
numarray
User’s Manual

Release 1.5

Perry Greenfield
Todd Miller
Rick White

J.C. Hsu
Paul Barrett

Jochen Küpper
Peter J. Verveer

Previously authored by:
David Ascher

Paul F. Dubois
Konrad Hinsen

Jim Hugunin
Travis Oliphant

with contributions from the Numerical Python community

November 2, 2005

Space Telescope Science Institute, 3700 San Martin Dr, Baltimore, MD 21218
UCRL-MA-128569

Legal Notice

Please see file LICENSE.txt in the source distribution.

This open source project has been contributed to by many people, including personnel of the Lawrence Livermore
National Laboratory, Livermore, CA, USA. The following notice covers those contributions, including contributions
to this this manual.

Copyright (c) 1999, 2000, 2001. The Regents of the University of California. All rights reserved.

Permission to use, copy, modify, and distribute this software for any purpose without fee is hereby granted, provided
that this entire notice is included in all copies of any software which is or includes a copy or modification of this
software and in all copies of the supporting documentation for such software.

This work was produced at the University of California, Lawrence Livermore National Laboratory under contract no.
W-7405-ENG-48 between the U.S. Department of Energy and The Regents of the University of California for the
operation of UC LLNL.

Special license for package numarray.ma

The packagenumarray.ma was written by Paul Dubois, Lawrence Livermore National Laboratory, Livermore, CA,
USA.

Copyright (c) 1999, 2000. The Regents of the University of California. All rights reserved.

Permission to use, copy, modify, and distribute this software for any purpose without fee is hereby granted, provided
that this entire notice is included in all copies of any software which is or includes a copy or modification of this
software and in all copies of the supporting documentation for such software.

This work was produced at the University of California, Lawrence Livermore National Laboratory under contract no.
W-7405-ENG-48 between the U.S. Department of Energy and The Regents of the University of California for the
operation of UC LLNL.

Disclaimer

This software was prepared as an account of work sponsored by an agency of the United States Government. Nei-
ther the United States Government nor the University of California nor any of their employees, makes any warranty,
express or implied, or assumes any liability or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not infringe privately-owned
rights. Reference herein to any specific commercial products, process, or service by trade name, trademark, manu-
facturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and shall not be used
for advertising or product endorsement purposes.

ii

CONTENTS

I Numerical Python 1

1 Introduction 5
1.1 Where to get information and code. 7
1.2 Acknowledgments. 7

2 Installing numarray 9
2.1 Testing the Python installation. 9
2.2 Testing the Numarray Python Extension Installation. 9
2.3 Installing numarray. 10
2.4 At the SourceForge.... 12

3 High-Level Overview 13
3.1 Numarray Objects. 13
3.2 Universal Functions. 14
3.3 Convenience Functions. 14
3.4 Differences between numarray and Numeric.. 15

4 Array Basics 17
4.1 Basics. 17
4.2 Creating arrays from scratch. 19
4.3 Creating arrays with values specified “on-the-fly”. 24
4.4 Coercion and Casting. 28
4.5 Operating on Arrays. 30

5 Array Indexing 33
5.1 Getting and Setting array values. 33
5.2 Slicing Arrays . 35
5.3 Pseudo Indices. 38
5.4 Index Arrays . 40

6 Intermediate Topics 43
6.1 Rank-0 Arrays . 43
6.2 Exception Handling . 45
6.3 IEEE-754 Not a Number (NAN) and Infinity. 46

7 Ufuncs 49
7.1 What are Ufuncs?. 49
7.2 Which are the Ufuncs?. 52
7.3 Writing your own ufuncs! . 55

i

8 Array Functions 63

9 Array Methods 77

10 Array Attributes 87

11 Character Array 89
11.1 Introduction . 89
11.2 Character array stripping, padding, and truncation. 89
11.3 Character array functions. 90
11.4 Character array methods. 91

12 Record Array 95
12.1 Introduction . 95
12.2 Record array functions. 96
12.3 Record array methods. 98
12.4 Record object. 98

13 Object Array 101
13.1 Introduction . 101
13.2 Object array functions. 101
13.3 Object array methods. 104

14 C extension API 107
14.1 Numarray extension basics. 108
14.2 Fundamental data structures. 109
14.3 Numeric simulation API. 112
14.4 High-level API . 116
14.5 Element-wise API. 120
14.6 One-dimensional API. 125
14.7 New numarray functions. 126

II Extension modules 129

15 Convolution 131
15.1 Convolution functions. 131
15.2 Global constants. 132

16 Fast-Fourier-Transform 135
16.1 Installation . 135
16.2 FFT Python Interface. 135
16.3 fftpack Python Interface. 136

17 Linear Algebra 139
17.1 Installation . 139
17.2 Python Interface. 140

18 Masked Arrays 143
18.1 What is a masked array?. 143
18.2 Using numarray.ma. 143
18.3 Class MaskedArray. 144
18.4 MaskedArray Attributes. 152
18.5 MaskedArray Functions. 152
18.6 Helper classes. 156
18.7 Examples of Using numarray.ma. 158

ii

19 Mlab 161
19.1 Matlab(tm) compatible functions. 161

20 Random Numbers 163
20.1 General functions. 163
20.2 Special random number distributions. 164
20.3 Examples. 166

21 Multi-dimensional image processing 171
21.1 Introduction . 171
21.2 Properties shared by all functions. 171
21.3 Filter functions. 171
21.4 Fourier domain filters . 180
21.5 Interpolation functions. 181
21.6 Binary morphology. 183
21.7 Grey-scale morphology. 185
21.8 Distance transforms. 186
21.9 Segmentation and labeling. 187
21.10 Object measurements. 190
21.11 Extendingnd image in C . 193

22 Memory Mapping 197
22.1 Introduction . 197
22.2 Opening a Memmap. 197
22.3 Slicing a Memmap. 197
22.4 Creating an array from a MemmapSlice. 198
22.5 Resizing a MemmapSlice. 199
22.6 Forcing file updates and closing the Memmap. 199
22.7 numarray.memmap functions. 199
22.8 Memmap methods. 200
22.9 MemmapSlice methods. 200

A Glossary 203

Index 205

iii

iv

Part I

Numerical Python

1

NumArray (“numarray”) adds a fast multidimensional array facility to Python. This part contains all you need to know
about “numarray” arrays and the functions that operate upon them.

3

4

CHAPTER

ONE

Introduction

This chapter introduces the numarray Python extension and outlines the rest of the document.

Numarray is a set of extensions to the Python programming language which allows Python programmers to efficiently
manipulate large sets of objects organized in grid-like fashion. These sets of objects are called arrays, and they
can have any number of dimensions. One-dimensional arrays are similar to standard Python sequences, and two-
dimensional arrays are similar to matrices from linear algebra. Note that one-dimensional arrays are also different from
any other Python sequence, and that two-dimensional matrices are also different from the matrices of linear algebra.
One significant difference is that numarray objects must contain elements of homogeneous type, while standard Python
sequences can contain elements of mixed type. Two-dimensional arrays differ from matrices primarily in the way
multiplication is performed; 2-D arrays are multiplied element-by-element.

This is a reimplementation of the earlier Numeric module (aka numpy). For the most part, the syntax of numarray is
identical to that of Numeric, although there are significant differences. The differences are primarily in new features.
For Python 2.2 and later, the syntax is completely backwards compatible. See the High-Level Overview (chapter 3)
for incompatibilities for earlier versions of Python. The reasons for rewriting Numeric and a comparison between
Numeric and numarray are also described in chapter 3. Portions of the present document are almost word-for-word
identical to the Numeric manual. It has been updated to reflect the syntax and behavior of numarray, and there is a
new section (3.4) on differences between Numeric and numarray.

Why are these extensions needed? The core reason is a very prosaic one: manipulating a set of a million numbers
in Python with the standard data structures such as lists, tuples or classes is much too slow and uses too much space.
A more subtle reason for these extensions, however, is that the kinds of operations that programmers typically want
to do on arrays, while sometimes very complex, can often be decomposed into a set of fairly standard operations.
This decomposition has been similarly developed in many array languages. In some ways, numarray is simply the
application of this experience to the Python language. Thus many of the operations described in numarray work the
way they do because experience has shown that way to be a good one, in a variety of contexts. The languages which
were used to guide the development of numarray include the infamous APL family of languages, Basis, MATLAB,
FORTRAN, S and S+, and others. This heritage will be obvious to users of numarray who already have experience
with these other languages. This manual, however, does not assume any such background, and all that is expected of
the reader is a reasonable working knowledge of the standard Python language.

This document is the “official” documentation for numarray. It is both a tutorial and the most authoritative source of
information about numarray with the exception of the source code. The tutorial material will walk you through a set
of manipulations of simple, small arrays of numbers. This choice was made because:

• A concrete data set makes explaining the behavior of some functions much easier to motivate than simply talking
about abstract operations on abstract data sets.

• Every reader will have at least an intuition as to the meaning of the data and organization of image files.

All users of numarray, whether interested in image processing or not, are encouraged to follow the tutorial with a
working numarray installed, testing the examples, and more importantly, transferring the understanding gained by

5

working on arrays to their specific domain. The best way to learn is by doing — the aim of this tutorial is to guide you
along this ”doing.”

This manual contains:

Installing numarray Chapter 2 provides information on testing Python, numarray, and compiling and installing nu-
marray if necessary.

High-Level Overview Chapter 3 gives a high-level overview of the components of the numarray system as a whole.

Array Basics Chapter 4 provides a detailed step-by-step introduction to the most important aspect of numarray, the
multidimensional array objects.

Ufuncs Chapter 7 provides information on universal functions, the mathematical functions which operate on arrays
and other sequences elementwise.

Pseudo IndicesChapter??covers syntax for some special indexing operators.

Array Functions Chapter 8 is a catalog of each of the utility functions which allow easy algorithmic processing of
arrays.

Array Methods Chapter 9 discusses the methods of array objects.

Array Attributes Chapter 10 presents the attributes of array objects.

Character Array Chapter 11 describes thenumarray.strings module that provides support for arrays of fixed
length strings.

Record Array Chapter 12 describes thenumarray.records module that supports arrays of fixed length records
of string or numerical data.

Object Array Chapter 13 describes thenumarray.objects module that supports arrays of Python objects.

C extension API Chapter 14 describes the C-APIs provided fornumarray based extension modules.

Convolution Chapter 15 describes thenumarray.convolve module for computing one-D and two-D convolu-
tions and correlations ofnumarray objects.

Fast-Fourier-Transform Chapter 16 describes thenumarray.fft module for computing Fast-Fourier-Transforms
(FFT) and Inverse FFTs overnumarray objects in one- or two-dimensional manner. Ported from Numeric.

Linear Algebra Chapter 17 describes thenumarray.linear algebra module which provides a simple inter-
face to some commonly used linear algebra routines;LAPACK . Ported from Numeric.

Masked Arrays Chapter 18 describes thenumarray.ma module which supports Masked Arrays: arrays which
potentially have missing or invalid elements. Ported from Numeric.

Random Numbers Chapter 20 describes thenumarray.random array module which supports generation of
arrays of random numbers. Ported from Numeric.

Multidimentional image analysis functions Chapter 21 describes thenumarray.ndimage module which pro-
vides functions for multidimensional image analysis such as filtering, morphology or interpolation.

Glossary Appendix A gives a glossary of terms.

6 Chapter 1. Introduction

1.1 Where to get information and code

Numarray and its documentation are available at SourceForge (sourceforge.net; SourceForge addresses can
also be abbreviated assf.net). The main web site is: http://numpy.sourceforge.net. Downloads, bug re-
ports, a patch facility, and releases are at the main project page, reachable from the above site or directly
at: http://sourceforge.net/projects/numpy (see Numarray under ”Latest File Releases”). The Python web site
is http://www.python.org. For up-to-date status on compatible modules available for numarray, please check
http://www.stsci.edu/resources/software hardware/numarray/.

NOTE: because numarray shares the numpy Source Forge project with Numeric and Numeric3, there are dedicated
Source Forge “Trackers” for numarray, .e.g. “Numarray Bugs” rather than just “Bugs”. When submitting bug reports,
patches, or requests, please look for the numarray version of the tracker under the top level menu item “Tracker”,
nominally here:http://sourceforge.net/tracker/?group id=1369.

1.2 Acknowledgments

Numerical Python was the outgrowth of a long collaborative design process carried out by the Matrix SIG of the
Python Software Activity (PSA). Jim Hugunin, while a graduate student at MIT, wrote most of the code and initial
documentation. When Jim joined CNRI and began working on JPython, he didn’t have the time to maintain Numerical
Python so Paul Dubois at LLNL agreed to become the maintainer of Numerical Python. David Ascher, working as a
consultant to LLNL, wrote most of the Numerical Python version of this document, incorporating contributions from
Konrad Hinsen and Travis Oliphant, both of whom are major contributors to Numerical Python. The reimplementation
of Numeric as numarray was done primarily by Perry Greenfield, Todd Miller, and Rick White, with some assistance
from J.C. Hsu and Paul Barrett. Although numarray is almost a completely new implementation, it owes a great deal
to the ideas, interface and behavior expressed in the Numeric implementation. It is not an overstatement to say that
the existence of Numeric made the implementation of numarray far, far easier that it would otherwise have been.
Since the source for the original Numeric module was moved to SourceForge, the numarray user community has
become a significant part of the process. Numeric/numarray illustrates the power of the open source software concept.
Please send comments and corrections to this manual toperry@stsci.edu, or to Perry Greenfield, 3700 San Martin Dr,
Baltimore, MD 21218, U.S.A.

1.1. Where to get information and code 7

8

CHAPTER

TWO

Installing numarray

This chapter explains how to install and test numarray, from either the source distribution or from the
binary distribution.

Before we start with the actual tutorial, we will describe the steps needed for you to be able to follow along the
examples step by step. These steps include installing and testing Python, the numarray extensions, and some tools and
sample files used in the examples of this tutorial.

2.1 Testing the Python installation

The first step is to install Python if you haven’t already. Python is available from the Python project page at
http://sourceforge.net/projects/python. Click on the link corresponding to your platform, and follow the instructions
described there. Unlike earlier versions of numarray, version 0.7 and later require Python version 2.2.2 at a minimum.
When installed, starting Python by typing python at the shell or double-clicking on the Python interpreter should give
a prompt such as:

Python 2.3 (#2, Aug 22 2003, 13:47:10) [C] on sunos5
Type "help", "copyright", "credits" or "license" for more information.

If you have problems getting this part to work, consider contacting a local support person or emailingpython-
help@python.orgfor help. If neither solution works, consider posting on thecomp.lang.pythonnewsgroup (details on
the newsgroup/mailing list are available athttp://www.python.org/psa/MailingLists.html#clp).

2.2 Testing the Numarray Python Extension Installation

The standard Python distribution does not come, as of this writing, with the numarray Python extensions installed, but
your system administrator may have installed them already. To find out if your Python interpreter has numarray in-
stalled, type ‘import numarray ’ at the Python prompt. You’ll see one of two behaviors (throughout this document
user input and python interpreter output will be emphasized as shown in the block below):

>>> import numarray
Traceback (innermost last):
File "<stdin>", line 1, in ?
ImportError: No module named numarray

indicating that you don’t have numarray installed, or:

9

>>> import numarray
>>> numarray.__version__
’0.6’

indicating that you do. If you do, you can skip the next section and go ahead to section 2.4. If you don’t, you have to
get and install the numarray extensions as described in section 2.3.

2.3 Installing numarray

The release facility at SourceForge is accessed through the project page,http://sourceforge.net/projects/numpy. Click
on the ”Numarray” release and you will be presented with a list of the available files. The files whose names end in
”.tar.gz” are source code releases. The other files are binaries for a given platform (if any are available).

It is possible to get the latest sources directly from our CVS repository using the facilities described at SourceForge.
Note that while every effort is made to ensure that the repository is always “good”, direct use of the repository is
subject to more errors than using a standard release.

2.3.1 Installing on Unix, Linux, and Mac OSX

The source distribution should be uncompressed and unpacked as follows (for example):

gunzip numarray-0.6.tar.gz
tar xf numarray-0.6.tar

Follow the instructions in the top-level directory for compilation and installation. Note that there are options you must
consider before beginning. Installation is usually as simple as:

python setup.py install

or:

python setupall.py install

if you want to install all additional packages, which includenumarray.convolve , numarray.fft ,
numarray.linear algebra , andnumarray.random array .

See numarray-X.XX/Doc/INSTALL.txt for the latest details (X.XX is the version number).

Important Tip Just like all Python modules and packages, the numarray module can be invoked using either the
‘ import numarray ’ form, or the ‘from numarray import ... ’ form. Because most of the functions we’ll
talk about are in the numarray module, in this document, all of the code samples will assume that they have been
preceded by a statement:

>>> from numarray import *

Note the lowercase name innumarray as opposed toNumeric .

10 Chapter 2. Installing numarray

2.3.2 Installing on Windows

To install numarray, you need to be in an account with Administrator privileges. As a general rule, always remove (or
hide) any old version of numarray before installing the next version.

We have tested Numarrray on several Win-32 platforms including:

• Windows-XP-Pro-x86 (MSVC-6.0)

• Windows-NT-x86 (MSVC-6.0)

• Windows-98-x86 (MSVC-6.0)

Installation from source

1. Unpack the distribution: (NOTE: You may have to download an ”unzipping” utility)

C:\> unzip numarray.zip
C:\> cd numarray

2. Build it using the distutils defaults:

C:\numarray> python setup.py install

This installs numarray inC: \pythonXX where XX is the version number of your python installation, e.g. 20,
21, etc.

Installation from self-installing executable

1. Click on the executable’s icon to run the installer.

2. Click ”next” several times. I have not experimented with customizing the installation directory and don’t rec-
ommend changing any of the installation defaults. If you do and have problems, let us know.

3. Assuming everything else goes smoothly, click ”finish”.

Testing your Installation

Once you have installed numarray, test it with:

C:\numarray> python
Python 2.2.2 (#18, Dec 30 2002, 02:26:03) [MSC 32 bit (Intel)] on win32
Type "copyright", "credits" or "license" for more information.
>>> import numarray.testall as testall
>>> testall.test()
numeric: (0, 1115)
records: (0, 48)
strings: (0, 166)
objects: (0, 72)
memmap: (0, 75)

Each line in the above output indicates that 0 of X tests failed. X grows steadily with each release, so the numbers
shown above may not be current.

2.3. Installing numarray 11

Installation on Cygwin

For an installation of numarray for python running on Cygwin, see section 2.3.1.

2.4 At the SourceForge...

The SourceForge project page for numarray is athttp://sourceforge.net/projects/numpy. On this project page you will
find links to:

The Numpy Discussion List You can subscribe to a discussion list about numarray using the project page
at SourceForge. The list is a good place to ask questions and get help. Send mail to numpy-
discussion@lists.sourceforge.net. Note that there is no numarray-discussion group, we share the list created
by the numeric community.

The Web Site Click on ”home page” to get to the Numarray Home Page, which has links to documentation and other
resources, including tools for connecting numarray to Fortran.

Bugs and PatchesBug tracking and patch-management facilities is provided on the SourceForge project page.

CVS Repository You can get the latest and greatest (albeit less tested and trustworthy) version of numarray directly
from our CVS repository.

FTP Site The FTP Site contains this documentation in several formats, plus maybe some other goodies we have lying
around.

12 Chapter 2. Installing numarray

CHAPTER

THREE

High-Level Overview

In this chapter, a high-level overview of the extensions is provided, giving the reader the definitions of the
key components of the system. This section defines the concepts used by the remaining sections.

Numarray makes available a set of universal functions (technically ufunc objects), used in the same way they were
used in Numeric. These are discussed in some detail in chapter 7.

3.1 Numarray Objects

The array objects are generally homogeneous collections of potentially large numbers of numbers. All numbers in
a numarray are the same kind (i.e. number representation, such as double-precision floating point). Array objects
must be full (no empty cells are allowed), and their size is immutable. The specific numbers within them can change
throughout the life of the array, however. There is a ”mask array” package (”MA”) for Numeric, which has been ported
to numarray as “numarray.ma”.

Mathematical operations on arrays return new arrays containing the results of these operations performed element-wise
on the arguments of the operation.

The size of an array is the total number of elements therein (it can be 0 or more). It does not change throughout the
life of the array, unless the array is explicitly resized using the resize function.

The shape of an array is the number of dimensions of the array and its extent in each of these dimensions (it can be 0,
1 or more). It can change throughout the life of the array. In Python terms, the shape of an array is a tuple of integers,
one integer for each dimension that represents the extent in that dimension. The rank of an array is the number of
dimensions along which it is defined. It can change throughout the life of the array. Thus, the rank is the length of the
shape (except for rank 0).Note: This is not the same meaning of rank as in linear algebra.

Use more familiar mathematicial examples: A vector is a rank-1 array (it has only one dimension along which it can
be indexed). A matrix as used in linear algebra is a rank-2 array (it has two dimensions along which it can be indexed).
It is possible to create a rank-0 array which is just a scalar of one single value — it has no dimension along which it
can be indexed.

The type of an array is a description of the kind of element it contains. It determines the itemsize of the array. In
contrast to Numeric, an array type in numarray is an instance of a NumericType class, rather than a single character
code. However, it has been implemented in such a way that one may use aliases, such as ‘u1 ’, ‘ i1 ’, ‘ i2 ’, ‘ i4 ’, ‘ f4 ’,
‘ f8 ’, etc., as well as the original character codes, to set array types. The itemsize of an array is the number of 8-bit
bytes used to store a single element in the array. The total memory used by an array tends to be its size times its
itemsize, when the size is large (there is a fixed overhead per array, as well as a fixed overhead per dimension).

Here is an example of Python code using the array objects:

13

>>> vector1 = array([1,2,3,4,5])
>>> print vector1
[1 2 3 4 5]
>>> matrix1 = array([[0,1],[1,3]])
>>> print matrix1
[[0 1]

[1 3]]
>>> print vector1.shape, matrix1.shape
(5,) (2,2)
>>> print vector1 + vector1
[2 4 6 8 10]
>>> print matrix1 * matrix1
[[0 1] # note that this is not the matrix

[1 9]] # multiplication of linear algebra

If this example complains of an unknown name ”array”, you forgot to begin your session with

>>> from numarray import *

See section 2.3.1.

3.2 Universal Functions

Universal functions (ufuncs) are functions which operate on arrays and other sequences. Most ufuncs perform mathe-
matical operations on their arguments, also elementwise.

Here is an example of Python code using the ufunc objects:

>>> print sin([pi/2., pi/4., pi/6.])
[1. 0.70710678 0.5]
>>> print greater([1,2,4,5], [5,4,3,2])
[0 0 1 1]
>>> print add([1,2,4,5], [5,4,3,2])
[6 6 7 7]
>>> print add.reduce([1,2,4,5])
12 # 1 + 2 + 4 + 5

Ufuncs are covered in detail in ”Ufuncs” on page 49.

3.3 Convenience Functions

The numarray module provides, in addition to the functions which are needed to create the objects above, a set of
powerful functions to manipulate arrays, select subsets of arrays based on the contents of other arrays, and other
array-processing operations.

14 Chapter 3. High-Level Overview

>>> data = arange(10) # analogous to builtin range()
>>> print data
[0 1 2 3 4 5 6 7 8 9]
>>> print where(greater(data, 5), -1, data)
[0 1 2 3 4 5 -1 -1 -1 -1] # selection facility
>>> data = resize(array([0,1]), (9, 9)) # or just: data=resize([0,1], (9,9))
>>> print data
[[0 1 0 1 0 1 0 1 0]

[1 0 1 0 1 0 1 0 1]
[0 1 0 1 0 1 0 1 0]
[1 0 1 0 1 0 1 0 1]
[0 1 0 1 0 1 0 1 0]
[1 0 1 0 1 0 1 0 1]
[0 1 0 1 0 1 0 1 0]
[1 0 1 0 1 0 1 0 1]
[0 1 0 1 0 1 0 1 0]]

All of the functions which operate on numarray arrays are described in chapter 8. See page 67 for more information
aboutwhere and page 74 for information onresize .

3.4 Differences between numarray and Numeric.

This new module numarray was developed for a number of reasons. To summarize, we regularly deal with large
datasets and numarray gives us the capabilities that we feel are necessary for working with such datasets. In particular:

1. Avoid promotion of array types in expressions involving Python scalars (e.g.,2.*<Float32 array> should
not result in aFloat64 array).

2. Ability to use memory mapped files.

3. Ability to access fields in arrays of records as numeric arrays without copying the data to a new array.

4. Ability to reference byteswapped data or non-aligned data (as might be found in record arrays) without produc-
ing new temporary arrays.

