. This memory mapping
abstraction, as well as an implementation for memory allocation handling (malloc family) is already
included in the user-space Fusion library.

3.9.1. synopsis
ioctl(fd, FUSION_SHMPOOL_NEW , FusionSHMPoolNew)
ioctl(fd, FUSION_SHMPOOL_ATTACH , FusionSHMPoolAttach)
ioctl(fd, FUSION_SHMPOOL_DETACH , int)
ioctl(fd, FUSION_SHMPOOL_DISPATCH , FusionSHMPoolDispatch)
ioctl(fd, FUSION_SHMPOOL_DESTROY , int)

3.9.2. FUSION_SHMPOOL_NEW
typedef struct {

int max_size; /* [in] */
int pool_id; /* [out] */
void *addr_base; /* [out] */

} FusionSHMPoolNew;

Create a new shared memory pool primitive. This will reserve an area of memory, and link it to the
returned pool ID. After creating the pool, you still have to ATTACH to it, and possibly DISPATCH it,
since the size after creation is always 0. The client is responsible for making sure that the returned
memory address and will be mapped in the application space.

max_size is the maximum pool size. The current size after creation is always 0. pool_id is the pool ID
of the created pool. addr_base is the suggested memory location of the pool. This is a page aligned
address.

Return values (besides 0, EINVAL, EFAULT and EINTR):
ENOSPC Out of virtual memory.

3.9.3. FUSION_SHMPOOL_ATTACH
typedef struct {

int pool_id; /* [in] */

20

Chapter 3. API: Application Programming Interface

void *addr_base; /* [out] */
int size; /* [out] */

} FusionSHMPoolAttach;

Attach this fusionee to a shared memory pool. This will increase a counting reference of this fusionee to
this pool. You need this to inform yourself about size changes, see DISPATCH. pool_id is the pool ID.
addr_base is the suggested memory location of the pool. size is the current size.

Return values (besides 0, EINVAL, EFAULT and EINTR):
ENOMEM Out of kernel memory.

3.9.4. FUSION_SHMPOOL_DETACH

Detach the calling fusionee from the pool. Since it is a counting reference, you need to call DISPATCH
an equal amount of times as ATTACH. The provided int is the pool ID.

Return values (besides 0, EINVAL, EFAULT and EINTR):
EIO You did not attach to this pool.

3.9.5. FUSION_SHMPOOL_DISPATCH
typedef struct {

int pool_id;
int size;

} FusionSHMPoolDispatch;

Change the size of the shared memory pool. pool_id is the pool ID. size is the new requested size.
DISPATCH will send a message to all attached fusionees (except the DISPATCH caller) to inform them
about the new size. The message has te following layout (check read() for more info):

typedef struct {
FusionMessageType msg_type;
int msg_id;
int msg_size;
int msg_channel;

} FusionReadMessage;
typedef struct {

FusionSHMPoolMessageType type;
int size;

} FusionSHMPoolMessage;

msg_type is FMT_SHMPOOL. msg_id is the pool ID. msg_size is the size of the message.
msg_channel is 0. type is FSMT_REMAP. size is the new size of the pool. The message is send
asynchronously and must not get a reply.

21

Chapter 3. API: Application Programming Interface

Return values are EINVAL, EFAULT and EINTR) for failure and 0 for success.

3.9.6. FUSION_SHMPOOL_DESTROY

Destroy the pool. The provided int is the pool ID. Return values are EINVAL, EFAULT and EINTR) for
failure, and 0 for success.

22

Chapter 4. Information from /proc/fusion

If your application has opened a Fusion node, Fusion will populate the /proc tree with information files.
If you opened /dev/fusion0, the corresponding files can be found in /proc/fusion/0/. These files
will be removed when the last file handler to /dev/fusion0 is closed.

You can simply cat all these files, it will always contain the current state of Fusion. This can be very
practical to see for instance the reason of a process being blocked in a Fusion primitive. The files follow
a simple convention: each info element occupies a single line, so e.g. cat reactors | wc -l will list
the number of reactors. The entries are generally listed in the order they were last accessed, so last
executed = shown first.