5. Reuse temporary arrays in expressions when possible.

6. Provide more convenient use of index arrays (put and take).

We decided to implement a new module since many of the existing Numeric developers agree that the existing Numeric
implementation is not suitable for massive changes and enhancements.

This version has nearly the full functionality of the basic Numeric.Numarray is not fully compatible with Numeric.
(But it is very similar in most respects).

The incompatibilities are listed below.

1. Coercion rules are different. Expressions involving scalars may not produce the same type of arrays.

2. Types are represented by Type Objects rather than character codes (though the old character codes may still be
used as arguments to the functions).

3. For versions of Python prior to 2.2, arrays have no public attributes. Accessor functions must be used instead
(e.g., to get shape for array x, one must use x.getshape() instead of x.shape). When using Python 2.2 or later,
however, the attributes of Numarray are in fact available.

3.4. Differences between numarray and Numeric. 15

A further comment on type is appropriate here. In numarray, types are represented by type objects and not character
codes. As with Numeric there is a module variable Float32, but now it represents an instance of a FloatingType class.
For example, if x is a Float32 array, x.type() will return a FloatingType instance associated with 32-bit floats (instead
of using x.typecode() as is done in Numeric). The following will still work in numarray, to be backward compatible:

>>> if x.typecode() == ’f’:

or use:

>>> if x.type() == Float32:

(All examples presume “from numarray import * ” has been used instead of “import numarray ”, see
section 2.3.1.) The advantage of the new scheme is that other kinds of tests become simpler. The type classes are
hierarchical so one can easily test to see if the array is an integer array. For example:

>>> if isinstance(x.type(), IntegralType):

or:

>>> if isinstance(x.type(), UnsignedIntegralType):

16 Chapter 3. High-Level Overview

CHAPTER

FOUR

Array Basics

This chapter introduces some of the basic functions which will be used throughout the text.

4.1 Basics

Before we explore the world of image manipulation as a case-study in array manipulation, we should first define a few
terms which we’ll use over and over again. Discussions of arrays and matrices and vectors can get confusing due to
differences in nomenclature. Here is a brief definition of the terms used in this tutorial, and more or less consistently
in the error messages of numarray.

The Python objects under discussion are formally called “NumArray” (or even more correctly “numarray”) objects
(N-dimensional arrays), but informally we’ll just call them “array objects” or just “arrays”. These are different from
the array objects defined in the standard Pythonarray module (which is an older module designed for processing
one-dimensional data such as sound files).

These array objects hold their data in a fixed length, homogeneous (but not necessarily contiguous) block of elements,
i.e. their elements all have the same C type (such as a 64-bit floating-point number). This is quite different from most
Python container objects, which are variable length heterogeneous collections.

Any given array object has a rank, which is the number of “dimensions” or “axes” it has. For example, a point in
3D space[1, 2, 1] is an array of rank 1 — it has one dimension. That dimension has a length of 3. As another
example, the array

1.0 0.0 0.0
0.0 1.0 2.0

is an array of rank 2 (it is 2-dimensional). The first dimension has a length of 2, the second dimension has a length of
3. Because the word “dimension” has many different meanings to different folks, in general the word “axis” will be
used instead. Axes are numbered just like Python list indices: they start at 0, and can also be counted from the end, so
thataxis=-1 is the last axis of an array,axis=-2 is the penultimate axis, etc.

There are there important and potentially unintuitive behaviors ofnumarray arrays which take some getting used
to. The first is that by default, operations on arrays are performed elementwise.1 This means that when adding two
arrays, the resulting array has as elements the pairwise sums of the two operand arrays. This is true for all operations,
including multiplication. Thus, array multiplication using the * operator will default to elementwise multiplication,
not matrix multiplication as used in linear algebra. Many people will want to use arrays as linear algebra-type matrices
(including their rank-1 versions, vectors). For those users, the matrixmultiply function will be useful.

The second behavior which will catch many users by surprise is that certain operations, such as slicing, return arrays
which are simply different views of the same data; that is, they will in fact share their data. This will be discussed

1This is common to IDL behavior but contrary to Matlab behavior.

17

at length in examples later. Now that these definitions and warnings are laid out, let’s see what we can do with these
arrays.

The third behavior which may catch Matlab or Fortran users unaware is the use of row-major data storage as is done
in C. So while a Fortran array might be indexed a[x,y], numarray is indexed a[y,x].

18 Chapter 4. Array Basics

4.2 Creating arrays from scratch

4.2.1 array() and types

array (sequence=None, typecode=None, copy=1, savespace=0, type=None, shape=None)
There are many ways to create arrays. The most basic one is the use of thearray function:

>>> a = array([1.2, 3.5, -1])

to make sure this worked, do:

>>> print a
[1.2 3.5 -1.]

The array function takes several arguments — the first one is the values, which can be a Python sequence
object (such as a list or a tuple). If the optional argumenttype is omitted, numarray tries to find the best data
type which can represent all the elements.

Since the elements we gave our example were two floats and one integer, it choseFloat64 as the type of the
resulting array. One can specify unequivocally thetype of the elements — this is especially useful when, for
example, one wants an array contains floats even though all of its input elements are integers:

>>> x,y,z = 1,2,3
>>> a = array([x,y,z]) # integers are enough for 1, 2 and 3
>>> print a
[1 2 3]
>>> a = array([x,y,z], type=Float32) # not the default type
>>> print a
[1. 2. 3.]

Another optional argument is theshape to use for the array. When passed aNumArray instance, by de-
fault array will make an independent, aligned, contiguous, non-byteswapped copy. If also passed a shape or
different type, the resulting “copy” will be reshaped or cast as the new type.

asarray (seq, type=None, typecode=None)
This function converts scalars, lists and tuples to anumarray , when possible. It passesnumarray s through,
making copies only to convert types. In any other case aTypeError is raised.

inputarray (seq, type=None, typecode=None)
This is an obosolete alias forasarray .

Important Tip Pop Quiz: What will be the type of the array below:

>>> mystery = array([1, 2.0, -3j])

Hint: -3j is an imaginary number.
Answer: Complex64

A very common mistake is to callarray with a set of numbers as arguments, as inarray(1, 2, 3, 4, 5) .
This doesn’t produce the expected result if at least two numbers are used, because the first argument toarray must
be the entire data for the array — thus, in most cases, a sequence of numbers. The correct way to write the preceding
invocation is most likelyarray([1, 2, 3, 4, 5]) .

Possible values for the type argument to thearray creator function (and indeed to any function which accepts a
so-called type for arrays) are:

4.2. Creating arrays from scratch 19

1. Elements that can have values true or false:Bool .

2. Unsigned numeric types:UInt8 , UInt16 , UInt32 , andUInt64 1.

3. Signed numeric types:

• Signed integer choices:Int8 , Int16 , Int32 , Int64 .

• Floating point choices:Float32 , Float64 .

4. Complex number types:Complex32 , Complex64 .

To specify a type, e.g.UInt8 , etc, the easiest method is just to specify it as a string:

a = array([10], type = ’UInt8’)

The various means for specifying types are defined in table 4.1, with each item in a row being equivalent. Thepreferred
methods are in the first 3 columns: numarray type object, type string, or type code. The last two columns were added
for backwards compatabililty with Numeric and are not recommended for new code. Numarray type object and string
names denote the size of the type in bits. The numarray type code names denote the size of the type in bytes. The
type objects must be imported from or referenced via the numerictypes module. All type strings and type codes are
specified using ordinary Python strings, and hence don’t require an import. Complex type names denote the size of
one component, real or imaginary, in bits/bytes, but the letter code is the total size of the whole number (’c8’ and
’c16’).

Table 4.1: Type specifiers
Numarray Type Numarray String Numarray Code Numeric String Numeric Code
Int8 ’Int8’ ’i1’ ’Byte’ ’1’
UInt8 ’UInt8’ ’u1’ ’UByte’
Int16 ’Int16’ ’i2’ ’Short’ ’s’
UInt16 ’UInt16’ ’u2’ ’UShort’
Int32 ’Int32’ ’i4’ ’Int’ ’i’
UInt32 ’UInt32’ ’u4’ ’UInt’ ’u’
Int64 ’Int64’ ’i8’
UInt641 ’UInt64’ ’u8’
Float32 ’Float32’ ’f4’ ’Float’ ’f’
Float64 ’Float64’ ’f8’ ’Double’ ’d’
Complex32 ’Complex32’ ’c8’ ’F’
Complex64 ’Complex64’ ’c16’ ’Complex’ ’D’
Bool ’Bool’

4.2.2 Multidimensional Arrays

The following example shows one way of creating multidimensional arrays:

>>> ma = array([[1,2,3],[4,5,6]])
>>> print ma
[[1 2 3]

[4 5 6]]

The first argument toarray in the code above is a singlelist containing two lists, each containing three elements.
If we wanted floats instead, we could specify, as discussed in the previous section, the optional type we wished:

1UInt64 is unsupported on Windows

20 Chapter 4. Array Basics

>>> ma_floats = array([[1,2,3],[4,5,6]], type=Float32)
>>> print ma_floats
[[1. 2. 3.]

[4. 5. 6.]]

This array allows us to introduce the notion of “shape”. The shape of an array is the set of numbers which define its
dimensions. The shape of the arraymadefined above is 2 by 3. More precisely, all arrays have an attribute which is
a tuple of integers giving the shape. Thegetshape method returns this tuple. In general, one can directly use the
shape attribute (but only for Python 2.2 and later) to get or set its value. Since it isn’t supported for earlier versions
of Python, subsequent examples will usegetshape andsetshape only. So, in this case:

>>> print ma.shape # works only with Python 2.2 or later
>>> print ma.getshape() # works with all Python versions
(2, 3)

Using the earlier definitions, this is a shape of rank 2, where the first axis has length 2, and the second axis has length
3. The rank of an arrayA is always equal tolen(A.getshape()) . Note that shape is an attribute andgetshape
is a method of array objects. They are the first of several that we will see throughout this tutorial. If you’re not used to
object-oriented programming, you can think of attributes as “features” or “qualities” of individual arrays, and methods
are functions that operate on individual arrays. The relation between an array and its shape is similar to the relation
between a person and their hair color. In Python, it’s called an object/attribute relation.

reshape (a, shape)
What if one wants to change the dimensions of an array? For now, let us consider changing the shape of an array
without making it “grow”. Say, for example, we want to make the 2x3 array defined above (ma) an array of rank
1:

>>> flattened_ma = reshape(ma, (6,))
>>> print flattened_ma
[1 2 3 4 5 6]

One can change the shape of arrays to any shape as long as the product of all the lengths of all the axes is kept
constant (in other words, as long as the number of elements in the array doesn’t change):

>>> a = array([1,2,3,4,5,6,7,8])
>>> print a
[1 2 3 4 5 6 7 8]
>>> b = reshape(a, (2,4)) # 2*4 == 8
>>> print b
[[1 2 3 4]

[5 6 7 8]]
>>> c = reshape(b, (4,2)) # 4*2 == 8
>>> print c
[[1 2]

[3 4]
[5 6]
[7 8]]

The functionreshape expects an array/sequence as its first argument, and a shape as its second argument.
The shape has to be a sequence of integers (alist or a tuple). There is also asetshape method, which
changes the shape of an array in-place (see below).

One nice feature of shape tuples is that one entry in the shape tuple is allowed to be -1. The -1 will be auto-
matically replaced by whatever number is needed to build a shape which does not change the size of the array.
Thus:

4.2. Creating arrays from scratch 21

>>> a = reshape(array(range(25)), (5,-1))
>>> print a, a.getshape()
[[0 1 2 3 4]

[5 6 7 8 9]
[10 11 12 13 14]
[15 16 17 18 19]
[20 21 22 23 24]] (5, 5)

Theshape of an array is a modifiable attribute of the array, but it is an internal attribute. You can change the
shape of an array by calling thesetshape method (or by assigning atuple to the shape attribute, in Python
2.2 and later), which assigns a new shape to the array:

>>> a = array([1,2,3,4,5,6,7,8,9,10])
>>> a.getshape()
(10,)
>>> a.setshape((2,5))
>>> a.shape = (2,5) # for Python 2.2 and later
>>> print a
[[1 2 3 4 5]

[6 7 8 9 10]]
>>> a.setshape((10,1)) # second axis has length 1
>>> print a
[[1]

[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]]

>>> a.setshape((5,-1)) # note the -1 trick described above
>>> print a
[[1 2]

[3 4]
[5 6]
[7 8]
[9 10]]

As in the rest of Python, violating rules (such as the one about which shapes are allowed) results in exceptions:

>>> a.setshape((6,-1))
Traceback (innermost last):

File "<stdin>", line 1, in ?
ValueError: New shape is not consistent with the old shape

For Advanced Users: Printing arrays

Sections denoted “For Advanced Users” indicates function aspects which may not be needed for a first
introduction of numarray, but is mentioned for the sake of completeness.

The default printing routine provided by thenumarray module prints arrays as follows:

1. The last axis is always printed left to right.

22 Chapter 4. Array Basics

2. The next-to-last axis is printed top to bottom.

The remaining axes are printed top to bottom with increasing numbers of separators.

This explains why rank-1 arrays are printed from left to right, rank-2 arrays have the first dimension going down the
screen and the second dimension going from left to right, etc.

If you want to change the shape of an array so that it has more elements than it started with (i.e. grow it), then you
have several options: One solution is to use theconcatenate function discussed later.

>>> print a
[0 1 2 3 4 5 6 6 7]
>>> print concatenate([[a],[a]])
>>> print b
[[0 1 2 3 4 5 6 7]

[0 1 2 3 4 5 6 7]]
>>> print b.getshape()
(2, 8)

resize (array, shape)
A final possibility is theresize function, which takes abasearray as its first argument and the desiredshape
as the second argument. Unlikereshape , the shape argument toresize can be a smaller or larger shape
than the input array. Smaller shapes will result in arrays with the data at the “beginning” of the input array, and
larger shapes result in arrays with data containing as many replications of the input array as are needed to fill
the shape. For example, starting with a simple array

>>> base = array([0,1])

one can quickly build a large array with replicated data:

>>> big = resize(base, (9,9))
>>> print big
[[0 1 0 1 0 1 0 1 0]

[1 0 1 0 1 0 1 0 1]
[0 1 0 1 0 1 0 1 0]
[1 0 1 0 1 0 1 0 1]
[0 1 0 1 0 1 0 1 0]
[1 0 1 0 1 0 1 0 1]
[0 1 0 1 0 1 0 1 0]
[1 0 1 0 1 0 1 0 1]
[0 1 0 1 0 1 0 1 0]]

4.2. Creating arrays from scratch 23

4.3 Creating arrays with values specified “on-the-fly”

zeros (shape, type)

ones (shape, type)
Often, one needs to manipulate arrays filled with numbers which aren’t available beforehand. Thenumarray
module provides a few functions which create arrays from scratch:zeros andones simply create arrays of a
givenshapefilled with zeros and ones respectively:

>>> z = zeros((3,3))
>>> print z
[[0 0 0]

[0 0 0]
[0 0 0]]

>>> o = ones([2,3])
>>> print o
[[1 1 1]

[1 1 1]]

Note that the first argument is a shape — it needs to be atuple or a list of integers. Also note that the
default type for the returned arrays isInt , which you can override, e. g.:

>>> o = ones((2,3), Float32)
>>> print o
[[1. 1. 1.]

[1. 1. 1.]]

arrayrange (a1, a2=None, stride=1, type=None, shape=None)

arange (a1, a2=None, stride=1, type=None, shape=None)
Thearange function is similar to therange function in Python, except that it returns anarray as opposed
to a list . arange andarrayrange are equivalent.

>>> r = arange(10)
>>> print r
[0 1 2 3 4 5 6 7 8 9]

Combining thearange with thereshape function, we can get:

>>> big = reshape(arange(100),(10,10))
>>> print big
[[0 1 2 3 4 5 6 7 8 9]

[10 11 12 13 14 15 16 17 18 19]
[20 21 22 23 24 25 26 27 28 29]
[30 31 32 33 34 35 36 37 38 39]
[40 41 42 43 44 45 46 47 48 49]
[50 51 52 53 54 55 56 57 58 59]
[60 61 62 63 64 65 66 67 68 69]
[70 71 72 73 74 75 76 77 78 79]
[80 81 82 83 84 85 86 87 88 89]
[90 91 92 93 94 95 96 97 98 99]]

One can set thea1 , a2 , andstride arguments, which allows for more varied ranges:

>>> print arange(10,-10,-2)
[10 8 6 4 2 0 -2 -4 -6 -8]

An important feature of arange is that it can be used with non-integer starting points and strides:

24 Chapter 4. Array Basics

>>> print arange(5.0)
[0. 1. 2. 3. 4.]
>>> print arange(0, 1, .2)
[0. 0.2 0.4 0.6 0.8]

If you want to create an array with just one value, repeated over and over, you can use the * operator applied to
lists

>>> a = array([[3]*5]*5)
>>> print a
[[3 3 3 3 3]

[3 3 3 3 3]
[3 3 3 3 3]
[3 3 3 3 3]
[3 3 3 3 3]]

but that is relatively slow, since the duplication is done on Python lists. A quicker way would be to start with 0’s
and add 3:

>>> a = zeros([5,5]) + 3
>>> print a
[[3 3 3 3 3]

[3 3 3 3 3]
[3 3 3 3 3]
[3 3 3 3 3]
[3 3 3 3 3]]

The optionaltype argument forces the type of the resulting array, which is otherwise the “highest” of thea1 ,
a2 , andstride arguments. Thea1 argument defaults to 0 if not specified. Note that if the specifiedtype is is
“lower” than whatarange would normally use, the array is the result of a precision-losing cast (a round-down,
as that used in theastype method for arrays.)

4.3.1 Creating an array from a function

fromfunction (object, shape)
Finally, one may want to create an array whose elements are the result of a function evaluation. This is done
using thefromfunction function, which takes two arguments, ashapeand a callableobject (usually a
function). For example:

4.3. Creating arrays with values specified “on-the-fly” 25

>>> def dist(x,y):
... return (x-5)**2+(y-5)**2 # distance from (5,5) squared
...
>>> m = fromfunction(dist, (10,10))
>>> print m
[[50 41 34 29 26 25 26 29 34 41]

[41 32 25 20 17 16 17 20 25 32]
[34 25 18 13 10 9 10 13 18 25]
[29 20 13 8 5 4 5 8 13 20]
[26 17 10 5 2 1 2 5 10 17]
[25 16 9 4 1 0 1 4 9 16]
[26 17 10 5 2 1 2 5 10 17]
[29 20 13 8 5 4 5 8 13 20]
[34 25 18 13 10 9 10 13 18 25]
[41 32 25 20 17 16 17 20 25 32]]

>>> m = fromfunction(lambda i,j,k: 100*(i+1)+10*(j+1)+(k+1), (4,2,3))
>>> print m
[[[111 112 113]

[121 122 123]]
[[211 212 213]

[221 222 223]]
[[311 312 313]

[321 322 323]]
[[411 412 413]

[421 422 423]]]

These examples show thatfromfunction creates an array of the shape specified by its second argument,
and with the contents corresponding to the value of the function argument (the first argument) evaluated at the
indices of the array. Thus the value ofm[3, 4] in the first example above is the value of dist whenx=3 and
y=4 . Similarly for the lambda function in the second example, but with a rank-3 array. The implementation of
fromfunction consists of:

def fromfunction(function, dimensions):
return apply(function, tuple(indices(dimensions)))

which means that the functionfunction is called with arguments given by the sequence
indices(dimensions) . As described in the definition of indices, this consists of arrays of indices which
will be of rank one less than that specified by dimensions. This means that the function argument must accept
the same number of arguments as there are dimensions indimensions, and that each argument will be an array
of the same shape as that specified by dimensions. Furthermore, the array which is passed as the first argument
corresponds to the indices of each element in the resulting array along the first axis, that which is passed as the
second argument corresponds to the indices of each element in the resulting array along the second axis, etc.
A consequence of this is that the function which is used withfromfunction will work as expected only if
it performs a separable computation on its arguments, and expects its arguments to be indices along each axis.
Thus, no logical operation on the arguments can be performed, or any non-shape preserving operation. Thus,
the following will not work as expected:

26 Chapter 4. Array Basics

>>> def buggy(test):
... if test > 4: return 1
... else: return 0
...
>>> print fromfunction(buggy,(10,))
Traceback (most recent call last):
...
RuntimeError: An array doesn’t make sense as a truth value. Use any(a) or
all(a).

The reasonbuggy() failed is that indices((10,)) results in an array passed astest. The result of comparingtest
with 4 is also an array which has no unambiguous meaning as a truth value.

Here is how to do it properly. We add a print statement to the function for clarity:

>>> def notbuggy(test): # only works in Python 2.1 & later
... print test
... return where(test>4,1,0)
...
>>> fromfunction(notbuggy,(10,))
[0 1 2 3 4 5 6 7 8 9]
array([0, 0, 0, 0, 0, 1, 1, 1, 1, 1])

We leave it as an excercise for the reader to figure out why the “buggy” example gave the result 1.

identity (size)
The identity function takes a single integer argument and returns a square identity array (in the “matrix”
sense) of thatsizeof integers:

>>> print identity(5)
[[1 0 0 0 0]

[0 1 0 0 0]
[0 0 1 0 0]
[0 0 0 1 0]
[0 0 0 0 1]]

4.3. Creating arrays with values specified “on-the-fly” 27

4.4 Coercion and Casting

We’ve mentioned the types of arrays, and how to create arrays with the right type. But what happens when arrays with
different types interact? For some operations, the behavior of numarray is significantly different from Numeric.

4.4.1 Automatic Coercions and Binary Operations

In numarray (in contrast to Numeric), there is now a distinction between how coercion is treated in two basic cases:
array/scalar operations and array/array operations. In the array/array case, the coercion rules are nearly identical to
those of Numeric, the only difference being combining signed and unsigned integers of the same size. The array/array
result types are enumerated in table 4.2.

Table 4.2: Array/Array Result Types
Bool Int8 UInt8 Int16 UInt16 Int32 UInt32 Int64 UInt64 Float32 Float64 Complex32 Complex64

Bool Int8 Int8 UInt8 Int16 UInt16 Int32 UInt32 Int64 UInt64 Float32 Float64 Complex32 Complex64
Int8 Int8 Int16 Int16 Int32 Int32 Int64 Int64 Int64 Float32 Float64 Complex32 Complex64
UInt8 UInt8 Int16 UInt16 Int32 UInt32 Int64 UInt64 Float32 Float64 Complex32 Complex64
Int16 Int16 Int32 Int32 Int64 Int64 Int64 Float32 Float64 Complex32 Complex64
UInt16 UInt16 Int32 UInt32 Int64 UInt64 Float32 Float64 Complex32 Complex64
Int32 Int32 Int64 Int64 Int64 Float32 Float64 Complex32 Complex64
UInt32 UInt32 Int64 UInt64 Float32 Float64 Complex32 Complex64
Int64 Int64 Int64 Float64 Float64 Complex64 Complex64
UInt64 UInt64 Float64 Float64 Complex64 Complex64
Float32 Float32 Float64 Complex32 Complex64
Float64 Float64 Complex64 Complex64
Complex32 Complex32 Complex64
Complex64 Complex64

Scalars, however, are treated differently. If the scalar is of the same “kind” as the array (for example, the array and
scalar are both integer types) then the output is the type of the array, even if it is of a normally “lower” type than the
scalar. Adding anInt16 array with an integer scalar results in anInt16 array, not anInt32 array as is the case
in Numeric. Likewise adding aFloat32 array to a float scalar results in aFloat32 array rather than aFloat64
array as is the case with Numeric. Adding anInt16 array and a float scalar will result in aFloat64 array, however,
since the scalar is of a higher kind than the array. Finally, when scalars and arrays are operated on together, the scalar
is converted to a rank-0 array first. Thus, adding a “small” integer to a “large” floating point array is equivalent to first
casting the integer “up” to the type of the array.

>>> print (array ((1, 2, 3), type=Int16) * 2).type()
numarray type: Int16
>>> arange(0, 1.0, .1) + 12
array([12. , 12.1, 12.2, 12.3, 12.4, 12.5, 12.6, 12.7, 12.8, 12.9]

The results of array/scalar operations are enumerated in table 4.3. Entries marked with ” are identical to their neighbors
on the same row.

Table 4.3: Array/Scalar Result Types
Bool Int8 UInt8 Int16 UInt16 Int32 UInt32 Int64 UInt64 Float32 Float64 Complex32 Complex64

int Int32 Int8 UInt8 Int16 UInt16 Int32 UInt32 Int64 UInt64 Float32 Float64 Complex32 Complex64
long Int32 Int8 UInt8 Int16 UInt16 Int32 UInt32 Int64 UInt64 Float32 Float64 Complex32 Complex64
float Float64 ” ” ” ” ” ” ” Float64 Float32 Float64 Complex32 Complex64
complex Complex64 ” ” ” ” ” ” ” ” ” ” ” Complex64

10Float64
20Complex64

28 Chapter 4. Array Basics

4.4.2 The type value table

The type identifiers (Float32 , etc.) areNumericType instances. The mapping between type and the equivalent C
variable is machine dependent. The correspondences between types and C variables for 32-bit architectures are shown
in Table 4.4.

Table 4.4: Type identifier table on a x86 computer.
of bytes # of bits Identifier

1 8 Bool
1 8 Int8
1 8 UInt8
2 16 Int16
2 16 UInt16
4 32 Int32
4 32 UInt32
8 64 Int64
8 64 UInt64
4 32 Float32
8 64 Float64
8 64 Complex32
16 128 Complex64

4.4.3 Long: the platform relative type

The type identifierLong is aliased to eitherInt32 or Int64 , depending on the machine architecture where numarray
is installed. On 32-bit platforms,Long is defined asInt32 . On 64-bit (LP64) platforms,Long is defined asInt64 .
Long is used as the default integer type for arrays and for index values, such as those returned bynonzero .

4.4.4 Deliberate casts (potentially down)

astype (type)
You may also forcenumarray to cast any number array to another number array. For example, to take an array
of any numeric type (IntX or FloatX or ComplexX or UIntX) and convert it to a 64-bit float, one can do:

>>> floatarray = otherarray.astype(Float64)

The typecan be any of the number types, “larger” or “smaller”. If it is larger, this is a cast-up. If it is smaller,
the standard casting rules of the underlying language (C) are used, which means that truncation or integer wrap-
around can occur:

>>> print x
[0. 0.4 0.8 1.2 300.6]
>>> print x.astype(Int32)
[0 0 0 1 300]
>>> print x.astype(Int8) # wrap-around
[0 0 0 1 44]

If the typeused withastype is the original array’s type, then a copy of the original array is returned.

4.4. Coercion and Casting 29

4.5 Operating on Arrays

4.5.1 Simple operations

If you have a keen eye, you have noticed that some of the previous examples did something new: they added a number
to an array. Indeed, most Python operations applicable to numbers are directly applicable to arrays:

>>> print a
[1 2 3]
>>> print a * 3
[3 6 9]
>>> print a + 3
[4 5 6]

Note that the mathematical operators behave differently depending on the types of their operands. When one of the
operands is an array and the other a number, the number is added to all the elements of the array, and the resulting
array is returned. This is calledbroadcasting. This also occurs for unary mathematical operations such as sine and the
negative sign:

>>> print sin(a)
[0.84147096 0.90929741 0.14112]
>>> print -a
[-1 -2 -3]

When both elements are arrays of the same shape, then a new array is created, where each element is the operation
result of the corresponding elements in the original arrays:

>>> print a + a
[2 4 6]

If the operands of operations such as addition, are arrays having the same rank but different dimensions, then an
exception is generated:

>>> a = array([1,2,3])
>>> b = array([4,5,6,7]) # note this has four elements
>>> print a + b
Traceback (innermost last):

File "<stdin>", line 1, in ?
ValueError: Arrays have incompatible shapes

This is because there is no reasonable way for numarray to interpret addition of a(3,) shaped array and a(4,)
shaped array.

Note what happens when adding arrays with different rank:

30 Chapter 4. Array Basics

>>> print a
[1 2 3]
>>> print b
[[4 8 12]

[5 9 13]
[6 10 14]
[7 11 15]]

>>> print a + b
[[5 10 15]

[6 11 16]
[7 12 17]
[8 13 18]]

This is another form of broadcasting. To understand this, one needs to look carefully at the shapes ofa andb:

>>> a.getshape()
(3,)
>>> b.getshape()
(4,3)

Note that the last axis ofa is the same length as that ofb (i.e. compare the last elements in their shape tuples).
Becausea’s andb’s last dimensions both have length 3, those two dimensions were “matched”, and a new dimension
was created and automatically “assumed” for arraya. The data already ina were “replicated” as many times as needed
(4, in this case) to make the shapes of the two operand arrays conform. This replication (broadcasting) occurs when
arrays are operands to binary operations and their shapes differ, based on the following algorithm:

• starting from the last axis, the axis lengths (dimensions) of the operands are compared,

• if both arrays have axis lengths greater than 1, but the lengths differ, an exception is raised,

• if one array has an axis length greater than 1, then the other array’s axis is “stretched” to match the length of the
first axis; if the other array’s axis is not present (i.e., if the other array has smaller rank), then a new axis of the
same length is created.

Operands with the following shapes will work:

(3, 2, 4) and (3, 2, 4)
(3, 2, 4) and (2, 4)
(3, 2, 4) and (4,)
(2, 1, 2) and (2, 2)

But not these:

(3, 2, 4) and (2, 3, 4)
(3, 2, 4) and (3, 4)
(4,) and (0,)
(2, 1, 2) and (0, 2)

This algorithm is complex to describe, but intuitive in practice.

4.5.2 In-place operations

4.5. Operating on Arrays 31

Beginning with Python 2.0, Python supports the in-place operators+=, -= , *= , and/= . Numarray supports these
operations, but you need to be careful. The right-hand side should be of the same type. Some violation of this is
possible, but in general contortions may be necessary for using the smaller “kinds” of types.

>>> x = array ([1, 2, 3], type=Int16)
>>> x += 3.5
>>> print x
[4 5 6]

32 Chapter 4. Array Basics

CHAPTER

FIVE

Array Indexing

This chapter discusses the rich and varied ways of indexing numarray objects to specify individual elements, sub-
arrays, sub-samplings, and even random collections of elements.

5.1 Getting and Setting array values

Just like other Python sequences, array contents are manipulated with the[] notation. For rank-1 arrays, there are no
differences between list and array notations:

>>> a = arange(10)
>>> print a[0] # get first element
0
>>> print a[1:5] # get second through fifth elements
[1 2 3 4]
>>> print a[-1] # get last element
9
>>> print a[:-1] # get all but last element
[0 1 2 3 4 5 6 7 8]

If an array is multidimensional (of rank ¿ 1), then specifying a single integer index will return an array of dimension
one less than the original array.

>>> a = arange(9, shape=(3,3))
>>> print a
[[0 1 2]

[3 4 5]
[6 7 8]]

>>> print a[0] # get first row, not first element!
[0 1 2]
>>> print a[1] # get second row
[3 4 5]

To get to individual elements in a rank-2 array, one specifies both indices separated by commas:

33

>>> print a[0,0] # get element at first row, first column
0
>>> print a[0,1] # get element at first row, second column
1
>>> print a[1,0] # get element at second row, first column
3
>>> print a[2,-1] # get element at third row, last column
8

Of course, the[] notation can be used to set values as well:

>>> a[0,0] = 123
>>> print a
[[123 1 2]

[3 4 5]
[6 7 8]]

Note that when referring to rows, the right hand side of the equal sign needs to be a sequence which “fits” in the
referred array subset, as described by the broadcast rule (in the code sample below, a 3-element row):

>>> a[1] = [10,11,12] ; print a
[[123 1 2]

[10 11 12]
[6 7 8]]

>>> a[2] = 99 ; print a
[[123 1 2]

[10 11 12]
[99 99 99]]

Note also that when assigning floating point values to integer arrays that the values are silently truncated:

>>> a[1] = 93.999432
[[123 1 2]

[93 93 93]
[99 99 99]]

34 Chapter 5. Array Indexing

5.2 Slicing Arrays

The standard rules of Python slicing apply to arrays, on a per-dimension basis. Assuming a 3x3 array:

>>> a = reshape(arange(9),(3,3))
>>> print a
[[0 1 2]

[3 4 5]
[6 7 8]]

The plain[:] operator slices from beginning to end:

>>> print a[:,:]
[[0 1 2]

[3 4 5]
[6 7 8]]

In other words,[:] with no arguments is the same as[:] for lists — it can be read “all indices along this axis”.
(Actually, there is an important distinction; see below.) So, to get the second row along the second dimension:

>>> print a[:,1]
[1 4 7]

Note that what was a “column” vector is now a “row” vector. Any “integer slice” (as in the 1 in the example above)
results in a returned array with rank one less than the input array.

There is one important distinction between slicing arrays and slicing standard Python sequence objects. A slice of a
list is a new copy of that subset of thelist ; a slice of an array is just a view into the data of the first array. To
force a copy, you can use thecopy method. For example:

>>> a = arange (20)
>>> b = a[3:8]
>>> c = a[3:8].copy()
>>> a[5] = -99
>>> print b
[3 4 -99 6 7]
>>> print c
[3 4 5 6 7]

If one does not specify as many slices as there are dimensions in an array, then the remaining slices are assumed to be
“all”. If A is a rank-3 array, then

A[1] == A[1,:] == A[1,:,:]

An additional slice notation for arrays which does not exist for Python lists (before Python 2.3), i. e. the optional third
argument, meaning the “step size”, also called stride or increment. Its default value is 1, meaning return every element
in the specified range. Alternate values allow one to skip some of the elements in the slice:

5.2. Slicing Arrays 35

>>> a = arange(12)
>>> print a
[0 1 2 3 4 5 6 7 8 9 10 11]
>>> print a[::2] # return every *other* element
[0 2 4 6 8 10]

Negative strides are allowed as long as the starting index is greater than the stopping index:

>>> a = reshape(arange(9),(3,3)) Array Basics
>>> print a
[[0 1 2]

[3 4 5]
[6 7 8]]

>>> print a[:, 0]
[0 3 6]
>>> print a[0:3, 0]
[0 3 6]
>>> print a[2::-1, 0]
[6 3 0]

If a negative stride is specified and the starting or stopping indices are omitted, they default to “end of axis” and
“beginning of axis” respectively. Thus, the following two statements are equivalent for the array given:

>>> print a[2::-1, 0]
[6 3 0]
>>> print a[::-1, 0]
[6 3 0]
>>> print a[::-1] # this reverses only the first axis
[[6 7 8]

[3 4 5]
[0 1 2]]

>>> print a[::-1,::-1] # this reverses both axes
[[8 7 6]

[5 4 3]
[2 1 0]]

One final way of slicing arrays is with the keyword ‘... ’ This keyword is somewhat complicated. It stands for
“however many ‘:’ I need depending on the rank of the object I’m indexing, so that the indices Ido specify are at the
end of the index list as opposed to the usual beginning”.

So, if one has a rank-3 arrayA, thenA[...,0] is the same thing asA[:,:,0] , but if B is rank-4, thenB[...,0]
is the same thing as:B[:,:,:,0] . Only one ‘... ’ is expanded in an index expression, so if one has a rank-5 array
C, thenC[...,0,...] is the same thing asC[:,:,:,0,:] .

When assigment source and destination locations overlap, i.e. when an array is assigned onto itself at overlapping
indices, it may produce something ”surprising”:

>>> n=numarray.arange(36)
>>> n[11:18]=n[7:14]
>>> n
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 7, 8, 9, 10, 7,

8, 9, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
32, 33, 34, 35])

36 Chapter 5. Array Indexing

If the slice on the right hand side (RHS) is AFTER that on the left hand side (LHS) for 1-D array, then it works fine:

>>> n=numarray.arange(36)
>>> n[1:8]=n[7:14]
>>> n
array([0, 7, 8, 9, 10, 11, 12, 13, 8, 9, 10, 11, 12, 13, 14, 15,

16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
32, 33, 34, 35])

Actually, this behavior can be undedrstood if we follow the pixel by pixel copying logic. Parts of the slice start to get
the ”updated” values when the RHS is before the LHS.

An easy solution which is guaranteed to work is to use the copy() method on the righ hand side:

>>> n=numarray.arange(36)
>>> n[11:18]=n[7:14].copy()
>>> n
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 7, 8, 9, 10, 11,

12, 13, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
32, 33, 34, 35])

5.2. Slicing Arrays 37

5.3 Pseudo Indices

This section discusses pseudo-indices, which allow arrays to have their shapes modified by adding axes, sometimes
only for the duration of the evaluation of a Python expression.

Consider multiplication of a rank-1 array by a scalar:

>>> a = array([1,2,3])
>>> print a * 2
[2 4 6]

This should be trivial by now; we’ve just multiplied a rank-1 array by a scalar . The scalar was converted to a rank-0
array which was then broadcast to the next rank. This works for adding some two rank-1 arrays as well:

>>> print a
[1 2 3]
>>> a + array([4])
[5 6 7]

but it won’t work if either of the two rank-1 arrays have non-matching dimensions which aren’t 1. In other words,
broadcast only works for dimensions which are either missing (e.g. a lower-rank array) or for dimensions of 1.

With this in mind, consider a classic task, matrix multiplication. Suppose we want to multiply the row vector [10,20]
by the column vector [1,2,3].

>>> a = array([10,20])
>>> b = array([1,2,3])
>>> a * b
ValueError: Arrays have incompatible shapes

This makes sense: we’re trying to multiply a rank-1 array of shape (2,) with a rank-1 array of shape (3,). This violates
the laws of broadcast. What we really want to do is make the second vector a vector of shape (3,1), so that the first
vector can be broadcast across the second axis of the second vector. One way to do this is to use the reshape function:

>>> a.getshape()
(2,)
>>> b.getshape()
(3,)
>>> b2 = reshape(b, (3,1))
>>> print b2
[[1]

[2]
[3]]

>>> b2.getshape()
(3, 1)
>>> print a * b2 # Note: b2 * a gives the same result
[[10 20]

[20 40]
[30 60]]

This is such a common operation that a special feature was added (it turns out to be useful in many other places as
well) – the NewAxis ”pseudo-index”, originally developed in the Yorick language. NewAxis is an index, just like
integers, so it is used inside of the slice brackets []. It can be thought of as meaning ”add a new axis here,” in much
the same ways as adding a 1 to an array’s shape adds an axis. Again, examples help clarify the situation:

38 Chapter 5. Array Indexing

>>> print b
[1 2 3]
>>> b.getshape()
(3,)
>>> c = b[:, NewAxis]
>>> print c
[[1]

[2]
[3]]

>>> c.getshape()
(3,1)

Why use such a pseudo-index over the reshape function or setshape assignments? Often one doesn’t really want a new
array with a new axis, one just wants it for an intermediate computation. Witness the array multiplication mentioned
above, without and with pseudo-indices:

>>> without = a * reshape(b, (3,1))
>>> with = a * b[:,NewAxis]

The second is much more readable (once you understand how NewAxis works), and it’s much closer to the intended
meaning. Also, it’s independent of the dimensions of the array b. You might counter that using something like
reshape(b, (-1,1)) is also dimension-independent, but it’s less readable and impossible with rank-3 or higher arrays?
The NewAxis-based idiom also works nicely with higher rank arrays, and with the ... ”rubber index” mentioned earlier.
Adding an axis before the last axis in an array can be done simply with:

>>> a[...,NewAxis,:]

Note thatNewAxis is a numarray object, so if you usedimport numarray instead offrom numarray
import * , you’ll neednumarray.NewAxis .

5.3. Pseudo Indices 39

5.4 Index Arrays

Arrays used as subscripts have special meanings which implicitly invoke the functionsput (page 64),take (page
63), or compress (page 68). If the array is ofBool type, then the indexing will be treated as the equivalent
of the compress function. If the array is of an integer type, then atake or put operation is implied. We will
generalize the existing take and put as follows: Ifind1, ind2, ... indN are index arrays (arrays of integers whose values
indicate the index into another array), thenx[ind1, ind2] forms a new array with the same shape asind1, ind2
(they all must be broadcastable to the same shape) and values such: ‘result[i,j,k] = x[ind1[i,j,k],
ind2[i,j,k]] ’ In this example,ind1, ind2 are index arrays with 3 dimensions (but they could have an arbitrary
number of dimensions). To illustrate with some specific examples:

>>> x=2*arange(10)
>>> ind1=[0,4,3,7]
>>> x[ind1]
array([0, 8, 6, 14])
>>> ind1=[[0,4],[3,7]]
>>> x[ind1]
array([[0, 8],

[6, 14]])

This shows that the same elements in the same order are extracted from x by both forms of ind1, but the result shares
the shape of ind1 Something similar happens in two dimensions:

>>> x=reshape(arange(12),(3,4))
>>> x
array([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]])

>>> ind1=array([2,1])
>>> ind2=array([0,3])
>>> x[ind1,ind2]
array([8, 7])

Notice this pulls out x[2,0] and x[1,3] as a one-dimensional array.

>>> ind1=array([[2,2],[1,0]])
>>> ind2=array([[0,1],[3,2]])
>>> x[ind1,ind2]
array([[8, 9],

[7, 2]])

This pulls out x[2,0], x[2,1], x[1,3], and x[0,2], reading the ind1 and ind2 arrays left to right, and then reshapes the
result to the same (2,2) shape as ind1 and ind2 have.

>>> ind1.shape=(4,)
>>> ind2.shape=(4,)
>>> x[ind1,ind2]
array([8, 9, 7, 2])

40 Chapter 5. Array Indexing

Notice this is the same values in the same order, but now as a one-d array. One index array does a broadcast:

>>> x[ind1]
array([[8, 9, 10, 11],

[8, 9, 10, 11],
[4, 5, 6, 7],
[0, 1, 2, 3]])

>>> ind1.shape=(2,2)
>>> x[ind1]
array([[[8, 9, 10, 11],

[8, 9, 10, 11]],

[[4, 5, 6, 7],
[0, 1, 2, 3]]])

Again, note that the same ’elements’, in this case rows of x, are returned in both cases. But in the second case, ind1
had two dimensions, and so using it to index only one dimension of a two-d array results in a three-d output of shape
(2,2,4); i.e., a 2 by 2 ’array’ of 4-element rows.

When using constants for some of the index positions, then the result uses that constant for all values. Slices and
strides (at least initially) will not be permitted in the same subscript as index arrays. So

>>> x[ind1, 2]
array([[10, 10],

[6, 2]])

would be legal, but

>>> x[ind1, 1:3]
Traceback (most recent call last):
...
IndexError: Cannot mix arrays and slices as indices

would not be. Similarly for assignment:

x[ind1, ind2, ind3] = values

will form a new array such that:

x[ind1[i,j,k], ind2[i,j,k], ind3[i,j,k]] = values[i,j,k]

The index arrays and the value array must be broadcast consistently. (As an example:ind1.setshape((5,4)) ,
ind2.setshape((5,)) , ind3.setshape((1,4)) , andvalues.setshape((1,)) .)

5.4. Index Arrays 41

>>> x=zeros((10,10))
>>> x[[2,5,6],array([0,1,9,3])[:,NewAxis]]=array([1,2,3,4])[:,NewAxis]
>>> x
array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 2, 0, 4, 0, 0, 0, 0, 0, 3],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 2, 0, 4, 0, 0, 0, 0, 0, 3],
[1, 2, 0, 4, 0, 0, 0, 0, 0, 3],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])

If indices are repeated, the last value encountered will be stored. When an index is too large, Numarray raises an
IndexError exception. When an index is negative, Numarray will interpret it in the usual Python style, counting
backwards from the end. Use of the equivalenttake andput functions will allow other interpretations of the indices
(clip out of bounds indices, allow negative indices to work backwards as they do when used individually, or for indices
to wrap around). The same behavior applies for functions such as choose and where.

42 Chapter 5. Array Indexing

CHAPTER

SIX

Intermediate Topics

This chapter discusses a few of the more esoteric features of numarray which are certainly useful but probably not a
top priority for new users.

6.1 Rank-0 Arrays

numarray provides limited support for dimensionless arrays which represent single values, also known as rank-0
arrays. Rank-0 arrays are the array representation of a scalar value. They have the advantage over scalars that they
include array specific type information, e.g.Int16. Rank-0 arrays can be created as follows:

>>> a = array(1); a
array(1)

A rank-0 array has a 0-length or empty shape:

>>> a.shape
()

numarray’s rank-0 array handling differs from that of Numeric in two ways. First, numarray’s rank-0 arrays cannot be
indexed by 0:

>>> array(1)[0]
Traceback (most recent call last):
...
IndexError: Too many indices

Second, numarray’s rank-0 arrays do not have a length.

>>> len(array(1))
Traceback (most recent call last):
...
ValueError: Rank-0 array has no length.

Finally, numarray’s rank-0 arrays can be converted to a Python scalar by subscripting with an empty tuple as follows:

43

>>> a = array(1)
>>> a[()]
1

44 Chapter 6. Intermediate Topics

6.2 Exception Handling

We desired better control over exception handling than currently exists in Numeric. This has traditionally been a
problem area (see the numerous posts incomp.lang.pythonregarding floating point exceptions, especially those by
Tim Peters). Numeric raises an exception for integer computations that result in a divide by zero or multiplications
that result in overflows. The exception is raised after that operation has completed on all the array elements. No
exceptions are raised for floating point errors (divide by zero, overflow, underflow, and invalid results), the compiler
and processor are left to their default behavior (which is usually to return Infs and NaNs as values).

The approach for numarray is to provide customizable error handling behavior. It should be possible to specify three
different behaviors for each of the four error types independently. These are:

• Ignore the error.

• Print a warning.

• Raise a Python exception.

The current implementation does that and has been tested successfully on Windows, Solaris, Redhat and Tru64. The
implementation uses the floating point processor “sticky status flags” to detect errors. One can set the error mode by
calling the error object’s setMode method. For example:

>>> Error.setMode(all="warn") # the default mode
>>> Error.setMode(dividebyzero="raise", underflow="ignore", invalid="warn")

The Error object can also be used in a stacking manner, by using thepushMode andpopMode methods rather than
setMode . For example:

>>> Error.getMode()
_NumErrorMode(overflow=’warn’, underflow=’warn’, dividebyzero=’warn’, invalid=’warn’)
>>> Error.pushMode(all="raise") # get really picky...
>>> Error.getMode()
_NumErrorMode(overflow=’raise’, underflow=’raise’, dividebyzero=’raise’, invalid=’raise’)
>>> Error.popMode() # pop and return the ‘‘new’’ mode
_NumErrorMode(overflow=’raise’, underflow=’raise’, dividebyzero=’raise’, invalid=’raise’)
>>> Error.getMode() # verify the original mode is back
_NumErrorMode(overflow=’warn’, underflow=’warn’, dividebyzero=’warn’, invalid=’warn’)

Integer exception modes work the same way. Although integer computations do not affect the floating point status flag
directly, our code checks the denominator of 0 in divisions (in much the same way Numeric does) and then performs
a floating point divide by zero to set the status flag (overflows are handled similarly). So even integer exceptions use
the floating point status flags indirectly.

6.2. Exception Handling 45

6.3 IEEE-754 Not a Number (NAN) and Infinity

numarray.ieeespecial has support for manipulating IEEE-754 floating point special values NaN (Not a Num-
ber), Inf (infinity), etc. The special values are denoted using lower case as follows:

>>> import numarray.ieeespecial as ieee
>>> ieee.inf
inf
>>> ieee.plus_inf
inf
>>> ieee.minus_inf
-inf
>>> ieee.nan
nan
>>> ieee.plus_zero
0.0
>>> ieee.minus_zero
-0.0

Note that the representation of IEEE special values is platform dependent so your Python might for instance sayInfinity
rather thaninf . Below, inf is seen to arise as the result of floating point division by 0 andnan is seen to arise from 0
divided by 0:

>>> a = array([0.0, 1.0])
>>> b = a/0.0
Warning: Encountered invalid numeric result(s) in divide
Warning: Encountered divide by zero(s) in divide
>>> b
array([nan, inf])

A curious property ofnan is that it does not compare toitselfas equal:

>>> b == ieee.nan
array([0, 0], type=Bool)

The isnan , isinf , and isfinite functions return boolean arrays which have the value True where the corre-
sponding predicate holds. These functions detect bit ranges and are therefore more robust than simple equality checks.

>>> ieee.isnan(b)
array([1, 0], type=Bool)
>>> ieee.isinf(b)
array([0, 1], type=Bool)
>>> ieee.isfinite(b)
array([0, 0], type=Bool)

Array based indexing provides a convenient way to replace special values:

>>> b[ieee.isnan(b)] = 999
>>> b[ieee.isinf(b)] = 5
>>> b
array([999., 5.])

46 Chapter 6. Intermediate Topics

Here’s an easy approach for compressing your data arrays to remove NaNs:

>>> x, y = arange(10.), arange(10.)
>>> x[5] = ieee.nan
>>> y[6] = ieee.nan
>>> keep = ˜ieee.isnan(x) & ˜ieee.isnan(y)
>>> x[keep]
array([0., 1., 2., 3., 4., 7., 8., 9.])
>>> y[keep]
array([0., 1., 2., 3., 4., 7., 8., 9.])