4.1. fusionees

The file fusionees shows information about all the connected processes. Each process with an opened
filehandle is called a fusionee. The first fusionee is sometimes called the Master. This abstraction is
carried by the Fusion library, but is not further important in the kernel context. The following lists the
output:

/proc/fusion/0$ cat fusionees
(8635) 0x00000001 (0 messages waiting, 20 received, 0 sent)
(8640) 0x00000002 (0 messages waiting, 0 received, 20 sent)

Each line gives information about a fusionee in the following format: (linux process ID) Fusion

ID (messages waiting, received and send). The fusionee with Fusion ID of 0x01 is also
known as the Fusion Master. The messages are a total of primitive messages send, such as is done with
calls, reactors, shared memory pools or generic fusion messages.

4.2. calls

The file calls shows information about all the call primitives. The following shows an example output:

/proc/fusion/0$ cat calls
1.2 s (10352) 0x00000001 (1 calls) idle
1.2 s (10352) 0x00000004 (5 calls) idle
1.2 s (10352) 0x00000002 (1 calls) idle
1.3 s (10352) 0x00000006 (1556 calls) idle
-.- (10352) 0x00000007 (0 calls) idle
-.- (10352) 0x00000005 (0 calls) idle
-.- (10352) 0x00000003 (0 calls) idle

23

Chapter 4. Information from /proc/fusion

Each line gives information about a call in the following format: last access time (linux

process ID) Call ID (calls performed so far) call state. The Call ID is a sequence
number to identify each call, counting from 1. The call count is increased when the call has been
received by the target fusionee. The state can be idle or executing [Fusionee ID]. It is in the
executing state when the call is waiting for the return value from the mentioned (target) fusionee.

4.3. properties

The file properties shows information about the instantiated properties. The following shows an
example output:

/proc/fusion/0$ cat properties
-.- (8635) 0x00000001

Each line gives information about a property in the following format: last access time (linux

process ID) Property ID state. Last access time is -.- if the primitive has not yet been accessed.
The Property ID is a sequence number to identify each call, counting from 1. The state is empty if this
property is still available, otherwise it is: leased/purchased by Fusionee ID (lock PID)

lock count. For further information check out the properties API.

4.4. reactors

The file reactors shows information about the active reactors in the system. The following shows an
example output:

/proc/fusion/0$ cat reactors
1.1 s (8635) 0x00000002 X11 Input 11x dispatch, 0 nodes
0.5 h (8635) 0x00000005 Surface Pool 2x dispatch, 1 nodes
0.5 h (8635) 0x00000004 Layer Region Pool 0x dispatch, 0 nodes
0.5 h (8635) 0x00000003 Layer Context Pool 0x dispatch, 0 nodes
0.5 h (8635) 0x00000001 Virtual Input 0x dispatch, 0 nodes

...

4.5. refs

The file refs shows information about the reference primitives. The following shows an example output:

/proc/fusion/0$ cat refs
2.6 s (8635) 0x00000003 Layer Context Pool 1 4
2.6 s (8635) 0x00000004 Layer Region Pool 1 3
0.5 h (8635) 0x00000005 Surface 800x600 RGB16 1 3

24

Chapter 4. Information from /proc/fusion

0.5 h (8640) 0x00000006 SaWMan Process 0 1
0.5 h (8635) 0x00000001 Arena ’DirectFB/Core’ 0 2
0.5 h (8635) 0x00000002 SaWMan Process 0 1

...

4.6. shmpools

The file shmpools shows information about the Shared Memory Pools currently running in this world.
The following shows an example output:

/proc/fusion/0$ cat shmpools
0.5 h (8635) 0x00000005 SaWMan Pool 0x00005230055c0000 [0x103000] - 0x0, 0x dispatch, 2 nodes
0.5 h (8635) 0x00000004 Surface Memory Pool 0x0000523001550000 [0x4061000] - 0x0, 0x dispatch, 2 nodes
0.5 h (8635) 0x00000003 DirectFB Data Pool 0x0000523000530000 [0x1019000] - 0x0, 0x dispatch, 2 nodes
0.5 h (8635) 0x00000002 DirectFB Main Pool 0x0000523000120000 [0x407000] - 0x0, 0x dispatch, 2 nodes
0.5 h (8635) 0x00000001 Fusion Main Pool 0x0000523000010000 [0x103000] - 0x0, 0x dispatch, 2 nodes

...