6.3. IEEE-754 Not a Number (NAN) and Infinity 47

48

CHAPTER

SEVEN

Ufuncs

7.1 What are Ufuncs?

The operations on arrays that were mentioned in the previous section (element-wise addition, multiplication, etc.) all
share some features — they all follow similar rules for broadcasting, coercion and “element-wise operation”. Just as
standard addition is available in Python through the add function in the operator module, array operations are available
through callable objects as well. Thus, the following objects are available in the numarray module:

Table 7.1: Universal Functions, or ufuncs. The operators which invoke them when applied to arrays are indicated in
parentheses. The entries in slanted typeface refer to unary ufuncs, while the others refer to binary ufuncs.

add (+) subtract (−) multiply (*) divide (/)
remainder (%) power (**) arccos arccosh
arcsin arcsinh arctan arctanh
cos cosh tan tanh
log10 sin sinh sqrt
absolute (abs) fabs floor ceil
fmod exp log conjugate
maximum minimum
greater (>) greater equal (>=) equal (==)
less (<) less equal (<=) not equal (! =)
logical or logical xor logical not logical and
bitwise or (|) bitwise xor (ˆ) bitwise not (˜) bitwise and (&)
rshift (>>) lshift (<<)

All of these ufuncs can be used as functions. For example, to useadd , which is a binary ufunc (i.e. it takes two
arguments), one can do either of:

>>> a = arange(10)
>>> print add(a,a)
[0 2 4 6 8 10 12 14 16 18]
>>> print a + a
[0 2 4 6 8 10 12 14 16 18]

In other words, the+ operator on arrays performs exactly the same thing as theadd ufunc when operated on arrays.
For a unary ufunc such assin , one can do, e.g.:

>>> a = arange(10)
>>> print sin(a)
[0. 0.84147096 0.90929741 0.14112 -0.7568025

-0.95892429 -0.27941549 0.65698659 0.98935825 0.41211849]

49

A unary ufunc returns an array with the same shape as its argument array, but with each element replaced by the
application of the function to that element (sin(0)=0 , sin(1)=0.84147098 , etc.).

There are three additional features of ufuncs which make them different from standard Python functions. They can
operate on any Python sequence in addition to arrays; they can take an “output” argument; they have methods which
are themselves callable with arrays and sequences. Each of these will be described in turn.

Ufuncs can operate on any Python sequence. Ufuncs have so far been described as callable objects which take either
one or two arrays as arguments (depending on whether they are unary or binary). In fact, any Python sequence which
can be the input to thearray constructor can be used. The return value from ufuncs is always an array. Thus:

>>> add([1,2,3,4], (1,2,3,4))
array([2, 4, 6, 8])

7.1.1 Ufuncs can take output arguments

In many computations with large sets of numbers, arrays are often used only once. For example, a computation on a
large set of numbers could involve the following step

dataset = dataset * 1.20

This can also be written as the following using the Ufunc form:

dataset = multiply(dataset, 1.20)

In both cases, a temporary array is created to store the results of the computation before it is finally copied intodataset.
It is more efficient, both in terms of memory and computation time, to do an “in-place” operation. This can be done
by specifying an existing array as the place to store the result of the ufunc. In this example, one can write:1

multiply(dataset, 1.20, dataset)

This is not a step to take lightly, however. For example, the “big and slow” version (dataset = dataset *
1.20) and the “small and fast” version above will yield different results in at least one case:

• If the type of the target array is not that which would normally be computed, the operation will not coerce the
array to the expected data type. (The result is done in the expected data type, but coerced back to the original
array type.)

• Example:

1for Python-2.2.2 or later: ‘dataset *= 1.20’ also works

50 Chapter 7. Ufuncs

\>>> a=arange(5,type=Int32)
>>> print a[::-1]*1.7
[6.8 5.1 3.4 1.7 0.]
>>> multiply(a[::-1],1.7,a)
>>> print a
[6 5 3 1 0]
>>> a *= 1.7
>>> print a
[0 1 3 5 6]

The output array does not need to be the same variable as the input array. In numarray, in contrast to Numeric, the
output array may have any type (automatic conversion is performed on the output).

7.1.2 Ufuncs have special methods

reduce (a, axis=0)
If you don’t know about thereduce command in Python, review section 5.1.3 of the Python Tutorial
(http://www.python.org/doc/current/tut/). Briefly, reduce is most often used with two arguments, a callable ob-
ject (such as a function), and a sequence. It calls the callable object with the first two elements of the sequence,
then with the result of that operation and the third element, and so on, returning at the end the successive “re-
duction” of the specified callable object over the sequence elements. Similarly, thereduce method of ufuncs
is called with a sequence as an argument, and performs the reduction of that ufunc on the sequence. As an
example, adding all of the elements in a rank-1 array can be done with:

>>> a = array([1,2,3,4])
>>> print add.reduce(a) # with Python’s reduce, same as reduce(add, a)
10

When applied to arrays which are of rank greater than one, the reduction proceeds by default along the first axis:

>>> b = array([[1,2,3,4],[6,7,8,9]])
>>> print b
[[1 2 3 4]

[6 7 8 9]]
>>> print add.reduce(b)
[7 9 11 13]

A different axis of reduction can be specified with a second integer argument:

>>> print b
[[1 2 3 4]

[6 7 8 9]]
>>> print add.reduce(b, axis=1)
[10 30]

accumulate (a)
Theaccumulate ufunc method is simular toreduce , except that it returns an array containing the interme-
diate results of the reduction:

7.1. What are Ufuncs? 51

>>> a = arange(10)
>>> print a
[0 1 2 3 4 5 6 7 8 9]
>>> print add.accumulate(a)
[0 1 3 6 10 15 21 28 36 45] # 0, 0+1, 0+1+2, 0+1+2+3, ... 0+...+9
>>> print add.reduce(a) # same as add.accumulate(a)[-1] w/o side effects on a
45

outer (a, b)
The third ufunc method isouter , which takes two arrays as arguments and returns the “outer ufunc” of the two
arguments. Thus theouter method of themultiply ufunc, results in the outer product. Theouter method
is only supported for binary methods.

>>> print a
[0 1 2 3 4]
>>> print b
[0 1 2 3]
>>> print add.outer(a,b)
[[0 1 2 3]

[1 2 3 4]
[2 3 4 5]
[3 4 5 6]
[4 5 6 7]]

>>> print multiply.outer(b,a)
[[0 0 0 0 0]

[0 1 2 3 4]
[0 2 4 6 8]
[0 3 6 9 12]]

>>> print power.outer(a,b)
[[1 0 0 0]

[1 1 1 1]
[1 2 4 8]
[1 3 9 27]
[1 4 16 64]]

reduceat ()
The reduceat method of Numeric has not been implemented in numarray.

7.1.3 Ufuncs always return new arrays

Except when the output argument is used as described above, ufuncs always return new arrays which do not share any
data with the input arrays.

7.2 Which are the Ufuncs?

Table 7.1 lists all the ufuncs. We will first discuss the mathematical ufuncs, which perform operations very similar to
the functions in themath andcmath modules, albeit elementwise, on arrays. Originally, numarray ufuncs came in
two forms, unary and binary. More recently (1.3) numarray has added support for ufuncs with up to 16 total input or
output parameters. These newer ufuncs are called N-ary ufuncs.

7.2.1 Unary Mathematical Ufuncs

52 Chapter 7. Ufuncs

Unary ufuncs take only one argument. The following ufuncs apply the predictable functions on their single array
arguments, one element at a time:arccos , arccosh , arcsin , arcsinh , arctan , arctanh , cos , cosh ,
exp , log , log10 , sin , sinh , sqrt , tan , tanh , abs , fabs , floor , ceil , conjugate . As an example:

>>> print x
[0 1 2 3 4]
>>> print cos(x)
[1. 0.54030231 -0.41614684 -0.9899925 -0.65364362]
>>> print arccos(cos(x))
[0. 1. 2. 3. 2.28318531]
not a bug, but wraparound: 2*pi%4 is 2.28318531

7.2.2 Binary Mathematical Ufuncs

These ufuncs take two arrays as arguments, and perform the specified mathematical operation on them, one pair of
elements at a time:add , subtract , multiply , divide , remainder , power , fmod .

7.2.3 Logical and bitwise ufuncs

The “logical” ufuncs also perform their operations on arrays or numbers in elementwise fashion, just like the ”math-
ematical” ones. Two are special (maximum andmiminum) in that they return arrays with entries taken from their
input arrays:

>>> print x
[0 1 2 3 4]
>>> print y
[2. 2.5 3. 3.5 4.]
>>> print maximum(x, y)
[2. 2.5 3. 3.5 4.]
>>> print minimum(x, y)
[0. 1. 2. 3. 4.]

The others logical ufuncs return arrays of 0’s or 1’s and of type Bool:logical and , logical or ,
logical xor , logical not , These are fairly self-explanatory, especially with the associated symbols from
the standard Python version of the same operations in Table 7.1 above. The bitwise ufuncs,bitwise and ,
bitwise or , bitwise xor , bitwise not , lshift , rshift , on the other hand, only work with integer
arrays (of any word size), and will return integer arrays of the larger bit size of the two input arrays:

>>> x
array([7, 7, 0], type=Int8)
>>> y
array([4, 5, 6])
>>> x & y # bitwise_and(x,y)
array([4, 5, 0])
>>> x | y # bitwise_or(x,y)
array([7, 7, 6])
>>> x ˆ y # bitwise_xor(x,y)
array([3, 2, 6])
>>> ˜ x # bitwise_not(x)
array([-8, -8, -1], type=Int8)

We discussed finding contents of arrays based on arrays’ indices by using slice. Often, especially when dealing with

7.2. Which are the Ufuncs? 53

the result of computations or data analysis, one needs to “pick out” parts of matrices based on the content of those
matrices. For example, it might be useful to find out which elements of an array are negative, and which are positive.
The comparison ufuncs are designed for such operation. Assume an array with various positive and negative numbers
in it (for the sake of the example we’ll generate it from scratch):

>>> print a
[[0 1 2 3 4]

[5 6 7 8 9]
[10 11 12 13 14]
[15 16 17 18 19]
[20 21 22 23 24]]

>>> b = sin(a)
>>> print b
[[0. 0.84147098 0.90929743 0.14112001 -0.7568025]

[-0.95892427 -0.2794155 0.6569866 0.98935825 0.41211849]
[-0.54402111 -0.99999021 -0.53657292 0.42016704 0.99060736]
[0.65028784 -0.28790332 -0.96139749 -0.75098725 0.14987721]
[0.91294525 0.83665564 -0.00885131 -0.8462204 -0.90557836]]

>>> print greater(b, .3)
[[0 1 1 0 0]

[0 0 1 1 1]
[0 0 0 1 1]
[1 0 0 0 0]
[1 1 0 0 0]]

7.2.4 Comparisons

The comparison functionsequal , not equal , greater , greater equal , less , andless equal are in-
voked by the operators==, != , >, >=, <, and<= respectively, but they can also be called directly as functions.
Continuing with the preceding example,

>>> print less_equal(b, 0)
[[1 0 0 0 1]

[1 1 0 0 0]
[1 1 1 0 0]
[0 1 1 1 0]
[0 0 1 1 1]]

This last example has 1’s where the corresponding elements are less than or equal to 0, and 0’s everywhere else.

The operators and the comparison functions are not exactly equivalent. To compare an array a with an object b, if b
can be converted to an array, the result of the comparison is returned. Otherwise, zero is returned. This means that
comparing a list and comparing an array can return quite different answers. Since the functional forms such as equal
will try to make arrays from their arguments, using equal can result in a different result than using==.

54 Chapter 7. Ufuncs

>>> a = array([1, 2, 3])
>>> b = [1, 2, 3]
>>> print a == 2
[0 1 0]
>>> print b == 2
0 # (False since 2.3)
>>> print equal(a, 2)
[0 1 0]
>>> print equal(b, 2)
[0 1 0]

7.2.5 Ufunc shorthands

Numarray defines a few functions which correspond to popular ufunc methods: for example,add.reduce is syn-
onymous with thesum utility function:

>>> a = arange(5) # [0 1 2 3 4]
>>> print sum(a) # 0 + 1 + 2 + 3 + 4
10

Similarly,cumsumis equivalent toadd.accumulate (for “cumulative sum”),product to multiply.reduce ,
andcumproduct to multiply.accumulate . Additional useful “utility” functions areall andany :

>>> a = array([0,1,2,3,4])
>>> print greater(a,0)
[0 1 1 1 1]
>>> all(greater(a,0))
0
>>> any(greater(a,0))
1

7.3 Writing your own ufuncs!

This section describes a new process for defining your own universal functions. It explains a new interface that enables
the description of N-ary ufuncs, those that use semi-arbitrary numbers(<= 16) of inputs and outputs.

7.3.1 Runtime components of a ufunc

A numarray universal function maps from a Python function name to a set of C functions. Ufuncs are polymorphic
and figure out what to do in C when passed a particular set of input parameter types. C functions, on the other hand,
can only be run on parameters which match their type signatures. The task of defining a universal function is one of
describing how different parameter sequences are mapped from Python array types to C function signatures and back.

At runtime, there are three principle kinds of things used to define a universal function.

1. Ufunc

The universal function is itself a callable Python object. Ufuncs organize a collection of Cfuncs to be called
based on the actual parameter types seen at runtime. The same Ufunc is typically associated with several Cfuncs

7.3. Writing your own ufuncs! 55

each of which handles a unique Ufunc type signature. Because a Ufunc typically has more than one C func, it
can also be implemented using more than one library function.

2. Library function

A pre-existing function written in C or Fortran which will ultimately be called for each element of the ufunc
parameter arrays.

3. Cfunc

Cfuncs are binding objects that map C library functions safely into Python. It’s the job of a Cfunc to interpret
typeless pointers corresponding to the parameter arrays as particular C data types being passed down from the
ufunc. Further, the Cfunc casts array elements from the input type to the Libraray function parameter type. This
process lets the ufunc implementer describe the ufunc type signatures which will be processed most efficiently
by the underlying Library function by enabling per-call element-by-element type casts. Ufunc calling signatures
which are not represented directly by a Cfunc result in blockwise coercion to the closest matching Cfunc, which
is slower.

7.3.2 Source components of a ufunc

There are 4 source components required to define numarray ufuncs, one of which is hand written, two are generated,
and the last is assumed to be pre-existing:

1. Code generation script

The primary source component for defining new universal functions is a Python script used to generate the other
components. For a standalone set of functions, putting the code generation directives in setup.py can be done
as in the example numarray/Examples/ufunc/setupairy.py. The code generation script only executes at install
time.

2. Extension module

A private extension module is generated which contains a collection of Cfuncs for the package being created.
The extension module contains a dictionary mapping from ufuncs/types to Cfuncs.

3. Ufunc init file

A Python script used at ufunc import time is required to construct Ufunc objects from Cfuncs. This code is
boilerplate created with the code generation directivemake stub() .

4. Library functions

The C functions which are ultimately called by a Ufunc need to be defined somewhere, typically in a third party
C or Fortran library which is linked to the Extension module.

7.3.3 Ufunc code generation

There are several code generation directives provided by package numarray.codegenerator which are called at instal-
lation time to generate the Cfunc extension module and Ufunc init file.

UfuncModule (module name)
TheUfuncModule constructor creates a module object which collects code which is later output to form the
Cfunc extension module. The name passed to the constructor defines the name of the Python extension module,
not the source code.

m = UfuncModule("_na_special")

56 Chapter 7. Ufuncs

add code (code string)
Theadd code() method of aUfuncModule object is used to add arbitrary code to the module at the point
thatadd code() is called. Here it includes a header file used to define prototypes for the C library functions
which this extension will ultimately call.

m.add_code(’#include "airy.h"’)

add nary ufunc (ufunc name, c name, ufuncsignatures, csignature, forms=None)
The add nary ufunc() method declares a Ufunc and relates it to one library function and a collection
of Cfunc bindings for it. Thesignaturesparameter defines which ufunc type signatures receive Cfunc bind-
ings. Input types which don’t match those signature are blockwise coerced to the best matching signature.
add nary ufunc() can be called for the same Ufunc name more than once and can thus be used to asso-
ciate multiple library functions with the same Ufunc.

m.add_nary_ufunc(ufunc_name = "airy",
c_function = "airy",
signatures =["dxdddd",

"fxffff"],
c_signature = "dxdddd")

generate (source filename)
The generate() method asks theUfuncModule object to emit the code for an extension module to the
specifiedsource filename.

m.generate("Src/_na_specialmodule.c")

make stub (stub filename, cfuncextension, addcode=None)
The make stub() function is used to generate the boilerplate Python code which constructs universal
functions from a Cfunc extension module at import time.make stub() accepts aadd codeparameter
which should be a string containing any additional Python code to be injected into the stub module. Here
make stub() creates the init file “Lib/ init .py” associated with the Cfunc extension “na special” and
includes some extra Python code to define theplot airy() function.

extra_stub_code = ’’’

import matplotlib.pylab as mpl

def plot_airy(start=-10,stop=10,step=0.1,which=1):
a = mpl.arange(start, stop, step)
mpl.plot(a, airy(a)[which])

b = 1.j*a + a
ba = airy(b)[which]

h = mpl.figure(2)
mpl.plot(b.real, ba.real)

i = mpl.figure(3)
mpl.plot(b.imag, ba.imag)

mpl.show()
’’’

make_stub("Lib/__init__", "_na_special", add_code=extra_stub_code)

7.3. Writing your own ufuncs! 57

7.3.4 Type signatures and signature ordering

Type signatures are described using the single character typecodes from Numeric. Since the type signature and form
of a Cfunc need to be encoded in its name for later identification, it must be brief.

typesignature ::= <inputtypes> + ‘‘x’’ + <outputtypes>
inputtypes ::= [<typecode>]+
outputtypes ::= [<typecode>]+
typecode ::= "B" | "1" | "b" | "s" | "w" | "i" | "u" |

"N" | "U" | "f" | "d" | "F" | "D"

For example, the type signature corresponding to one Int32 input and one Int16 output is ”ixs”.

A type signature is a sequence of ordered types. One signature can be compared to another by comparing correspond-
ing elements, in left to right order. Individual elements are ranked using the order from the previous section. A ufunc
maintains its associated Cfuncs as a sorted sequence and selects the first Cfunc which is>= the input type signature;
this defines the notion of “best matching”.

7.3.5 Forms

Theadd nary ufunc() method has a parameterformswhich enables generation of code with some extra prop-
erties. It specifies the list of function forms for which dedicated code will be generated. If you don’t specifyforms, it
defaults to a (list of a) single form which specifies that all inputs and outputs corresponding to the type signature are
vectors. Input vectors are passed by value, output vectors are passed by reference. The default form implies that the
library function return value, if there is one, is ignored. The following Python code shows the default form:

["v"*n_inputs + "x" + "v"*n_outputs]

Forms are denoted using a syntax very similar to, and typically symmetric with, type signatures.

form ::= <inputs> "x" <outputs>
inputs ::= ["v"|"s"]*
outputs ::= ["f"]?["v"]* | "A" | "R"

The form character values have different meanings than for type
signatures:

’v’ : vector, an array of input or output values
’s’ : scalar, a non-array input value
’f’ : function, the c_function returns a value
’R’ : reduce, this binary ufunc needs a reduction method
’A’ : accumulate this binary ufunc needs an accumulate method
’x’ : separator delineates inputs from outputs

So, a form consists of some input codes followed by a lower case ”x” followed by some output codes.

The form for a C function which takes 4 input values, the last of which is assumed to be a scalar, returns one value,
and fills in 2 additional output values is: ”vvvsxfvv”.

Using ”s” to designate scalar parameters is a useful performance optimization for cases where it is known that only a

58 Chapter 7. Ufuncs

single value is passed in from Python to be used in all calls to the c function. This prevents the blockwise expansion
of the scalar value into a vector.

Use ”f” to specify that the C function return value should be kept; it must always be the first output and will therefore
appear as the first element of the result tuple.

For ufuncs of two input parameters (binary ufuncs), two additional form characters are possible: A (accumulate) and
R (reduce). Each of these characters constitutes the *entire* ufunc form, so the form is denoted ”R” or ”A”. For these
kinds of cfuncs, the type signature always reads<t>x<t> where<t> is one of the type characters.

One reason for all these codes is so that the many Cfuncs generated for Ufuncs can be easily named. The name
for the Cfunc which implementsadd() for two Int32 inputs and one Int32 output and where all parameters are
arrays is: ”addiixi vvxv”. The cfunc name foradd.reduce() with two integer parameters would be written as
”add ixi R” and foradd.accumulate() as ”add ixi A”.

The set of Cfuncs generated is based on the signaturescrossed with the forms. Multiple calls to
add nary ufunc() can be used the reduce the effects of signature/form crossing.

7.3. Writing your own ufuncs! 59

7.3.6 Ufunc Generation Example

This section includes code from Examples/ufunc/setupairy.py in the numarray source distribution to illustrate how to
create a package which defines your own universal functions.

This script eventually generates two files:na airymodule.c and init .py. The former defines an extension
module which creates numarray cfuncs, c helpers for the numarray airy() ufunc. The latter file includes Python code
which automatically constructs numarray universal functions (ufuncs) from the cfuncs inna airymodule.c.

import distutils, os, sys
from distutils.core import setup
from numarray.codegenerator import UfuncModule, make_stub
from numarray.numarrayext import NumarrayExtension

m = UfuncModule("_na_special")

m.add_code(’#include "airy.h"’)

m.add_nary_ufunc(ufunc_name = "airy",
c_function = "airy",
signatures =["dxdddd",

"fxffff"],
c_signature = "dxdddd")

m.add_nary_ufunc(ufunc_name = "airy",
c_function ="cairy_fake",
signatures =["DxDDDD",

"FxFFFF"],
c_signature = "DxDDDD")

m.generate("Src/_na_specialmodule.c")

60 Chapter 7. Ufuncs

extra_stub_code = ’’’
def plot_airy(start=-10,stop=10,step=0.1,which=1):

import matplotlib.pylab as mpl;

a = mpl.arange(start, stop, step);
mpl.plot(a, airy(a)[which]);

b = 1.j*a + a
ba = airy(b)[which]

h = mpl.figure(2)
mpl.plot(b.real, ba.real)

i = mpl.figure(3)
mpl.plot(b.imag, ba.imag)

mpl.show()
’’’

make_stub("Lib/__init__", "_na_special",
add_code=extra_stub_code)

dist = setup(name = "na_special",
version = "0.1",
maintainer = "Todd Miller",
maintainer_email = "jmiller@stsci.edu",
description = "airy() universal function for numarray",
url = "http://www.scipy.org/",
packages = ["numarray.special"],
package_dir = { "numarray.special":"Lib" },
ext_modules = [NumarrayExtension(’numarray.special._na_special’,

[’Src/_na_specialmodule.c’,
’Src/airy.c’,
’Src/const.c’,
’Src/polevl.c’]

)
]

)

Additional explanatory text is available in numarray/Examples/ufunc/setupairy.py. Scripts used to extract numarray
ufunc specs from the existing Numeric ufunc definitions in scipy.special are in numarray/Examples/ufunc/RipNumeric
as an example of how to convert existing Numeric code to numarray.

7.3. Writing your own ufuncs! 61

62

CHAPTER

EIGHT

Array Functions

Most of the useful manipulations on arrays are done with functions. This might be surprising given Python’s object-
oriented framework, and that many of these functions could have been implemented using methods instead. Choosing
functions means that the same procedures can be applied to arbitrary python sequences, not just to arrays. For exam-
ple, while transpose([[1,2],[3,4]]) works just fine,[[1,2],[3,4]].transpose() does not. This
approach also allows uniformity in interface between functions defined in the numarray Python system, whether im-
plemented in C or in Python, and functions defined in extension modules. We’ve already covered two functions which
operate on arrays:reshape andresize .

take (array, indices, axis=0, clipmode=CLIP)
The functiontake is a generalized indexing/slicing of the array. In its simplest form, it is equivalent to indexing:

>>> a1 = array([10,20,30,40])
>>> print a1[[1,3]]
[20 40]
>>> print take(a1,[1,3])
[20 40]

See the description of index arrays in the Array Basics section for an alternative totake andput . take
selects the elements of the array (the first argument) based on the indices (the second argument). Unlike slicing,
however, the array returned bytake has the same rank as the input array. Some 2-D examples:

>>> print a2
[[0 1 2 3 4]

[5 6 7 8 9]
[10 11 12 13 14]
[15 16 17 18 19]]

>>> print take(a2, (0,)) # first row
[[0 1 2 3 4]]
>>> print take(a2, (0,1)) # first and second row
[[0 1 2 3 4]

[5 6 7 8 9]]
>>> print take (a2, (0, -1)) # index relative to dimension end
[[0 1 2 3 4]
[15 16 17 18 19]]

The optional third argument specifies the axis along which the selection occurs, and the default value (as in
examples above) is 0, the first axis. If you want a different axis, then you need to specify it:

63

>>> print take(a2, (0,), axis=1) # first column
[[0]

[5]
[10]
[15]]

>>> print take(a2, (0,1), axis=1) # first and second column
[[0 1]

[5 6]
[10 11]
[15 16]]

>>> print take(a2, (0,4), axis=1) # first and last column
[[0 4]

[5 9]
[10 14]
[15 19]]

This is considered to be astructuraloperation, because its result does not depend on the content of the arrays or
the result of a computation on those contents but uniquely on the structure of the array. Like all such structural
operations, the default axis is 0 (the first rank). Later in this tutorial, we will see other functions with a default
axis of -1.

take is often used to create multidimensional arrays with the indices from a rank-1 array. As in the earlier
examples, the shape of the array returned bytake is a combination of the shape of its first argument and the
shape of the array that elements are ”taken” from – when that array is rank-1, the shape of the returned array
has the same shape as the index sequence. This, as with many other facets of numarray, is best understood by
experiment.