4.7. skirmishs

The file skirmishs shows information about the Skirmish primitives currently running in this World.
The following shows part of an example output:

/proc/fusion/0$ cat skirmishs
726 ms (8635) 0x0000001d Layer Region
726 ms (8635) 0x0000001e Surface 800x600 RGB16
3.1 s (8635) 0x00000016 X11 Input
3.1 s (8635) 0x0000001c Layer Context
3.1 s (8635) 0x0000001a SaWMan
3.7 s (8635) 0x00000018 Display Layer 0
0.5 h (8635) 0x00000010 X11 Shm Images

...

4.8. stat

The file stat shows a summary of what is happening in this World. Each field shows a total count of
events since creation. It also shows the currently selected API version of this World. The following is an
example output:

25

Chapter 4. Information from /proc/fusion

/proc/fusion/0$ cat stat
Fusion API:8.0
lease/purchase cede attach detach dispatch ref up ref down prevail/swoop dismiss

0 0 1 0 22 149 132 17759 17759

26

	DirectFB Fusion kernel module: introduction and API
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Internal design
	2.1. ...

	Chapter 3. API: Application Programming Interface
	3.1. Opening the node
	3.1.1. synopsis
	3.1.2. description
	3.1.3. return values

	3.2. Other file operations
	3.2.1. synopsis
	3.2.2. description
	3.2.3. return values

	3.3. IOCTL: Global fusion commands
	3.3.1. synopsis
	3.3.2. FUSIONENTER
	3.3.3. FUSIONUNBLOCK
	3.3.4. FUSIONKILL
	3.3.5. FUSIONENTRYSETINFO and FUSIONENTRYGETINFO
	3.3.6. FUSIONFORK
	3.3.7. FUSIONSENDMESSAGE

	3.4. IOCTL: CALL primitive
	3.4.1. synopsis
	3.4.2. FUSIONCALLNEW
	3.4.3. FUSIONCALLEXECUTE
	3.4.4. FUSIONCALLRETURN
	3.4.5. FUSIONCALLDESTROY

	3.5. IOCTL: REF primitive
	3.5.1. synopsis
	3.5.2. FUSIONREFNEW
	3.5.3. FUSIONREFUPGLOBAL and FUSIONREFDOWNGLOBAL
	3.5.4. FUSIONREFUP and FUSIONREFDOWN
	3.5.5. FUSIONREFZEROLOCK and FUSIONREFZEROTRYLOCK
	3.5.6. FUSIONREFUNLOCK
	3.5.7. FUSIONREFSTAT
	3.5.8. FUSIONREFWATCH
	3.5.9. FUSIONREFINHERIT
	3.5.10. FUSIONREFUNLOCK

	3.6. IOCTL: SKIRMISH primitive
	3.6.1. synopsis
	3.6.2. FUSIONSKIRMISHNEW
	3.6.3. FUSIONSKIRMISHPREVAIL and FUSIONSKIRMISHSWOOP
	3.6.4. FUSIONSKIRMISHDISMISS
	3.6.5. FUSIONSKIRMISHDESTROY
	3.6.6. FUSIONSKIRMISHLOCKCOUNT
	3.6.7. FUSIONSKIRMISHWAIT
	3.6.8. FUSIONSKIRMISHNOTIFY

	3.7. IOCTL: PROPERTY primitive
	3.7.1. synopsis

	3.8. IOCTL: REACTOR primitive
	3.8.1. synopsis
	3.8.2. FUSIONREACTORNEW
	3.8.3. FUSIONREACTORATTACH and FUSIONREACTORDETACH
	3.8.4. FUSIONREACTORDISPATCH
	3.8.5. FUSIONREACTORDESTROY
	3.8.6. FUSIONREACTORSETDISPATCHCALLBACK

	3.9. IOCTL: SHMPOOL primitive
	3.9.1. synopsis
	3.9.2. FUSIONSHMPOOLNEW
	3.9.3. FUSIONSHMPOOLATTACH
	3.9.4. FUSIONSHMPOOLDETACH
	3.9.5. FUSIONSHMPOOLDISPATCH
	3.9.6. FUSIONSHMPOOLDESTROY

	Chapter 4. Information from /proc/fusion
	4.1. fusionees
	4.2. calls
	4.3. properties
	4.4. reactors
	4.5. refs
	4.6. shmpools
	4.7. skirmishs
	4.8. stat