>>> x = arange(10) * 100
>>> print x
[0 100 200 300 400 500 600 700 800 900]
>>> print take(x, [[2,4],[1,2]])
[[200 400]

[100 200]]

A typical example of usingtake is to replace the grey values in an image according to a ”translation table.”
For example, supposem51 is a 2-D array of typeUInt8 containing a greyscale image. We can create a table
mapping the integers 0–255 to integers 0–255 using a ”compressive nonlinearity”:

>>> table = (255 - arange(256)**2 / 256).astype(UInt8)

Then we can perform the take() operation

>>> m51b = take(table, m51)

The numarray version oftake can also take a sequence as its axis value:

>>> print take(a2, [0,1], [0,1])
1
>>> print take(a2, [0,1], [1,0])
5

In this case, it functions like indexing: a2[0,1] and a2[1,0] respectively.

put (array, indices, values, axis=0, clipmode=CLIP)
put is the opposite oftake . The values ofarray at the locations specified inindicesare set to the corresponding
values. The array must be a contiguous array. Theindicescan be any integer sequence object with values
suitable for indexing into the flat form ofarray. Thevaluesmust be any sequence of values that can be converted

64 Chapter 8. Array Functions

to the type ofa.

>>> x = arange(6)
>>> put(x, [2,4], [20,40])
>>> print x
[0 1 20 3 40 5]

Note that the targetarray is not required to be one-dimensional. Sincearray is contiguous and stored in row-
major order, theindicescan be treated as indexingarray’s elements in storage order. The routineput is thus
equivalent to the following (although the loop is in C for speed):

ind = array(indices, copy=0)
v = array(values, copy=0).astype(a.type())
for i in range(len(ind)): a.flat[i] = v[i]

putmask (array, mask, values)
putmask sets those elements ofarray for which maskis true to the corresponding value invalues. The array
array must be contiguous. The argumentmaskmust be an integer sequence of the same size (but not necessarily
the same shape) asarray. The argumentvalueswill be repeated as necessary; in particular it can be a scalar.
The array values must be convertible to the type ofarray.

>>> x=arange(5)
>>> putmask(x, [1,0,1,0,1], [10,20,30,40,50])
>>> print x
[10 1 30 3 50]
>>> putmask(x, [1,0,1,0,1], [-1,-2])
>>> print x
[-1 1 -1 3 -1]

Note how in the last example, the third argument was treated as if it were[-1, -2, -1, -2, -1] .

transpose (array, axes=None)
transpose takes an arrayarrayand returns a new array which corresponds toawith the order of axes specified
by the second argumentaxeswhich is a sequence of dimension indices. The default is to reverse the order of all
axes, i.e.axes=arange(a.rank)[::-1] .

65

>>> a2=arange(6,shape=(2,3)); print a2
[[0 1 2]

[3 4 5]]
>>> print transpose(a2) # same as transpose(a2, axes=(1,0))
[[0 3]

[1 4]
[2 5]]

>>> a3=arange(24,shape=(2,3,4)); print a3
[[[0 1 2 3]

[4 5 6 7]
[8 9 10 11]]

[[12 13 14 15]
[16 17 18 19]
[20 21 22 23]]]

>>> print transpose(a3) # same as transpose(a3, axes=(2,1,0))
[[[0 12]

[4 16]
[8 20]]

[[1 13]
[5 17]
[9 21]]

[[2 14]
[6 18]
[10 22]]

[[3 15]
[7 19]
[11 23]]]

>>> print transpose(a3, axes=(1,0,2))
[[[0 1 2 3]

[12 13 14 15]]

[[4 5 6 7]
[16 17 18 19]]

[[8 9 10 11]
[20 21 22 23]]]

repeat (array, repeats, axis=0)
repeat takes an arrayarray and returns an array with each element in the input array repeated as often as
indicated by the corresponding elements in the second array. It operates along the specified axis. So, to stretch
an array evenly, one needs the repeats array to contain as many instances of the integer scaling factor as the size
of the specified axis:

66 Chapter 8. Array Functions

>>> print a
[[0 1 2]

[3 4 5]]
>>> print repeat(a, 2*ones(a.shape[0])) # i.e. repeat(a, (2,2)), broadcast

rules apply, so this is also equivalent to repeat(a, 2)
[[0 1 2]

[0 1 2]
[3 4 5]
[3 4 5]]

>>> print repeat(a, 2*ones(a.shape[1]), 1) # i.e. repeat(a, (2,2,2), 1), or
repeat(a, 2, 1)

[[0 0 1 1 2 2]
[3 3 4 4 5 5]]

>>> print repeat(a, (1,2))
[[0 1 2]

[3 4 5]
[3 4 5]]

where (condition, x, y, out=None)
Thewhere function creates an array whose values are those ofx at those indices whereconditionis true, and
those ofy otherwise. The shape of the result is the shape ofcondition. The type of the result is determined by
the types ofx andy. Eitherx or y (or both) can be a scalar, which is then used for all appropriate elements of
condition.out can be used to specify an output array.

>>> where(arange(10) >= 5, 1, 2)
array([2, 2, 2, 2, 2, 1, 1, 1, 1, 1])

Starting with numarray-0.6,where supports a one parameter form that is equivalent to thenonzerofunction but
reads better:

>>> where(arange(10) % 2)
(array([1, 3, 5, 7, 9]),) # indices where expression is true

Note that in this case, the output is a tuple.

Like nonzero , the one parameter form ofwhere can be used to do array indexing:

>>> a = arange(10,20)
>>> a[where(a % 2)]
array([11, 13, 15, 17, 19])

Note that for array indices which are boolean arrays, usingwhere is not necessary but is still OK:

>>> a[(a % 2) != 0]
array([11, 13, 15, 17, 19])
>>> a[where((a%2) != 0)]
array([11, 13, 15, 17, 19])

choose (selector, population, outarr=None, clipmode=RAISE)
The functionchoose provides a more general mechanism for selecting members of apopulationbased on a
selectorarray. Unlikewhere , choose can select values from more than two arrays.selectoris an array of
integers between0 andn. The resulting array will have the same shape asselector, with element selected from
population=(b0, ..., bn) as indicated by the value of the corresponding element inselector. Assume
selectoris an array that you want to ”clip” so that no values are greater than100.0 .

>>> choose(greater(a, 100.0), (a, 100.0))

67

Everywhere thatgreater(a, 100.0) is false (i.e.0) this will “choose” the corresponding value ina. Ev-
erywhere else it will “choose”100.0 . This works as well with arrays. Try to figure out what the following
does:

>>> ret = choose(greater(a,b), (c,d))

ravel (array)
Returns the argumentarray as a 1-D array. It is equivalent toreshape(a, (-1,)) . There is aravel
method which reshapes the array in-place. Unlikea.ravel() , however, theravel function works with
non-contiguous arrays.

>>> a=arange(25)
>>> a.setshape(5,5)
>>> a.transpose()
>>> a.iscontiguous()
0
>>> a
array([[0, 5, 10, 15, 20],

[1, 6, 11, 16, 21],
[2, 7, 12, 17, 22],
[3, 8, 13, 18, 23],
[4, 9, 14, 19, 24]])

>>> a.ravel()
Traceback (most recent call last):
...
TypeError: Can’t reshape non-contiguous arrays
>>> ravel(a)
array([0, 5, 10, 15, 20, 1, 6, 11, 16, 21, 2, 7, 12, 17, 22, 3,

8, 13, 18, 23, 4, 9, 14, 19, 24])

nonzero (a)
nonzero returns a tuple of arrays containing the indices of the elements ina that are nonzero.

>>> a = array([-1, 0, 1, 2])
>>> nonzero(a)
(array([0, 2, 3]),)
>>> print a2
[[-1 0 1 2]

[9 0 4 0]]
>>> print nonzero(a2)
(array([0, 0, 0, 1, 1]), array([0, 2, 3, 0, 2]))

compress (condition, a, axis=0)
Returns those elements of a corresponding to those elements of condition that are nonzero.conditionmust be
the same size as the given axis ofa. Alternately,conditionmay matcha in shape; in this case the result is a 1D
array andaxisshould not be specified.

68 Chapter 8. Array Functions

>>> print x
[1 0 6 2 3 4]
>>> print greater(x, 2)
[0 0 1 0 1 1]
>>> print compress(greater(x, 2), x)
[6 3 4]
>>> print a2
[[-1 0 1 2]

[9 0 4 0]]
>>> print compress(a2>1, a2)
[2 9 4]
>>> a = array([[1,2],[3,4]])
>>> print compress([1,0], a, axis = 1)
[[1]
[3]]
>>> print compress([[1,0],[0,1]], a)
[1, 4]

diagonal (a, offset=0, axis1=0, axis2=1)
Returns the entries along the diagonal ofa specified byoffset. Theoffsetis relative to theaxis2axis. This is
designed for 2-D arrays. For arrays of higher ranks, it will return the diagonal of each 2-D sub-array. The 2-D
array does not have to be square.

Warning: in Numeric (and numarray 0.7 or before), there is a bug in thediagonal function which will give
erronous result for arrays of 3-D or higher.

>>> print x
[[0 1 2 3 4]

[5 6 7 8 9]
[10 11 12 13 14]
[15 16 17 18 19]
[20 21 22 23 24]]

>>> print diagonal(x)
[0 6 12 18 24]
>>> print diagonal(x, 1)
[1 7 13 19]
>>> print diagonal(x, -1)
[5 11 17 23]

trace (a, offset=0, axis1=0, axis2=1)
Returns the sum of the elements in a along the diagonal specified by offset.

Warning: in Numeric (and numarray 0.7 or before), there is a bug in thetrace function which will give
erronous result for arrays of 3-D or higher.

>>> print x
[[0 1 2 3 4]

[5 6 7 8 9]
[10 11 12 13 14]
[15 16 17 18 19]
[20 21 22 23 24]]

>>> print trace(x) # 0 + 6 + 12 + 18 + 24
60
>>> print trace(x, -1) # 5 + 11 + 17 + 23
56
>>> print trace(x, 1) # 1 + 7 + 13 + 19
40

69

searchsorted (bin, values)
Called with a rank-1 array sorted in ascending order,searchsorted will return the indices of the positions
in bin where the correspondingvalueswould fit.

>>> print bin_boundaries
[0. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.]
>>> print data
[0.31 0.79 0.82 5. -2. -0.1]
>>> print searchsorted(bin_boundaries, data)
[4 8 9 11 0 0]

This can be used for example to write a simple histogramming function:

>>> def histogram(a, bins):
... # Note that the argument names below are reverse of the
... # searchsorted argument names
... n = searchsorted(sort(a), bins)
... n = concatenate([n, [len(a)]])
... return n[1:]-n[:-1]
...
>>> print histogram([0,0,0,0,0,0,0,.33,.33,.33], arange(0,1.0,.1))
[7 0 0 3 0 0 0 0 0 0]
>>> print histogram(sin(arange(0,10,.2)), arange(-1.2, 1.2, .1))
[0 0 4 2 2 2 0 2 1 2 1 3 1 3 1 3 2 3 2 3 4 9 0 0]

sort (array, axis=-1)
This function returns an array containing a copy of the data inarray, with the same shape asarray, but with
the order of the elements along the specifiedaxissorted. The shape of the returned array is the same asarray’s.
Thus,sort(a, 3) will be an array of the same shape asarray, where the elements ofarray have been sorted
along the fourth axis.

>>> print data
[[5 0 1 9 8]

[2 5 8 3 2]
[8 0 3 7 0]
[9 6 9 5 0]
[9 0 9 7 7]]

>>> print sort(data) # Axis -1 by default
[[0 1 5 8 9]

[2 2 3 5 8]
[0 0 3 7 8]
[0 5 6 9 9]
[0 7 7 9 9]]

>>> print sort(data, 0)
[[2 0 1 3 0]

[5 0 3 5 0]
[8 0 8 7 2]
[9 5 9 7 7]
[9 6 9 9 8]]

argsort (array, axis=-1)
argsort will return the indices of the elements of the array needed to producesort(array) . In other
words, for a 1-D array,take(a.flat, argsort(a)) is the same assort(a) ... but slower.

70 Chapter 8. Array Functions

>>> print data
[5 0 1 9 8]
>>> print sort(data)
[0 1 5 8 9]
>>> print argsort(data)
[1 2 0 4 3]
>>> print take(data, argsort(data))
[0 1 5 8 9]

argmax (array, axis=-1)

argmin (array, axis=-1)
Theargmax function returns an array (or scalar for a 1D array) with the index(es) of the maximum value(s) of
its input array along the givenaxis. The returned array will have one less dimension thanarray. argmin is
just likeargmax , except that it returns the indices of the minima along the given axis.

>>> print data
[[9 6 1 3 0]

[0 0 8 9 1]
[7 4 5 4 0]
[5 2 7 7 1]
[9 9 7 9 7]]

>>> print argmax(data)
[0 3 0 3 1]
>>> print argmax(data, 0)
[4 4 1 4 4]
>>> print argmin(data)
[4 1 4 4 4]
>>> print argmin(data, 0)
[1 1 0 0 2]

fromstring (datastring, type, shape=None)
Will return the array formed by the binary data given indatastring, of the specifiedtype. This is mainly used
for reading binary data to and from files, it can also be used to exchange binary data with other modules that
use python strings as storage (e.g. PIL). Note that this representation is dependent on the byte order. To find out
the byte ordering used, use theisbyteswapped method described on page 77. Ifshapeis not specified, the
created array will be one dimensional.

fromfile (file, type, shape=None)
If file is a string then it is interpreted as the name of a file which is opened and read. Otherwise,file must be
a Python file object which is read as a source of binary array data.fromfile reads directly into the newly
created array buffer with no intermediate string, but otherwise is similar to fromstring, treating the contents of
the specified file as a binary data string.

dot (a, b)
The dot function returns the dot product ofa andb. This is equivalent to matrix multiply for rank-2 arrays
(without the transposition). This function is identical to thematrixmultiply function.

71

>>> print a
[1 2]
>>> print b
[10 11]
kind of like vector inner product with implicit transposition
>>> print dot(a,b), dot(b,a)
32 32
>>> print a
[[1 2]

[5 7]]
>>> print b
[[0 1]

[10 100]]
>>> print dot(a,b)
[[20 201]

[70 705]]
>>> print dot(b,a)
[[5 7]

[510 720]]

matrixmultiply (a, b)
This function multiplies matrices or matrices and vectors as matrices rather than elementwise. This function is
identical todot . Compare:

>>> print a
[[0 1 2]

[3 4 5]]
>>> print b
[1 2 3]
>>> print a*b
[[0 2 6]

[3 8 15]]
>>> print matrixmultiply(a,b)
[8 26]

clip (m, m min, m max)
The clip function creates an array with the same shape and type asm, but where every entry inm that is less
thanm min is replaced bym min, and every entry greater thanm maxis replaced bym max. Entries within
the range[m min, m max]are left unchanged.

>>> a = arange(9, type=Float32)
>>> print clip(a, 1.5, 7.5)
[1.5 1.5 2. 3. 4. 5. 6. 7. 7.5]

indices (shape, type=None)
The indices function returns an array corresponding to theshapegiven. The array returned is an array of a new
shape which is based on the specifiedshape, but has an added dimension of length the number of dimensions
in the specified shape. For example, ifshape=(3,4) , then the shape of the array returned will be(2,3,4)
since the length of(3,4) is 2 and ifshape=(5,6,7) , the returned array’s shape will be(3,5,6,7) . The
contents of the returned arrays are such that theith subarray (along index 0, the first dimension) contains the
indices for that axis of the elements in the array. An example makes things clearer:

72 Chapter 8. Array Functions

>>> i = indices((4,3))
>>> i.getshape()
(2, 4, 3)
>>> print i[0]
[[0 0 0]

[1 1 1]
[2 2 2]
[3 3 3]]

>>> print i[1]
[[0 1 2]

[0 1 2]
[0 1 2]
[0 1 2]]

So,i[0] has an array of the specified shape, and each element in that array specifies the index of that position
in the subarray for axis 0. Similarly, each element in the subarray ini[1] contains the index of that position in
the subarray for axis 1.

swapaxes (array, axis1, axis2)
Returns a new array whichsharesthe data ofarray, but has the two axes specified byaxis1andaxis2swapped.
If array is of rank 0 or 1, swapaxes simply returns a new reference toarray.

>>> x = arange(10)
>>> x.setshape((5,2,1))
>>> print x
[[[0]

[1]]

[[2]
[3]]

[[4]
[5]]

[[6]
[7]]

[[8]
[9]]]

>>> y = swapaxes(x, 0, 2)
>>> y.getshape()
(1, 2, 5)
>>> print y
[[[0 2 4 6 8]

[1 3 5 7 9]]]

concatenate (arrs, axis=0)
Returns a new array containing copies of the data contained in all arrays ofarrs= (a0, a1, ... an). The arrays
ai will be concatenated along the specifiedaxis (default=0). All arraysai must have the same shape along
every axis except for the one specified inaxis. To concatenate arrays along a newly created axis, you can use
array((a0, ..., an)) , as long as all arrays have the same shape.

73

>>> print x
[[0 1 2 3]

[5 6 7 8]
[10 11 12 13]]

>>> print concatenate((x,x))
[[0 1 2 3]

[5 6 7 8]
[10 11 12 13]
[0 1 2 3]
[5 6 7 8]
[10 11 12 13]]

>>> print concatenate((x,x), 1)
[[0 1 2 3 0 1 2 3]

[5 6 7 8 5 6 7 8]
[10 11 12 13 10 11 12 13]]

>>> print array((x,x)) # Note: one extra dimension
[[[0 1 2 3]

[5 6 7 8]
[10 11 12 13]]

[[0 1 2 3]
[5 6 7 8]
[10 11 12 13]]]

>>> print a
[[1 2]]
>>> print b
[[3 4 5]]
>>> print concatenate((a,b),1)
[[1 2 3 4 5]]
>>> print concatenate((a,b),0)
ValueError: _concat array shapes must match except 1st dimension

innerproduct (a, b)
innerproduct produces the inner product of arraysa andb. It is equivalent tomatrixmultiply(a,
transpose(b)) .

outerproduct (a,b)
outerproduct produces the outer product of vectorsa andb, that isresult[i, j] = a[i] * b[j] .

array repr (a, max line width=None, precision=None, supresssmall=None)
See section??on Textual Representations of arrays.

array str (a, max line width=None, precision=None, supresssmall=None)
See section??Textual Representations of arrays.

>>> print a
[1.00000000e+00 1.10000000e+00 1.11600000e+00 1.11380000e+00

1.20000000e-02 1.34560000e-04]
>>> print array_str(a,precision=4,suppress_small=1)
[1. 1.1 1.116 1.1138 0.012 0.0001]
>>> print array_str(a,precision=3,suppress_small=1)
[1. 1.1 1.116 1.114 0.012 0.]
>>> print array_str(a,precision=3)
[1.000e+00 1.100e+00 1.116e+00 1.114e+00 1.200e-02

1.346e-04]

resize (array, shape)
The resize function takes an array and a shape, and returns a new array with the specifiedshape, and filled
with the data in the inputarray. Unlike thereshape function, the new shape does not have to yield the same
size as the original array. If the new size of is less than that of the inputarray, the returned array contains the

74 Chapter 8. Array Functions

appropriate data from the ”beginning” of the old array. If the new size is greater than that of the input array, the
data in the inputarray is repeated as many times as needed to fill the new array.

>>> x = arange(10)
>>> y = resize(x, (4,2)) # note that 4*2 < 10
>>> print x
[0 1 2 3 4 5 6 7 8 9]
>>> print y
[[0 1]

[2 3]
[4 5]
[6 7]]

>>> print resize(array((0,1)), (5,5)) # note that 5*5 > 2
[[0 1 0 1 0]

[1 0 1 0 1]
[0 1 0 1 0]
[1 0 1 0 1]
[0 1 0 1 0]]

identity (n, type=None)
The identity function returns ann by n array where the diagonal elements are 1, and the off-diagonal elements
are 0.

>>> print identity(5)
[[1 0 0 0 0]

[0 1 0 0 0]
[0 0 1 0 0]
[0 0 0 1 0]
[0 0 0 0 1]]

sum(a, axis=0)
The sum function is a synonym for thereduce method of theadd ufunc. It returns the sum of all of the
elements in the sequence given along the specified axis (first axis by default).

>>> print x
[[0 1 2 3]

[4 5 6 7]
[8 9 10 11]
[12 13 14 15]
[16 17 18 19]]

>>> print sum(x)
[40 45 50 55] # 0+4+8+12+16, 1+5+9+13+17,
2+6+10+14+18, ...
>>> print sum(x, 1)
[6 22 38 54 70] # 0+1+2+3, 4+5+6+7, 8+9+10+11, ...

cumsum(a, axis=0)
The cumsum function is a synonym for theaccumulate method of theadd ufunc.

product (a, axis=0)
The product function is a synonym for thereduce method of themultiply ufunc.

cumproduct (a, axis=0)
The cumproduct function is a synonym for theaccumulate method of themultiply ufunc.

alltrue (a, axis=0)
The alltrue function is a synonym for thereduce method of thelogical and ufunc.

75

sometrue (a, axis=0)
The sometrue function is a synonym for thereduce method of thelogical or ufunc.

all (a)
all is a synonym for thereduce method of thelogical and ufunc, preceded by aravel which converts
arrays withrank > 1 to rank = 1. Thus,all tests that all the elements of a multidimensional array are
nonzero.

any (a)
Theany function is a synonym for thereduce method of thelogical and ufunc, preceded by aravel
which converts arrays withrank > 1 to rank = 1. Thus,any tests that at least one of the elements of a
multidimensional array is nonzero.

allclose (a, b, rtol=1.e-5, atol=1.e-8)
This function tests whether or not arraysx andy of an integer or real type are equal subject to the given relative
and absolute tolerances:rtol, atol . The formula used is:

|x− y| < atol + rtol ∗ |y| (8.1)

This means essentially that both elements are small compared toatol or their difference divided byy’s value is
small compared tortol.

See Also:

Modulenumarray.convolve (section 15):
Theconvolve function is implemented in the optionalnumarray.convolve package.

Modulenumarray.convolve (section 15):
Thecorrelation function is implemented in the optionalnumarray.convolve package.

76 Chapter 8. Array Functions

CHAPTER

NINE

Array Methods

As we discussed at the beginning of the last chapter, there are very few array methods for good reasons, and these all
depend on the implementation details. They’re worth knowing, though.

argmax (axis=-1)
Theargmax method returns the index of the largest element in a 1D array. In the case of a multi-dimensional
array, it returns and array of indices.

>>> array([1,2,4,3]).argmax()
2
>>> arange(100, shape=(10,10)).argmax()
array([9, 9, 9, 9, 9, 9, 9, 9, 9, 9])

argmin (axis=-1)
Theargmin method returns the index of the smallest element in a 1D array. In the case of a multi-dimensional
array, it returns and array of indices.

argsort (axis=-1)
The argsort method returns the array of indices which if taken from the array usingtake would return a
sorted copy of the array. For multi-dimensional arrays,argsort computes the indices for each 1D subarray
independently and aggregates them all into a single array result; Theargsort of a multi-dimensional array
does not produce a sorted copy of the array when applied directly to it usingtake ; instead, each 1D subarray
must be passed totake independently.

>>> array([1,2,4,3]).argsort()
array([0, 1, 3, 2])
>>> take([1,2,4,3], argsort([1,2,4,3]))
array([1, 2, 3, 4])

astype (type)
The astype method returns a copy of the array converted to the specified type. As with any copy, the new
array is aligned, contiguous, and in native machine byte order. If the specified type is the same as current type,
a copy isstill made.

>>> arange(5).astype(’Float64’)
array([0., 1., 2., 3., 4.])

byteswap ()
Thebyteswap method performs a byte swapping operation on all the elements in the array, working inplace
(i.e. it returns None).byteswap does not affect the array’s byte order state variable. Seetogglebyteorder
for changing the array’s byte order state in addition to or rather than physically swapping bytes.

77

>>> print a
[1 2 3]
>>> a.byteswap()
>>> print a
[16777216 33554432 50331648]

byteswapped ()
The byteswapped method returns a byteswapped copy of the array.byteswapped does not affect the
array’s own byte order state variable. The result ofbyteswapped is logically in native byte order.

>>> array([1,2,3]).byteswapped()
array([16777216, 33554432, 50331648])

conjugate ()
Theconjugate method returns the complex conjugate of an array.

>>> (arange(3) + 1j).conjugate()
array([0.-1.j, 1.-1.j, 2.-1.j])

copy ()
Thecopy method returns a copy of an array. When making an assignment or taking a slice, a new array object
is created and has its own attributes, except that the data attribute just points to the data of the first array (a
”view”). The copy method is used when it is important to obtain an independent copy.copy returns arrays
which are contiguous, aligned, and not byteswapped, i.e. well behaved.

>>> c = a[3:8:2].copy()
>>> print c.iscontiguous()
1

diagonal ()
Thediagonal method returns the diagonal elements of the array, those elements where the row and column
indices are equal.

>>> arange(25,shape=(5,5)).diagonal()
array([0, 6, 12, 18, 24])

info ()
Calling an array’sinfo method prints out information about the array which is useful for debugging.

>>> arange(10).info()
class: <class ’numarray.numarraycore.NumArray’>
shape: (10,)
strides: (4,)
byteoffset: 0
bytestride: 4
itemsize: 4
aligned: 1
contiguous: 1
data: <memory at 0x08931d18 with size:0x00000028 held by object 0x3ff91bd8 aliasing object 0x00000000>
byteorder: little
byteswap: 0
type: Int32

78 Chapter 9. Array Methods

isaligned ()
isaligned returns 1 IFF the buffer address for an array modulo the array itemsize is 0. When the array
itemsize exceeds 8 (sizeof(double)) aligment is done modulo 8.

isbyteswapped ()
isbyteswapped returns 1 IFF the array’s binary data is not in native machine byte order, possibly because it
originated on a machine with a different native order.

iscontiguous ()
iscontiguous returns 1 IFF an array is C-contiguous and 0 otherwise. An array is C-contiguous if its
smallest stride corresponds to the innermost dimension and its other strides strictly increase in size from the
innermost dimension to the outermost, with each stride being the product of the previous inner stride and shape.
A non-contiguous array can be converted to a contiguous array by thecopy method.

>>> a=arange(25, shape=(5,5))
>>> a
array([[0, 1, 2, 3, 4],

[5, 6, 7, 8, 9],
[10, 11, 12, 13, 14],
[15, 16, 17, 18, 19],
[20, 21, 22, 23, 24]])

>>> a.iscontiguous()
1

is c array ()
is c array returns 1 IFF an array is C-contiguous, aligned, and not byteswapped, and returns 0 otherwise.

>>> a=arange(25, shape=(5,5))
>>> a.is_c_array()
1
>>> a.is_f_array()
0

is fortran contiguous ()
is fortran contiguous returns 1 IFF an array is Fortran-contiguous and 0 otherwise. An array is
Fortran-contiguous if its smallest stride corresponds to its outermost dimension and each succesive stride is
the product of the previous stride and shape element.

>>> a=arange(25, shape=(5,5))
>>> a.transpose()
>>> a
array([[0, 5, 10, 15, 20],

[1, 6, 11, 16, 21],
[2, 7, 12, 17, 22],
[3, 8, 13, 18, 23],
[4, 9, 14, 19, 24]])

>>> a.iscontiguous()
0
>>> a.is_fortran_contiguous()
1

is f array ()
is f array returns 1 IFF an array is Fortran-contiguous, aligned, and not byteswapped, and returns 0 other-
wise.

79

>>> a=arange(25, shape=(5,5))
>>> a.transpose()
>>> a.is_f_array()
1
>>> a.is_c_array()
0

itemsize ()
The itemsize method returns the number of bytes used by any one of its elements.

>>> a = arange(10)
>>> a.itemsize()
4
>>> a = array([1.0])
>>> a.itemsize()
8
>>> a = array([1], type=Complex64)
>>> a.itemsize()
16

max()
Themax method returns the largest element in an array.

>>> arange(100, shape=(10,10)).max()
99

mean()
Themean method returns the average of all elements in an array.

>>> arange(10).mean() 4.5

min ()
Themin method returns the smallest element in an array.

>>> arange(10).min()
0

nelements ()
nelements returns the total number of elements in this array. Synonymous withsize .

>>> arange(100).nelements()
100

new(type=None)
new returns a new array of the specified type with the same shape as this array. The new array is uninitialized.

nonzero (axis=-1)
nonzero returns a tuple of arrays containing the indices of the elements that are nonzero.

80 Chapter 9. Array Methods

>>> arange(5).nonzero()
(array([1, 2, 3, 4]),)
>>> b = arange(9, shape=(3,3)) % 2; b
array([[0, 1, 0],

[1, 0, 1],
[0, 1, 0]])

>>>b.nonzero()
(array([0, 1, 1, 2]), array([1, 0, 2, 1]))

repeat (r, axis=0)
Therepeat method returns a new array with each element self[i] (along the specified axis) repeated r[i] times.

>>> a=arange(25, shape=(5,5))
>>> a
array([[0, 1, 2, 3, 4],

[5, 6, 7, 8, 9],
[10, 11, 12, 13, 14],
[15, 16, 17, 18, 19],
[20, 21, 22, 23, 24]])

>>> a.repeat(arange(5)%2*2)
array([[5, 6, 7, 8, 9],

[5, 6, 7, 8, 9],
[15, 16, 17, 18, 19],
[15, 16, 17, 18, 19]])

resize (shape)
resize shrinks/grows the array to newshape, possibly replacing the underlying buffer object.

>>> a = array([0, 1, 2, 3])
>>> a.resize(10)
array([0, 1, 2, 3, 0, 1, 2, 3, 0, 1])

size ()
size returns the total number of elements in this array. Synonymous withnelements .

>>> arange(100).size()
100

type ()
Thetype method returns the type of the array it is applied to. While we’ve been talking about them as Float32,
Int16, etc., it is important to note that they are not character strings, they are instances of NumericType classes.

>>> a = array([1,2,3])
>>> a.type()
Int32
>>> a = array([1], type=Complex64)
>>> a.type()
Complex64

typecode ()
The typecode method returns the typecode character of the array it is applied to.typecode exists for
backward compatibility with Numeric but thetype method is preferred.

81

>>> a = array([1,2,3])
>>> a.typecode()
’l’
>>> a = array([1], type=Complex64)
>>> a.typecode()
’D’

tofile (file)
Thetofile method writes the binary data of the array intofile . If file is a Python string, it is interpreted
as the name of a file to be created. Otherwise,file must be Python file object to which the data will be written.

>>> a = arange(65,100)
>>> a.tofile(’test.dat’) # writes a’s binary data to file ’test.dat’.
>>> f = open(’test2.dat’, ’w’)
>>> a.tofile(f) # writes a’s binary data to file ’test2.dat’

Note that the binary representation of array data depends on the platform, with some platforms being little
endian (sys.byteorder == ’little’) and others being big endian. The byte order of the array data isnot recorded
in the file, nor are the array’s shape and type.

tolist ()
Calling an array’stolist method returns a hierarchical python list version of the same array:

>>> print a
[[65 66 67 68 69 70 71]

[72 73 74 75 76 77 78]
[79 80 81 82 83 84 85]
[86 87 88 89 90 91 92]
[93 94 95 96 97 98 99]]

>>> print a.tolist()
[[65, 66, 67, 68, 69, 70, 71], [72, 73, 74, 75, 76, 77, 78], [79, 80,
81, 82, 83, 84, 85], [86, 87, 88, 89, 90, 91, 92], [93, 94, 95, 96, 97,
98, 99]]

tostring ()
Thetostring method returns a string representation of the array data.

>>> a = arange(65,70)
>>> a.tostring()
’A\x00\x00\x00B\x00\x00\x00C\x00\x00\x00D\x00\x00\x00E\x00\x00\x00’

Note that the arangement of the printable characters and interspersed NULL characters is dependent on machine
architecture. The layout shown here is for little endian platform.

transpose (axis=-1)
transpose re-shapes the array by permuting it’s dimensions as specified by ’axes’. If ’axes’ is none,
transpose reverses the array’s dimensions.transpose operates in-place and returns None.

>>> a = arange(9, shape=(3,3))
>>> a.transpose()
>>> a
array([[0, 3, 6],

[1, 4, 7],
[2, 5, 8]])

stddev ()

82 Chapter 9. Array Methods

Thestddev method returns the standard deviation of all elements in an array.

>>> arange(10).stddev()
3.0276503540974917

sum()
Thesum method returns the sum of all elements in an array.

>>> arange(10).sum()
45

swapaxes (axis1, axis2)
The swapaxes method adjusts the strides of an array so that the two specified axes appear to be swapped.
swapaxes operates in place and returns None.

>>> a = arange(25, shape=(5,5))
>>> a.swapaxes(0,1)
>>> a
array([[0, 5, 10, 15, 20],

[1, 6, 11, 16, 21],
[2, 7, 12, 17, 22],
[3, 8, 13, 18, 23],
[4, 9, 14, 19, 24]])

togglebyteorder ()
Thetogglebyteorder method adjusts the byte order state variable for an array, with “little” being replaced
by “big” and “big” being replaced by “little”.togglebyteorder just reinterprets the existing data, it does
not actually rearrange bytes.

>>> a = arange(4)
>>> a.togglebyteorder()
>>> a
array([0, 16777216, 33554432, 50331648])

trace ()
Thetrace method returns the sum of the diagonal elements of an array.

>>> a = arange(25, shape=(5,5))
>>> a.trace()
60

view ()
Theview method returns a new state object for an array but does not actually copy the array’s data; views are
used to reinterpret an existing data buffer by changing the array’s properties.

83

>>> a = arange(4)
>>> b = a.view()
>>> b.shape = (2,2)
>>> a
array([0, 1, 2, 3])
>>> b
array([[0, 1],

[2, 3]])
>>> a is b
False
>>> a._data is b._data
True

When using Python 2.2 or later, there are four public attributes which correspond to those of Numeric type objects.
These areshape , flat , real , and imag (or imaginary). The following methods are used to implement and
provide an alternative to using these attributes.

getshape ()

setshape ()
The getshape method returns the tuple that gives the shape of the array.setshape assigns its argument
(a tuple) to the internal attribute which defines the array shape. When using Python 2.2 or later, theshape
attribute can be accessed or assigned to, which is equivalent to using these methods.

>>> a = arange(12)
>>> a.setshape((3,4))
>>> print a.getshape()
(3, 4)
>>> print a
[[0 1 2 3]

[4 5 6 7]
[8 9 10 11]]

getflat ()
Thegetflat method is equivalent to using theflat attribute of Numeric. For compatibility with Numeric,
there is nosetflat method, although the attribute can in fact be set usingsetshape .

>>> print a
[[0 1 2 3]

[4 5 6 7]
[8 9 10 11]]

>>> print a.getflat()
[0 1 2 3 4 5 6 7 8 9 10 11]

getreal ()

setreal ()
Thegetreal andsetreal methods can be used to access or assign to the real part of an array containing
imaginary elements.

getimag ()

getimaginary ()

setimag ()

setimaginary ()
Thegetimag andsetimag methods can be used to access or assign to the imaginary part of an array con-
taining imaginary elements.getimaginary is equivalent togetimag , andsetimaginary is equivalent

84 Chapter 9. Array Methods

to setimag .

85

86

CHAPTER

TEN

Array Attributes

There are four public array attributes; however, they are only available in Python 2.2 or later. There are array methods
that may be used instead. The attributes areshape, flat, real, andimaginary .

shape
Accessing theshape attribute is equivalent to calling thegetshape method; it returns the shape tuple. As-
signing a value to the shape attribute is equivalent to calling thesetshape method.

>>> print a
[[0 1 2]

[3 4 5]
[6 7 8]]

>>> print a.shape
(3,3)
>>> a.shape = ((9,))
>>> print a.shape
(9,)

flat
Accessing the flat attribute of an array returns the flattened, orravel ed version of that array, without having to
do a function call. This is equivalent to calling thegetflat method. The returned array has the same number
of elements as the input array, but it is of rank-1. One cannot set the flat attribute of an array, but one can use
the indexing and slicing notations to modify the contents of the array:

>> print a
[[0 1 2]

[3 4 5]
[6 7 8]]

>> print a.flat
0 1 2 3 4 5 6 7 8]
>> a.flat[4] = 100
>> print a
[[0 1 2]

[3 100 5]
[6 7 8]]

>> a.flat = arange(9,18)
>> print a
[[9 10 11]

[12 13 14]
[15 16 17]]

real

imag

87

imaginary
These attributes exist only for complex arrays. They return respectively arrays filled with the real and imag-
inary parts of the elements. The equivalent methods for getting and setting these values aregetreal ,
setreal , getimag , andsetimag . getimaginary andsetimaginary are synonyms forgetimag
andsetimag respectively, and.imag is a synonym for.imaginary . The arrays returned are not contigu-
ous (except for arrays of length 1, which are always contiguous). The attributesreal , imag , andimaginary
are modifiable:

>>> print x
[0. +1.j 0.84147098+0.54030231j 0.90929743-0.41614684j]
>>> print x.real
[0. 0.84147098 0.90929743]
>>> print x.imag
[1. 0.54030231 -0.41614684]
>>> x.imag = arange(3)
>>> print x
[0. +0.j 0.84147098+1.j 0.90929743+2.j]
>>> x = reshape(arange(10), (2,5)) + 0j # make complex array
>>> print x
[[0.+0.j 1.+0.j 2.+0.j 3.+0.j 4.+0.j]

[5.+0.j 6.+0.j 7.+0.j 8.+0.j 9.+0.j]]
>>> print x.real
[[0. 1. 2. 3. 4.]

[5. 6. 7. 8. 9.]]
>>> print x.type(), x.real.type()
Complex64 Float64
>>> print x.itemsize(), x.imag.itemsize()
16 8

88 Chapter 10. Array Attributes

CHAPTER

ELEVEN

Character Array

11.1 Introduction

numarray , like Numeric , has support for arrays of character data (provided by thenumarray.strings module)
in addition to arrays of numbers. The support for character arrays inNumeric is relatively limited, restricted to arrays
of single characters. In contrast,numarray supports arrays of fixed length strings. As an additional enhancement,
the numarray design supports interleaving arrays of characters with arrays of numbers, with both occupying the
same memory buffer. This provides basic infrastructure for building the arrays of heterogenous records as provided by
numarray.records (see chapter 12). Currently, neitherNumeric nornumarray provides support for unicode.

Each character array is aCharArray object in thenumarray.strings module. The easiest way to construct a
character array is to use thenumarray.strings.array() function. For example:

>>> import numarray.strings as str
>>> s = str.array([’Smith’, ’Johnson’, ’Williams’, ’Miller’])
>>> print s
[’Smith’, ’Johnson’, ’Williams’, ’Miller’]
>>> s.itemsize()
8

In this example, this string array has 4 elements. The maximum string length is automatically determined from the
data. In this case, the created array will support fixed length strings of 8 characters (since the longest name is 8
characters long).

The character array is just like an array in numarray, except that now each element is conceptually a Python string
rather than a number. We can do the usual indexing and slicing:

>>> print s[0]
’Smith’
>>> print s[:2]
[’Smith’, ’Johnson’]
>>> s[:2] = ’changed’
>>> print s
[’changed’, ’changed’, ’Williams’, ’Miller’]

11.2 Character array stripping, padding, and truncation

89

CharArrays are designed to store fixed length strings of visible ASCII text. You may have noticed that although
a CharArray stores fixed length strings, it displays variable length strings. This is a result of the stripping and
padding policies of the CharArray class.

When an element of aCharArray is fetched trailing whitespace is stripped off. The sole exception to this rule is
that a single whitespace is never stripped down to the empty string.numarray.strings defines whitespace as an
ASCII space, formfeed, newline, carriage return, tab, or vertical tab.

When a string is assigned to aCharArray , the string is considered terminated by the first of any NULL characters
it contains and is padded with spaces to the full length of theCharArray itemsize. Thus, the memory image of a
CharArray element does not include anything at or after the first NULL in an assigned string; instead, there are
spaces, and no terminating NULL character at all.

When a string which is longer than theitemsize() is assigned to aCharArray , it is silently truncated.

The RawCharArray baseclass ofCharArray implements transparentstrip() andpad() methods, enabling
the storage and retrieval of arbitrary ASCII values within array elements. ForRawCharArray , all array ele-
ments are identical in percieved length. Alternate stripping and padding policies can be implemented by subclassing
CharArray or RawCharArray .

11.3 Character array functions

array (buffer=None, itemsize=None, shape=None, byteoffset=0, bytestride=None, kind=CharArray)
The functionarray is, for most practical purposes, all a user needs to know to construct a character array.

The first argument,buffer , may be any one of the following:

(1) None (default). The constructor will allocate a writeable memory buffer which will be uninitialized. The
user must assign valid data before trying to read the contents or before writing the character array to a disk file.

(2) a Python string containing binary data. For example:

>>> print str.array(’abcdefg’*10, itemsize=10)
[’abcdefgabc’, ’defgabcdef’, ’gabcdefgab’, ’cdefgabcde’, ’fgabcdefga’,

’bcdefgabcd’, ’efgabcdefg’]

(3) a Python file object for an open file. The data will be copied from the file, starting at the current position of
the read pointer.

(4) a character array. This results in a deep copy of the input character array; any other arguments toarray()
will be silently ignored.

>>> print str.array(s)
[’abcdefgabc’, ’defgabcdef’, ’gabcdefgab’, ’cdefgabcde’, ’fgabcdefga’,

’bcdefgabcd’, ’efgabcdefg’]

(5) a nested sequence of strings. The sequence nesting implies the shape of the string array unless shape is
specified.

>>> print str.array([[’Smith’, ’Johnson’], [’Williams’, ’Miller’]])
[[’Smith’, ’Johnson’],

[’Williams’, ’Miller’]]

itemsize can be used to increase or decrease the fixed size of an array element relative to the natural itemsize
implied by any literal data specified by thebuffer parameter.

90 Chapter 11. Character Array

>>> print str.array([[’Smith’, ’Johnson’], [’Williams’, ’Miller’]],
itemsize=2)

[[’Sm’, ’Jo’],
[’Wi’, ’Mi’]])

>>> print str.array([[’Smith’, ’Johnson’], [’Williams’, ’Miller’]],
itemsize=20)

[[’Smith’, ’Johnson’],
[’Williams’, ’Miller’]]

shape is the shape of the character array. It can be an integer, in which case it is equivalent to the number of
rows in a table. It can also be a tuple implying the character array is an N-D array with fixed length strings as
its elements.shape should be consistent with the number of elements implied by the data buffer and itemsize.

byteoffset indicates an offset, specified in bytes, from the start of the array buffer to where the array data
actually begins.byteoffset enables the character array to be offset from the beginning of a table record.
This is mainly useful for implementing record arrays.

bytestride indicates the separation, specified in bytes, between successive elements in the last dimension
of the character array.bytestride is used in the implementation of record arrays to space character array
elements with the size of the total record rather than the size of a single string.

kind is used to specify the class of the created array, and should beRawCharArray , CharArray , or a
subclass of either.

num2char (n, format, itemsize=32)
num2char formats the numarrayn using the Python string formatformat and stores the result in a character
array with the specifieditemsize

>>> num2char(num.arange(0.0,5), ’%2.2f’)
CharArray([’0.00’, ’1.00’, ’2.00’, ’3.00’, ’4.00’])

11.4 Character array methods

CharArray object has these public methods:

tolist ()
tolist() returns a nested list of strings corresponding to all the elements in the array.

copy ()
copy() returns a deep copy of the character array.

raw ()
raw() returns the correspondingRawCharArray view.

>>> c=str.array(["this","that","another"])
>>> c.raw()
RawCharArray([’this ’, ’that ’, ’another’])

resized (n, fill=’ ’)
resized(n) returns a copy of the array, resized so that each element is of lengthn characters. Extra characters
are filled with valuefill . Caution: do not confuse this method withresize() which changes the number
of elements rather than the size of each element.

11.4. Character array methods 91

>>> c = str.array(["this","that","another"])
>>> c.itemsize()
7
>>> d = c.resized(20)
>>> print d
[’this’, ’that’, ’another’]
>>> d.itemsize()
20

concatenate (other)
concatenate(other) returns a new array which corresponds to the element by element concatenation of
other to self . The addition operator is also overloaded to perform concatenation.

>>> print map(str, range(3)) + array(["this","that","another one"])
[’0this’, ’1that’, ’2another one’]
>>> print "prefix with trailing whitespace " + array(["."])
[’prefix with trailing whitespace .’]

sort ()
sort modifies theCharArray inplace so that its elements are in sorted order.sort only works for 1D
character arrays. Like thesort() for the Python list,CharArray.sort() returns nothing.

>>> a=str.array(["other","this","that","another"])
>>> a.sort()
>>> print a
[’another’, ’other’, ’that’, ’this’]

argsort ()
argsort returns a numarray corresponding to the permutation which will put the character arrayself into
sorted order.argsort only works for 1D character arrays.

>>> a=str.array(["other","that","this","another"])
>>> a.argsort()
array([3, 0, 1, 2])
>>> print a[a.argsort]
[’another’, ’other’, ’that’, ’this’]

amap(f)
amap applies the functionf to every element ofself and returns the nested list of the results. The functionf
should operate on a single string and may return any Python value.

>>> c = str.array([’this’,’that’,’another’])
>>> print c.amap(lambda x: x[-2:])
[’is’, ’at’, ’er’]

match (pattern, flags=0)
match uses Python regular expression matching over all elements of a character array and returns a tuple of
numarrays corresponding to the indices ofself where the pattern matches.flags are passed directly to the
Python pattern matcher defined in there module of the standard library.

92 Chapter 11. Character Array

>>> a=str.array([["wo","what"],["wen","erewh"]])
>>> print a.match("wh[aebd]")
(array([0]), array([1]))
>>> print a[a.match("wh[aebd]")]
[’what’]

search (pattern,flags=0)
search uses Python regular expression searching over all elements of a character array and returns a tuple
of numarrays corresponding to the indices ofself where the pattern was found.flags are passed directly
to the Python patternsearch method defined in there module of the standard library.flags should be an
or’ed combination (use the| operator) of the followingre variables:IGNORECASE, LOCALE, MULTILINE ,
DOTALL, VERBOSE. See there module documentation for more details.

sub (pattern,replacement,flags=0,count=0)
sub performs Python regular expression pattern substitution to all elements of a character array.flags and
count work as they do forre.sub() .

>>> a=str.array([["who","what"],["when","where"]])
>>> print a.sub("wh", "ph")
[[’pho’, ’phat’],

[’phen’, ’phere’]])

grep (pattern, flags=0)
grep is intended to be used interactively to search aCharArray for the array of strings which match the given
pattern . pattern should be a Python regular expression (see there module in the Python standard library,
which can be as simple as a string constant as shown below.

>>> a=str.array([["who","what"],["when","where"]])
>>> print a.grep("whe")
[’when’, ’where’]

eval ()
eval executes the Python eval function on each element of a character array and returns the resulting numarray.
eval is intended for use converting character arrays to the corresponding numeric arrays. An exception is raised
if any string element fails to evaluate.

>>> print str.array([["1","2"],["3","4."]]).eval()
[[1., 2.],

[3., 4.]]

maxLen()
maxLen returns the minimum element length required to store the stripped elements of the arrayself .

>>> print str.array(["this","there"], itemsize=20).maxLen()
5

truncated ()
truncated returns an array corresponding toself resized so that it uses a minimum amount of storage.

>>> a = str.array(["this ","that"])
>>> print a.itemsize()
6
>>> print a.truncated().itemsize()
4

11.4. Character array methods 93

count (s)
count counts the occurences of strings in arrayself .

>>> print array(["this","that","another","this"]).count("this")
2

info ()
This will display key attributes of the character array.

94 Chapter 11. Character Array

CHAPTER

TWELVE

Record Array

12.1 Introduction

One of the enhancements ofnumarray overNumeric is its support for record arrays, i.e. arrays with heterogeneous
data types: for example, tabulated data where each field (orcolumn) has the same data type but different fields may
not.

Each record array is aRecArray object in thenumarray.records module. Most of the time, the easiest way to
construct a record array is to use thearray() function in thenumarray.records module. For example:

>>> import numarray.records as rec
>>> r = rec.array([(’Smith’, 1234),\

(’Johnson’, 1001),\
(’Williams’, 1357),\
(’Miller’, 2468)], \
names=’Last_name, phone_number’)

In this example, wemanuallyconstruct a record array by longhand input of the information. This record array has 4
records (or rows) and two fields (or columns). The names of the fields are specified in thenames argument. When
using this longhand input, the data types (formats) are automatically determined from the data. In this case the first
field is a string of 8 characters (since the longest name is 8 characters long) and the second field is an integer.

The record array is just like an array in numarray, except that now each element is aRecord . We can do the usual
indexing and slicing:

>>> print r[0]
(’Smith’, 1234)
>>> print r[:2]
RecArray[
(’Smith’, 1234),
(’Johnson’, 1001)
]

To access the record array’s fields, use thefield() method:

>>> print r.field(0)
[’Smith’, ’Johnson’, ’Williams’, ’Miller’]
>>> print r.field(’Last_name’)
[’Smith’, ’Johnson’, ’Williams’, ’Miller’]

these examples show that thefield method can accept either the numeric index or the field name.

95

Since each field is simply a numarray of numbers or strings, all functionalities of numarray are available to them. The
record array is one single object which allows the user to have either field-wise or row-wise access. The following
example:

>>> r.field(’phone_number’)[1]=9999
>>> print r[:2]
RecArray[
(’Smith’, 1234),
(’Johnson’, 9999)
]

shows that a change using the field view will cause the corresponding change in the row-wise view without additional
copying or computing.

12.2 Record array functions

array (buffer=None, formats=None, shape=0, names=None, byteorder=sys.byteorder)
The functionarray is, for most practical purposes, all a user needs to know to construct a record array.

formats is a string containing the format information of all fields. Each format can be theletter code, such
asf4 or i2 , or longer name likeFloat32 or Int16 . For a list of letter codes or the longer names, see Table
4.1 or use theletterCode() function. A field of strings is specified by the lettera, followed by an integer
giving the maximum length; thusa5 is the format for a field of strings of (maximum) length of 5.

The formats are separated by commas, and eachcell (element in a field) can be a numar-
ray itself, by attaching a number or a tuple in front of the format specification. So if
formats=’i4,Float64,a5,3i2,(2,3)f4,Complex64,b1’ , the record array will have:

1st field: (4-byte) integers
2nd field: double precision floating point numbers
3rd field: strings of length 5
4th field: short (2-byte) integers, each element is an array of shape=(3,)
5th field: single precision floating point numbers, each element is an

array of shape=(2,3)
6th field: double precision complex numbers
7th field: (1-byte) Booleans

formats specification takes precedence over the data. For example, if a field is specified as integers in
buffer , but is specified as floats informats , it will be floats in the record array. If a field in thebuffer
is not convertible to the corresponding data type in theformats specification, e.g. from strings to numbers
(integers, floats, Booleans) or vice versa, an exception will be raised.

shape is the shape of the record array. It can be an integer, in which case it is equivalent to the number ofrows
in a table. It can also be a tuple where the record array is an N-D array withRecords as its elements.shape
must be consistent with the data inbuffer for buffer types (5) and (6), explained below.

names is a string containing the names of the fields, separated by commas. If there are more formats specified
than names, then default names will be used: If there are five fields specified informats but names=None
(default), then the field names will be:c1, c2, c3, c4, c5 . If names="a,b" , then the field names will
be: a, b, c3, c4, c5 .

If more names have been specified than there are formats, the extra names will be discarded. If duplicate names
are specified, aValueError will be raised. Field names are case sensitive, e.g. columnABCwill not be found
if it is referred to asabc or Abc (for example) when using thefield() method.

byteorder is a string of the valuebig or little , referring to big endian or little endian. This is useful
when reading (binary) data from a string or a file. If not specified, it will use thesys.byteorder value and

96 Chapter 12. Record Array

the result will be platform dependent for string or file input.

The first argument,buffer , may be any one of the following:

(1) None (default). The data block in the record array will not be initialized. The user must assign valid data
before trying to read the contents or before writing the record array to a disk file.

(2) a Python string containing binary data. For example:

>>> r=rec.array(’abcdefg’*100, formats=’i2,a3,i4’, shape=3, byteorder=’big’)
>>> print r
RecArray[
(24930, ’cde’, 1718051170),
(25444, ’efg’, 1633837924),
(25958, ’gab’, 1667523942)
]

(3) a Python file object for an open file. The data will be copied from the file, starting at the current position of
the read pointer, with byte order as specified inbyteorder .

(4) a record array. This results in a deep copy of the input record array; any other arguments toarray() will
be silently ignored.

(5) a list of numarrays. There must be one such numarray for each field. Theformats andshape arguments
to array() are not required, but if they are specified, they need to be consistent with the input arrays. The
shapes of all the input numarrays also need to be consistent to one another.

this will have 3 rows, each cell in the 2nd field is an array of 4 elements
note that the formats sepcification needs to reflect the data shape
>>> arr1=numarray.arange(3)
>>> arr2=numarray.arange(12,shape=(3,4))
>>> r=rec.array([arr1, arr2],formats=’i2,4f4’)

In this example,arr2 is cast up to float.

(6) a list of sequences. Each sequence contains the number(s)/string(s) of a record. The example in the intro-
duction uses such input, sometimes calledlonghandinput. The data types are automatically determined after
comparing all input data. Data of the same field will be cast to the highest type:

the first field uses the highest data type: Float64
>>> r=rec.array([[1,’abc’],(3.5, ’xx’)]); print r
RecArray[
(1.0, ’abc’),
(3.5, ’xx’)
]

unless overruled by theformats argument:

overrule the first field to short integers, second field to shorter strings
>>> r=rec.array([[1,’abc’],(3.5, ’xx’)],formats=’i2,a1’); print r
RecArray[
(1, ’a’),
(3, ’x’)
]

Inconsistent data in the same field will cause aValueError :

12.2. Record array functions 97

>>> r=rec.array([[1,’abc’],(’a’, ’xx’)])
ValueError: inconsistent data at row 1,field 0

A record array with multi-dimensional numarray cells in a field can also be constructed by using nested se-
quences:

>>> r=rec.array([[(11,12,13),’abc’],[(2,3,4), ’xx’]]); print r
RecArray[
(array([11, 12, 13]), ’abc’),
(array([2, 3, 4]), ’xx’)
]

letterCode ()
This function will list the letter codes acceptable by theformats argument inarray() .

12.3 Record array methods

RecArray object has these public methods:

field (fieldName)
fieldName can be either an integer (field index) or string (field name).

>>> r=rec.array([[11,’abc’,1.],[12, ’xx’, 2.]])
>>> print r.field(’c1’)
[11 12]
>>> print r.field(0) # same as field(’c1’)
[11 12]

To set values, simply use indexing or slicing, since each field is a numarray:

>>> r.field(2)[1]=1000; r.field(1)[1]=’xyz’
>>> r.field(0)[:]=999
>>> print r
RecArray[
(999, ’abc’, 1.0),
(999, ’xyz’, 1000.0)
]

info ()
This will display key attributes of the record array.

12.4 Record object

Each single record (orrow) in the record array is arecords.Record object. It has these methods:

field (fieldName)

setfield (fieldname, value)
Like the RecArray , a Record object has thefield method toget the field value. But since aRecord

98 Chapter 12. Record Array

object is not an array, it does not take an index or slice, so one cannot assign a value to it. So a separateset
method,setfield() , is necessary:

>>> r[1].field(0)
999
>>> r[1].setfield(0, -1)
>>> print r[1]
(-1, ’xy’, 1000.0)

Like thefield() method inRecArray , fieldName in Record ’s field() andsetfield() methods
can be either an integer (index) or a string (field name).

12.4. Record object 99

100

CHAPTER

THIRTEEN

Object Array

13.1 Introduction

numarray , like Numeric , has support for arrays of objects in addition to arrays of numbers. Arrays of objects are
supported by thenumarray.objects module. TheObjectArray class is used to represent object arrays.

The easiest way to construct an object array is to use thenumarray.objects.array() function. For example:

>>> import numarray.objects as obj
>>> o = obj.array([’S’, ’J’, 1, ’M’])
>>> print o
[’S’ ’J’ 1 ’M’]
>>> print o + o
[’SS’ ’JJ’ 2 ’MM’]

In this example, the array contains 3 Python strings and an integer, but the array elements can be any Python object. For
each pair of elements, theadd operator is applied. For strings,add is defined as string concatenation. For integers,
add is defined as numerical addition. For a class object, theadd and radd methods would define the
result.

ObjectArray is defined as a subclass of numarray’s structural array class,NDArray . As a result, we can do the
usual indexing and slicing:

>>> import numarray.objects as obj
>>> print s[0]
’S’
>>> print s[:2]
[’S’ ’J’]
>>> s[:2] = ’changed’
>>> print s
[’changed’ ’changed’ 1 ’M’]
>>> a = obj.fromlist(numarray.arange(100), shape=(10,10))
>>> a[2:5, 2:5]
ObjectArray([[22, 23, 24],

[32, 33, 34],
[42, 43, 44]])

13.2 Object array functions

101

array (sequence=None, shape=None, typecode=’O’)
The functionarray is, for most practical purposes, all a user needs to know to construct an object array.

The first argument,sequence , can be an arbitrary sequence of Python objects, such as a list, tuple, or another
object array.

>>> import numarray.objects as obj
>>> class C:
... pass
>>> c = C()
>>> a = obj.array([c, c, c])
>>> a
ObjectArray([c, c, c])

Like objects in Python lists, objects in object arrays are referred to, not copied, so changes to the objects are
reflected in the originals because they are one and the same.

>>> a[0].attribute = ’this’
>>> c.attribute
’this’

The second argument,shape , optionally specifies the shape of the array. If noshape is specified, the shape
is implied by the sequence.

>>> import numarray.objects as obj
>>> class C:
... pass
>>> c = C()
>>> a = obj.fromlist([c, c, c])
>>> a
ObjectArray([c, c, c])

The last argument,typecode , is there for backward compatibility with Numeric; it must be specified as ’O’.

asarray (obj)
asarray converts sequences which are not object arrays into object arrays. Ifobj is already an
ObjectArray , it is returned unaltered.

>>> import numarray.objects as obj
>>> a = obj.asarray([1,’’this’’,’’that’’])
>>> a
ObjectArray([1 ’this’ ’that’])
>>> b = obj.asarray(a)
>>> b is a
True

choose (selector, population, output=None)
choose selects elements frompopulationbased on the values inselector, either returning the selected array
or storing it in the optionalObjectArray specified byoutput. selectorshould be an integer sequence where
each element is within the range 0 tolen population. populationshould be a sequence ofObjectArray s.
The shapes ofselectorand each element ofpopulationmust be mutually broadcastable.

102 Chapter 13. Object Array

>>> import numarray.objects as obj
>>> s = num.arange(25, shape=(5,5)) % 3
>>> p = obj.fromlist(["foo", 1, {"this":"that"}])
>>> obj.choose(s, p)
ObjectArray([[’foo’, 1, {’this’: ’that’}, ’foo’, 1],

[{’this’: ’that’}, ’foo’, 1, {’this’: ’that’}, ’foo’],
[1, {’this’: ’that’}, ’foo’, 1, {’this’: ’that’}],
[’foo’, 1, {’this’: ’that’}, ’foo’, 1],
[{’this’: ’that’}, ’foo’, 1, {’this’: ’that’}, ’foo’]])

sort (objects, axis=-1, output=None)
sort sorts the elements fromobjectsalong the specifiedaxis. If an output array is specified, the result is stored
there and the return value is None, otherwise the sort is returned.

>>> import numarray.objects as obj
>>> a = obj.ObjectArray(shape=(5,5))
>>> a[:] = range(5,0,-1)
>>> obj.sort(a)
ObjectArray([[1, 2, 3, 4, 5],

[1, 2, 3, 4, 5],
[1, 2, 3, 4, 5],
[1, 2, 3, 4, 5],
[1, 2, 3, 4, 5]])

>>> a[:] = range(5,0,-1)
>>> a.transpose()
>>> obj.sort(a, axis=0)
ObjectArray([[1, 1, 1, 1, 1],

[2, 2, 2, 2, 2],
[3, 3, 3, 3, 3],
[4, 4, 4, 4, 4],
[5, 5, 5, 5, 5]])

argsort (objects, axis=-1, output=None)
argsort returns the sort order for the elements fromobjectsalong the specifiedaxis. If an output array is
specified, the result is stored there and the return value is None, otherwise the sort order is returned.

>>> import numarray.objects as obj
>>> a = obj.ObjectArray(shape=(5,5))
>>> a[:] = [’e’,’d’,’c’,’b’,’a’]
>>> obj.argsort(a)
array([[4, 3, 2, 1, 0],

[4, 3, 2, 1, 0],
[4, 3, 2, 1, 0],
[4, 3, 2, 1, 0],
[4, 3, 2, 1, 0]])

take (objects, indices, axis=0)
take returns elements ofobjectsspecified by tuple of index arraysindicesalong the specifiedaxis.

>>> import numarray.objects as obj
>>> o = obj.fromlist(range(10))
>>> a = obj.arange(5)*2
>>> obj.take(o, a)
ObjectArray([0, 2, 4, 6, 8])

13.2. Object array functions 103

put (objects, indices, values, axis=-1)
put storesvaluesat the locations ofobjectsspecified by tuple of index arraysindices.

>>> import numarray.objects as obj
>>> o = obj.fromlist(range(10))
>>> a = obj.arange(5)*2
>>> obj.put(o, a, 0); o
ObjectArray([0, 1, 0, 3, 0, 5, 0, 7, 0, 9])

add (objects1, objects2, out=None)
numarray.objects defines universal functions which are named after and use the operators defined in the
standard library module operator.py. In addition, the operator hooks of theObjectArray class are defined to
call the operators.add applies theadd operator to corresponding elements ofobjects1andobjects2. Like the
ufuncs in the numerical side of numarray, the object ufuncs support reduction and accumulation. In addition
to add, there are ufuncs defined for every unary and binary operator function in the standard library module
operator.py. Some of these are given additional synonyms so that they use numarray naming conventions, e.g.
sub has an alias namedsubtract .

>>> import numarray.objects as obj
>>> a = obj.fromlist(["t","u","w"])
>>> a
ObjectArray([’t’, ’u’, ’w’])
>>> a+a
ObjectArray([’tt’, ’uu’, ’ww’])
>>> obj.add(a,a)
ObjectArray([’tt’, ’uu’, ’ww’])
>>> obj.add.reduce(a)
’tuw’ # not, as in the docs, an ObjectArray
>>> obj.add.accumulate(a)
ObjectArray([’t’, ’tu’, ’tuw’]) # w, not v

>>> a = obj.fromlist(["t","u","w"])
>>> a
ObjectArray([’t’, ’u’, ’w’])
>>> a+a
ObjectArray([’tt’, ’uu’, ’ww’])
>>> obj.add(a,a)
ObjectArray([’tt’, ’uu’, ’ww’])
>>> obj.add.reduce(a)
ObjectArray(’tuv’)
>>> obj.add.accumulate(a)
ObjectArray([’t’, ’tu’, ’tuv’])

13.3 Object array methods

ObjectArray maps each of its operator hooks (e.g. add) onto the corresponding object ufunc (e.g.
numarray.objects.add). In addition to its hook methods,ObjectArray has these public methods:

tolist ()
tolist returns a nested list of objects corresponding to all the elements in the array.

copy ()
copy returns a shallow copy of the object array.

astype (type)
astype returns either a copy of theObjectArray or converts it into a numerical array of the specifiedtype.

104 Chapter 13. Object Array

info ()
This will display key attributes of the object array.

13.3. Object array methods 105

106

CHAPTER

FOURTEEN

C extension API

This chapter describes the different available C-APIs fornumarray based extension modules.

While this chapter describes thenumarray -specifics for writing extension modules, a basic understanding of
Pythonextension modules is expected. See Python’sExtending and Embeddingtutorial and thePython/C API.

The numarray C-API has several different facets, and the first three facets each make different tradeoffs between
memory use, speed, and ease of use. An additional facet provides backwards compatability with legacy Numeric code.
The final facet consists of miscellaneous function calls used to implement and utilize numarray, that were not part of
Numeric.

In addition to most of the basic functionality provided by Numeric, these APIs provide access to misaligned,
byteswapped, and discontiguousnumarray s. Byteswapped arrays arise in the context of portable binary data formats
where the byteorder specified by the data format is not the same as the host processor byte order. Misaligned arrays
arise in the context of tabular data: files of records where arrays are superimposed on the column formed by a single
field in the record. Discontiguous arrays arise from operations which permute the shape and strides of an array, such
as reshape.

Numeric compatability This API provides a reasonable (if not complete) simulation of the Numeric C-API. It is
written in terms of the numarray high level API (discussed below) so that misbehaved numarrays are copied prior
to processing with legacy Numeric code. This API was actually written last because of the extra considerations
in numarray not found in Numeric. Nevertheless, it is perhaps the most important because it enables writing
extension modules which can be compiled for either numarray or Numeric. It is also very useful for porting
existing Numeric code. See section 14.3.

High-level This is the cleanest and eaisiest to use API. It creates temporary arrays to handle difficult cases (discon-
tiguous, byteswapped, misaligned) in C code. Code using this API is written in terms of a pointer to a contiguous
1D array of C data. See section 14.4.

Element-wise This API handles misbehaved arrays without creating temporaries. Code using this API is written to
access single elements of an array via macros or functions.Note: These macros are relatively slow compared
to raw access to C data, and the functions even slower. See section 14.5.

One-dimensional Code using this API get/sets consecutive elements of the inner dimension of an array, enabling
the API to factor out tests for aligment and byteswapping to one test per array rather than one test per element.
Fewer tests means better performance, but at a cost of some temporary data and more difficult usage. See section
14.6.

New numarray functions This last facet of the C-API consists of function calls which have been added to numarray
which are orthogonal to each of the 3 native access APIs and not part of the original Numeric. See section 14.7

107

14.1 Numarray extension basics

There’s a couple things you need to do in order to access numarray’s C-API in your own C extension module:

14.1.1 Include libnumarray.h

Near the top of your extension module add the lines:

#include "Python.h"
#include "libnumarray.h"

This gives your C-code access to the numarray typedefs, macros, and function prototypes as well as the Python C-API.

14.1.2 Alternate include method

There’s an alternate form of including libnumarray.h or arrayobject.h some people may prefer provided that they’re
willing to ignore the case where the numarray includes are not installed in the standard location. The advantage of the
following approach is that it automatically works with the default path to the Python include files which the distutils
always provide.

#include "Python.h"
#include "numarray/libnumarray.h"

14.1.3 Import libnumarray

In your extension module’s initialization function, add the line:

import_libnumarray();

import libnumarray() is actually a macro which sets up a pointer to the numarray C-API function pointer table. If you
forget to call import libnumarray(), your extension module will crash as soon as you call a numarray API function,
because your application will attempt to dereference a NULL pointer.

Note that for the Numeric compatible API you should substitute arrayobject.h for libnumarray.h and importarray()
for import libnumarray() respectively. Unlike other versions of numarray prior to 1.0, arrayobject.h now includes
only the Numeric simulation API. To use the rest of the numarray API, youmustinclude libnumarray.h. To use both,
you must include both arrayobject.h and libnumarray.h, and you must both importarray() and importlibnumarray()
in your module initialization function.

14.1.4 Writing a simple setup.py file for a numarray extension

One important practice for writing an extension module is the creation of a distutils setup.py file which automates both
extension installation from source and the creation of binary distributions. Here is a simple setup.py which builds a
single extension module from a single C source file:

108 Chapter 14. C extension API

from distutils.core import setup, Extension
from numarray.numarrayext import NumarrayExtension
import sys

if not hasattr(sys, ’version_info’) or sys.version_info < (2,2,0,’alpha’,0): raise SystemExit, "Python 2.2 or later required to build this module."

setup(name = "buildHistogram",
version = "0.1",
description = "",
packages=[""],
package_dir={"":""},
ext_modules=[NumarrayExtension("buildHistogram",[’buildHistogram.c’],\

include_dirs=["./"],
library_dirs=["./"],
libraries=[’m’])])

NumarrayExtension is recommended rather than it’s distutils baseclassExtension because
NumarrayExtension knows where to find the numarray headers regardless of where the numarray installer or
setup.py command line options put them. A disadvantage of using NumarrayExtension is that it is numarray specific,
so it does not work for compiling Numeric versions of the extension.

See the Python manuals “Installing Python Modules” and “Distributing Python Modules” for more information on
how to use distutils.

14.2 Fundamental data structures

14.2.1 Numarray Numerical Data Types

Numarray hides the C implementation of its basic array elements behind a set of C typedefs which specify the absolute
size of the type in bits. This approach enables a programmer to specify data items of arrays and extension functions in
an explicit yet portable manner. In contrast, basic C types are platform relative, and so less useful for describing real
physical data. Here are the names of the concrete Numarray element types:

• Bool

• Int8, UInt8

• Int16, UInt16

• Int32, UInt32

• Int64, UInt64

• Float32, Float64

• Complex32, Complex64

14.2.2 NumarrayType

The type of a numarray is communicated in C via one of the following enumeration constants. Type codes which
are backwards compatible with Numeric are defined in terms of these constants, but use these if you’re not already
using the Numeric codes. These constants communicate type requirements between one function and another, since
in C, you cannot pass a typedef as a value. tAny is used to specify both “no type requirement” and “no known type”
depending on context.

14.2. Fundamental data structures 109

typedef enum
{

tAny,

tBool,
tInt8, tUInt8,
tInt16, tUInt16,
tInt32, tUInt32,
tInt64, tUInt64,
tFloat32, tFloat64,
tComplex32, tComplex64,

tDefault = tFloat64,

#if LP64
tLong = tInt64

#else
tLong = tInt32

#endif

} NumarrayType;

14.2.3 PyArray Descr

PyArray Descr is used to hold a few parameters related to the type of an array and exists mostly for backwards
compatability with Numeric.type numis a NumarrayType value.elsizeindicates the number of bytes in one element
of an array of that type.typeis a Numeric compatible character code.

Numarray’sPyArray Descr is currently missing the type-casting,ones , andzeroes functions. Extensions
which use these missing Numeric features will not yet compile. Arrays of type Object are not yet supported.

typedef struct {
int type_num; /* PyArray_TYPES */
int elsize; /* bytes for 1 element */
char type; /* One of "cb1silfdFD " Object arrays not supported. */

} PyArray_Descr;

14.2.4 PyArrayObject

The fundamental data structure of numarray is the PyArrayObject, which is named and layed out to provide source
compatibility with Numeric. It is compatible with most but not all Numeric code. The constant MAXDIM, the
maximum number of dimensions in an array, is defined as 40. It should be noted that unlike earlier versions of
numarray, the present PyArrayObject structure is a first class python object, with full support for the number protocols
in C. Well-behaved arrays have mutable fields which will reflect modifications back into Python“for free”.

110 Chapter 14. C extension API

typedef int maybelong; /* towards 64-bit without breaking extensions. */

typedef struct {
/* Numeric compatible stuff */

PyObject_HEAD
char *data; /* points to the actual C data for the array */
int nd; /* number of array shape elements */
maybelong *dimensions; /* values of shape elements */
maybelong *strides; /* values of stride elements */
PyObject *base; /* unused, but don’t touch! */
PyArray_Descr *descr; /* pointer to descriptor for this array’s type */
int flags; /* bitmask defining various array properties */

/* numarray extras */

maybelong _dimensions[MAXDIM]; /* values of shape elements */
maybelong _strides[MAXDIM]; /* values of stride elements */
PyObject *_data; /* object must meet buffer API */
PyObject *_shadows; /* ill-behaved original array. */
int nstrides; /* elements in strides array */
long byteoffset; /* offset into buffer where array data begins */
long bytestride; /* basic seperation of elements in bytes */
long itemsize; /* length of 1 element in bytes */

char byteorder; /* NUM_BIG_ENDIAN, NUM_LITTLE_ENDIAN */

char _unused0;
char _unused1;

/* Don’t expect the following vars to stay around. Never use them.
They’re an implementation detail of the get/set macros. */

Complex64 temp; /* temporary for get/set macros */
char * wptr; /* working pointer for get/set macros */

} PyArrayObject;

14.2.5 Flag Bits

The following are the definitions for the bit values in theflagsfield of each numarray. Low order bits are Numeric
compatible, higher order bits were added by numarray.

14.2. Fundamental data structures 111

/* Array flags */
#define CONTIGUOUS 1 /* compatible, depends */
#define OWN_DIMENSIONS 2 /* always false */
#define OWN_STRIDES 4 /* always false */
#define OWN_DATA 8 /* always false */
#define SAVESPACE 0x10 /* not used */

#define ALIGNED 0x100 /* roughly: data % itemsize == 0 */
#define NOTSWAPPED 0x200 /* byteorder == sys.byteorder */
#define WRITABLE 0x400 /* data buffer is writable */

#define IS_CARRAY (CONTIGUOUS | ALIGNED | NOTSWAPPED)

14.3 Numeric simulation API

These notes describe the Numeric compatability functions which enable numarray to utilize a subset of the extensions
written for Numeric (NumPy). Not all Numeric C-API features and therefore not all Numeric extensions are currently
supported. Users should be able to utilize suitable extensions written for Numeric within the numarray environment
by:

1. Writing a numarray setup.py file.

2. Scanning the extension C-code for all instances of array creation and return and making corrections as needed
and specified below.

3. Re-compiling the Numeric C-extension for numarray.

Numarray’s compatability with Numeric consists of 3 things:

1. A replacement header file, ”arrayobject.h” which supplies simulation functions and macros for numarray just as
the original arrayobject.h supplies the C-API for Numeric.

2. Layout and naming of the fundamental numarray C-type,PyArrayObject , in a Numeric source compatible
way.

3. A set of ”simulation” functions. These functions have the same names and parameters as the original Numeric
functions, but operate on numarrays. The simulation functions are also incomplete; features not currently sup-
ported should result in compile time warnings.

14.3.1 Simulation Functions

The basic use of numarrays by Numeric extensions is achieved in the extension function’s wrapper code by:

1. Ensuring creation of array objects by calls to simulation functions.

2. DECREFing each array or calling PyArrayReturn.

Unlike prior versions of numarray, this version *does* support access to array objects straight out of
PyArg ParseTuple. This is a consequence of a change to the underlying object model, where a class instance has
been replaced by PyArrayObject. Nevertheless, the “right” way to access arrays is either via the high level interface
or via emulated Numeric factory functions. That way, access to other python sequences is supported as well. Using

112 Chapter 14. C extension API

the “right” way for numarray is also more important than for Numeric because numarray arrays may be byteswapped
or misaligned and hence unusable from simple C-code. It should be noted that the numarray and Numeric are not
completely compatible, and therefore this API does not provide support for string arrays or object arrays.

The creation of array objects is illustrated by the following of wrapper code for a 2D convolution function:

#include "python.h"
#include "arrayobject.h"

static PyObject *
Py_Convolve2d(PyObject *obj, PyObject *args)
{

PyObject *okernel, *odata, *oconvolved=Py_None;
PyArrayObject *kernel, *data, *convolved;

if (!PyArg_ParseTuple(args, "OO|O", &okernel, &odata, &oconvolved)) {
return PyErr_Format(_Error,

"Convove2d: Invalid parameters.");
goto _fail;

}

The first step was simply to get object pointers to the numarray parameters to the convolution function: okernel, odata,
and oconvolved. Oconvolved is an optional output parameter, specified with a default value of PyNone which is
used when only 2 parameters are supplied at the python level. Each of the “o” parameters should be thought of as an
arbitrary sequence object, not necessarily an array.

The next step is to call simulation functions which convert sequence objects into PyArrayObjects. In a Numeric exten-
sion, these calls map tuples and lists onto Numeric arrays and assert their dimensionality as 2D. The Numeric simula-
tion functions first map tuples, lists, and misbehaved numarrays onto well-behaved numarrays. Calls to these functions
transparently use the numarray high level interface and provide visibility only to aligned and non-byteswapped array
objects.

kernel = (PyArrayObject *) PyArray_ContiguousFromObject(
okernel, PyArray_DOUBLE, 2, 2);

data = (PyArrayObject *) PyArray_ContiguousFromObject(
odata, PyArray_DOUBLE, 2, 2);

if (!kernel || !data) goto _fail;

Extra processing is required to handle the output arrayconvolved, cloning it fromdata if it was not specified. Code
should be supplied, but is not, to verify that convolved and data have the same shape.

if (convolved == Py_None)
convolved = (PyArrayObject *) PyArray_FromDims(

data->nd, data->dimensions, PyArray_DOUBLE);
else

convolved = (PyArrayObject *) PyArray_ContiguousFromObject(
oconvolved, PyArray_DOUBLE, 2, 2);

if (!convolved) goto _fail;

After converting all of the input paramters intoPyArrayObject s, the actual convolution is performed by a seperate
function. This could just as well be done inline:

14.3. Numeric simulation API 113

Convolve2d(kernel, data, convolved);

After processing the arrays, they should be DECREF’ed or returned usingPyArray Return . It is generally not
possible to directly return a numarray object usingPy BuildValue because the shadowing of mis-behaved arrays
needs to be undone. CallingPyArray Return destroys any temporary and passes the numarray back to Python.

Py_DECREF(kernel);
Py_DECREF(data);
if (convolved != Py_None) {

Py_DECREF(convolved);
Py_INCREF(Py_None);
return Py_None;

} else
return PyArray_Return(convolved);

_fail:
Py_XDECREF(kernel);
Py_XDECREF(data);
Py_XDECREF(convolved);
return NULL;

}

Byteswapped or misaligned arrays are handled by a process of shadowing which works like this:

1. When a ”misbehaved” numarray is accessed via the Numeric simulation functions, first a well-behaved tempo-
rary copy (shadow) is created by NAIoArray.

2. Operations performed by the extension function modifiy the data buffer belonging to the shadow.

3. On extension function exit, the shadow array is copied back onto the original and the shadow is freed.

All of this is transparent to the user; if the original array is well-behaved, it works much like it always did; if not,
what would have failed altogether works at the cost of extra temporary storage. Users which cannot afford the cost of
shadowing need to use numarray’s native elementwise or 1D APIs.

14.3.2 Numeric Compatible Functions

The following functions are currently implemented:
PyObject* PyArray FromDims (int nd, int *dims, int type)

This function will allocate a new numarray.

An array created with PyArrayFromDims can be used as a temporary or returned using PyArrayReturn.

Used as a temporary, calling PyDECREF deallocates it.

PyObject* PyArray FromDimsAndData (int nd, int *dims, int type, char *data)
This function will allocate a numarray of the specified shape and type which will refer to the data buffer specified
by data. The contents ofdatawill not be copied nor willdatabe deallocated upon the deletion of the array.

PyObject* PyArray ContiguousFromObject (PyObject *op, int type, int mindim, int max dim)
object for a contiguous numarray of ’type’ created from the sequence object ’op’. If ’op’ is a contiguous, aligned,
non-byteswapped numarray, then the simulation object refers to it directly. Otherwise a well-behaved numarray
will be created from ’op’ and the simulation object will refer to it. mindim and max dim bound the expected
rank as in Numeric.min dim==max dim specifies an exact rank.min dim==max dim==0 specifiesany
rank.

114 Chapter 14. C extension API

PyObject* PyArray CopyFromObject (PyObject *op, int type, int mindim, int max dim)
array, similar to PyArrayFromContiguousObject, but always returning an simulation object referring to a new
numarray copied from the original sequence.

PyObject* PyArray FromObject (PyObject *op, int type, int mindim, int max dim)
Returns and simulation object based on ’op’, possibly discontiguous. The strides array must be used to access
elements of the simulation object.

If ’op’ is a byteswapped or misaligned numarray, FromObject creates a temporary copy and the simulation
object refers to it.

If ’op’ is a nonswapped, aligned numarray, the simulation object refers to it.

If ’op’ is some other sequence, it is converted to a numarray and the simulation object refers to that.

PyObject* PyArray Return (PyArrayObject *apr)
Returns simulation object ’apr’ to python. The simulation object itself is destructed. The numarray it refers to
(base) is returned as the result of the function.

An additional check is (or eventually will be) performed to guarantee that rank-0 arrays are converted to appro-
priate python scalars.

PyArray Return has no net effect on the reference count of the underlying numarray.

int PyArray As1D(PyObject **op, char **ptr, int *d1, int typecode)
Copied from Numeric verbatim.

int PyArray As2D(PyObject **op, char ***ptr, int *d1, int *d2, int typecode)
Copied from Numeric verbatim.

int PyArray Free (PyObject *op, char *ptr)
Copied from Numeric verbatim.Note: This means including bugs and all!

int PyArray Check (PyObject *op)
This function returns 1 if op is a PyArrayObject.

int PyArray Size (PyObject *op)
This function returns the total element count of the array.

int PyArray NBYTES(PyArrayObject *op)
This function returns the total size in bytes of the array, and assumes that bytestride == itemsize, so that the size
is product(shape)*itemsize.

PyObject* PyArray Copy(PyArrayObject *op)
This function returns a copy of the array ’op’. The copy returned is guaranteed to be well behaved, i.e. neither
byteswapped nor misaligned.

int PyArray CanCastSafely (PyArrayObject *op, int type)
This function returns 1 IFF the array ’op’ can be safely cast to ’type’, otherwise it returns 0.

PyArrayObject* PyArray Cast (PyArrayObject *op, int type)
This function casts the array ’op’ into an equivalent array of type ’type’.

PyArray Descr* PyArray DescrFromType (int type)
This function returns a pointer to the array descriptor for ’type’. The numarray version of PyArrayDescr is
incomplete and does not support casting, getitem, setitem, one, or zero.

int PyArray isArray(PyObject *o) (T)
his macro is designed to fail safe and return 0 when numarray is not installed at all. When numarray is installed,
it returns 1 iff object ’o’ is a numarray, and 0 otherwise. This macro facilitates the optional use of numarray
within an extension.

14.3.3 Unsupported Numeric Features

14.3. Numeric simulation API 115

• PyArrayError

• PyArray ObjectType()

• PyArray Reshape()

• PyArray SetStringFunction()

• PyArray SetNumericOps()

• PyArray Take()

• UFunc API

14.4 High-level API

The high-level native API accepts an object (which may or may not be an array) and transforms the object into an array
which satisfies a set of “behaved-ness requirements”. The idea behind the high-level API is to transparently convert
misbehaved numarrays, ordinary sequences, and python scalars into C-arrays. A “misbehaved array” is one which is
byteswapped, misaligned, or discontiguous. This API is the simplest and fastest, provided that your arrays are small.
If you find your program is exhausting all available memory, it may be time to look at one of the other APIs.

14.4.1 High-level functions

The high-level support functions for interchangingnumarray s between Python and C are as follows:

PyArrayObject* NA InputArray (PyObject *seq, NumarrayType t, int requires)
The purpose of NAInputArray is to transfer array data from Pythonto C.

PyArrayObject* NA OutputArray (PyObject *seq, NumarrayType t, int requires)
The purpose of NAOutputArray is to transfer data from C to Python. The output array must be a PyArrayOb-
ject, i.e. it cannot be an arbitrary Python sequence.

PyArrayObject* NA IoArray (PyObject *seq, NumarrayType t, int requires)
NA IoArray has fully bidirectional data transfer, creating the illusion of call-by-reference.

For a well-behaved writable array, there is no difference between the three, as no temporary is created and the returned
object is identical to the original object (with an additional reference). For a mis-behaved input array, a well-behaved
temporary will be created and the data copied from the original to the temporary. Since it is an input, modifications to
its contents are not guaranteed to be reflected back to Python, and in the case where a temporary was created, won’t
be. For a mis-behaved output array, any data side-effects generated by the C code will be safely communicated back
to Python, but the initial array contents are undefined. For an I/O array, any required temporary will be initialized to
the same contents as the original array, and any side-effects caused by C-code will be copied back to the original array.
The array factory routines of the Numeric compatability API are written in terms of NAIoArray.

The return value of each function (NA InputArray , NA OutputArray , or NA IoArray) is either a reference
to the original array object, or a reference to a temporary array. Following execution of the C-code in the extension
function body this pointer shouldalwaysbe DECREFed. When a temporary is DECREFed, it is deallocated, possibly
after copying itself onto the original array. The one exception to this rule is that you should not DECREF an array
returned via the NAReturnOutput function.

The seqparameter specifies the original numeric sequence to be interfaced. Nested lists and tuples of numbers can
be converted byNA InputArray andNA IoArray into a temporary array. The temporary is lost on function
exit. Strictly speaking, allowing NAIoArray to accept a list or tuple is a wart, since it will lose any side effects. In
principle, communication back to lists and tuples can be supported but is not currently.

The t parameter is an enumeration value which defines the type the array data should be converted to. Arrays of the
same type are passed through unaltered, while mis-matched arrays are cast into temporaries of the specified type. The

116 Chapter 14. C extension API

value tAny may be specified to indicate that the extension function can handle any type correctly so no temporary
should is required.

The requiresinteger indicates under what conditions, other than type mismatch, a temporary should be made. The
simple way to specify it is to useNUMC ARRAY. This will cause the API function to make a well-behaved temporary
if the original is byteswapped, misaligned, or discontiguous.

There is one other pair of high level function which serves to return output arrays as the function value:
NA OptionalOutputArray and NAReturnOutput.

PyArrayObject* NA OptionalOutputArray (PyObject *seq, NumarrayType t, int requires, PyObject
*master)

NA OptionalOutputArray is essentiallyNA OutputArray , but with one twist: if the original array
seqhas the valueNULLor Py None, a copy ofmasteris returned. This facilitates writing functions where the
output array may or may-not be specified by the Python user.

PyObject* NA ReturnOutput (PyObject *seq, PyObject *shadow)
NA ReturnOutput accepts as parameters both the originalseq and the value returned from
NA OptionalOutputArray , shadow. If seqis Py None or NULL, thenshadowis returned. Otherwise,
an output array was specified by the user, andPy None is returned. This facilitates writing functions in the
numarray style where the specification of an output array renders the function “mute”, with all side-effects in
the output array and None as the return value.

14.4.2 Behaved-ness Requirements

Calls to the high level API specify a set of requirements that incoming arrays must satisfy. The requirements set is
specified by a bit mask which is or’ed together from bits representing individual array requirements. An ordinary
C array satisfies all 3 requirements: it is contiguous, aligned, and not byteswapped. It is possible to request arrays
satisfying any or none of the behavedness requirements. Arrays which do not satisfy the specified requirements are
transparently “shadowed” by temporary arrays which do satisfy them. By specifyingNUMUNCONVERTED, a caller
is certifying that his extension function can correctly and directly handle the special cases possible for aNumArray ,
excluding type differences.

typedef enum
{

NUM_CONTIGUOUS=1,
NUM_NOTSWAPPED=2,
NUM_ALIGNED=4,
NUM_WRITABLE=8,
NUM_COPY=16,

NUM_C_ARRAY = (NUM_CONTIGUOUS | NUM_ALIGNED | NUM_NOTSWAPPED),
NUM_UNCONVERTED = 0

}

NA InputArray will return a guaranteed writable result ifNUMWRITABLEis specified. A writable temporary will
be made for arrays which have readonly buffers. Any changes made to a writable input arraymaybe lost at extension
exit time depending on whether or not a temporary was required.NA InputArray will also return a guaranteed
writable result by specifyingNUMCOPY; with NUMCOPY, a temporary isalwaysmade and changes to it arealways
lost at extension exit time.

OmittingNUMWRITABLEandNUMCOPYfrom therequiresof NA InputArray asserts that you will not modify
the array buffer in your C code. Readonly arrays (e.g. from a readonly memory map) which you attempt to modify
can result in a segfault ifNUMWRITABLEor NUMCOPYwas not specified.

Arrays passed toNA IoArray andNA OutputArray must be writable or they will raise an exception; specifing
NUMWRITABLEor NUMCOPYto these functions has no effect.

14.4. High-level API 117

14.4.3 Example

A C wrapper function using the high-level API would typically look like the following.1

#include "Python.h"
#include "libnumarray.h"

static PyObject *
Py_Convolve1d(PyObject *obj, PyObject *args)
{

PyObject *okernel, *odata, *oconvolved=Py_None;
PyArrayObject *kernel, *data, *convolved;

if (!PyArg_ParseTuple(args, "OO|O", &okernel, &odata, &oconvolved)) {
PyErr_Format(_convolveError,

"Convolve1d: Invalid parameters.");
goto _fail;

}

First, define local variables and parse parameters.Py Convolve1d expects two or three array parameters inargs:
the convolution kernel, the data, and optionally the return array. We define two variables for each array parameter, one
which represents an arbitrary sequence object, and one which represents a PyArrayObject which contains a conversion
of the sequence. If the sequence object was already a well-behaved numarray, it is returned without making a copy.

/* Align, Byteswap, Contiguous, Typeconvert */
kernel = NA_InputArray(okernel, tFloat64, NUM_C_ARRAY);
data = NA_InputArray(odata, tFloat64, NUM_C_ARRAY);
convolved = NA_OptionalOutputArray(oconvolved, tFloat64, NUM_C_ARRAY, data);

if (!kernel || !data || !convolved) {
PyErr_Format(_convolveError,

"Convolve1d: error converting array inputs.");
goto _fail;

}

These calls to NAInputArray and OptionalOutputArray require that the arrays be aligned, contiguous, and not
byteswapped, and of type Float64, or a temporary will be created. If the user hasn’t provided a output array we
askNA OptionalOutputArray to create a copy of the inputdata. We also check that the array screening and
conversion process succeeded by verifying that none of the array pointers is NULL.

1This function is taken from the convolve example in the source distribution.

118 Chapter 14. C extension API

if ((kernel->nd != 1) || (data->nd != 1)) {
PyErr_Format(_convolveError,

"Convolve1d: arrays must have 1 dimension.");
goto _fail;

}

if (!NA_ShapeEqual(data, convolved)) {
PyErr_Format(_convolveError,
"Convolve1d: data and output arrays need identitcal shapes.");
goto _fail;

}

Make sure we were passed one-dimensional arrays, and data and output have the same size.

Convolve1d(kernel->dimensions[0], NA_OFFSETDATA(kernel),
data->dimensions[0], NA_OFFSETDATA(data),
NA_OFFSETDATA(convolved));

Call the C function actually performing the work. NAOFFSETDATA returns the pointer to the first element of the
array, adjusting for any byteoffset.

Py_XDECREF(kernel);
Py_XDECREF(data);

Decrease the reference counters of the input arrays. These were increased byNA InputArray . Py XDECREF
tolerates NULL. DECREF’ing the PyArrayObject is how temporaries are released and in the case of IO and Output
arrays, copied back onto the original.

/* Align, Byteswap, Contiguous, Typeconvert */
return NA_ReturnOutput(oconvolved, convolved);

_fail:
Py_XDECREF(kernel);
Py_XDECREF(data);
Py_XDECREF(convolved);
return NULL;

}

Now return the results, which are either stored in the user-supplied arrayoconvolvedandPy None is returned, or if
the user didn’t supply an output array the temporaryconvolvedis returned.

If your C function creates the output array you can use the following sequence to pass this array back to Python:

14.4. High-level API 119

double *result;
int m, n;
.
.
.
result = func(...);
if(NULL == result)

return NULL;
return NA_NewArray((void *)result, tFloat64, 2, m, n);

}

The C functionfunc returns a newly allocated (m, n) array inresult. After we check that everything is ok, we
create a new numarray usingNA NewArray and pass it back to Python.NA NewArray creates anumarray
with NUMC ARRAYproperties. If you wish to create an array that is byte-swapped, or misaligned, you can use
NA NewAll .

The C-code of the core convolution function is uninteresting. The main point of the example is that when using the
high-level API, numarray specific code is confined to the wrapper function. The interface for the core function can be
written in terms of primitive numarray/C data items, not objects. This is possible because the high level API can be
used to deliver C arrays.

static void Convolve1d(long ksizex, Float64 *kernel,
long dsizex, Float64*data, Float64 *convolved)

{
long xc; long halfk = ksizex/2;

for(xc=0; xc<halfk; xc++)
convolved[xc] = data[xc];

for(xc=halfk; xc<dsizex-halfk; xc++) {
long xk;
double temp = 0;
for (xk=0; xk<ksizex; xk++)

temp += kernel[xk]*data[xc-halfk+xk];
convolved[xc] = temp;

}

for(xc=dsizex-halfk; xc<dsizex; xc++)
convolved[xc] = data[xc];

}

14.5 Element-wise API

The element-wise in-place API is a family of macros and functions designed to get and set elements of arrays which
might be byteswapped, misaligned, discontiguous, or of a different type. You can obtainPyArrayObject s for
these misbehaved arrays from the high-level API by specifying fewer requirements (perhaps just 0, rather than
NUM C ARRAY). In this way, you can avoid the creation of temporaries at a cost of accessing your array with
these macros and functions and a significant performance penalty. Make no mistake, if you have the memory, the high
level API is the fastest. The whole point of this API is to support cases where the creation of temporaries exhausts
either the physical or virtual address space. Exhausting physical memory will result in thrashing, while exhausting
the virtual address space will result in program exception and failure. This API supports avoiding the creation of the
temporaries, and thus avoids exhausting physical and virual memory, possibly improving net performance or even
enabling program success where simpler methods would just fail.

120 Chapter 14. C extension API

14.5.1 Element-wise functions

The single element macros each access one element of an array at a time, and specify the array type in two places:
as part of the PyArrayObject type descriptor, and as “type”. The former defines what the array is, and the latter is
required to produce correct code from the macro. They shouldmatch. When you pass “type” into one of these macros,
you are defining the kind of array the code can operate on. It is an error to pass a non-matching array to one of these
macros. One last piece of advice: call these macros carefully, because the resulting expansions and error messages are
a *obscene*. Note: the type parameter for a macro is one of the Numarray Numeric Data Types, not a NumarrayType
enumeration value.

Pointer based single element macros

NA GETPa(PyArrayObject*, type, char*)
aligning

NA GETPb(PyArrayObject*, type, char*)
byteswapping

NA GETPf(PyArrayObject*, type, char*)
fast (well-behaved)

NA GETP(PyArrayObject*, type, char*)
testing: any of above

NA SETPa(PyArrayObject*, type, char*, v)

NA SETPb(PyArrayObject*, type, char*, v)

NA SETPf (PyArrayObject*, type, char*, v)

NA SETP(PyArrayObject*, type, char*, v)

One index single element macros

NA GET1a(PyArrayObject*, type, i)

NA GET1b(PyArrayObject*, type, i)

NA GET1f (PyArrayObject*, type, i)

NA GET1(PyArrayObject*, type, i)

NA SET1a(PyArrayObject*, type, i, v)

NA SET1b(PyArrayObject*, type, i, v)

NA SET1f (PyArrayObject*, type, i, v)

NA SET1(PyArrayObject*, type, i, v)

Two index single element macros

NA GET2a(PyArrayObject*, type, i, j)

NA GET2b(PyArrayObject*, type, i, j)

NA GET2f (PyArrayObject*, type, i, j)

NA GET2(PyArrayObject*, type, i, j)

NA SET2a(PyArrayObject*, type, i, j, v)

14.5. Element-wise API 121

NA SET2b(PyArrayObject*, type, i, j, v)

NA SET2f (PyArrayObject*, type, i, j, v)

NA SET2(PyArrayObject*, type, i, j, v)

One and Two Index, Offset, Float64/Complex64/Int64 functions

The Int64 /Float64 /Complex64 functions require a function call to access a single element of an array, making
them slower than the single element macros. They have two advantages:

1. They’re function calls, so they’re a little more robust.

2. They can handleany input array type and behavior properties.

While these functions have no error return status, they *can* alter the Python error state, so well written extensions
should callPyErr Occurred() to determine if an error occurred and report it. It’s reasonable to do this check
once at the end of an extension function, rather than on a per-element basis.

void NA get offset (PyArrayObject *, int N, ...)
NA get offset computes the offset into an array object given a variable number of indices. It is not espe-
cially robust, and it is considered an error to pass it more indices than the array has, or indices which are negative
or out of range.

Float64 NA get Float64 (PyArrayObject *, long offset)

void NA set Float64 (PyArrayObject *, long offset, Float64 v)

Float64 NA get1 Float64 (PyArrayObject *, int i)

void NA set1 Float64 (PyArrayObject *, int i, Float64 v)

Float64 NA get2 Float64 (PyArrayObject *, int i, int j)

void NA set2 Float64 (PyArrayObject *, int i, int j, Float64 v)

Int64 NA get Int64 (PyArrayObject *, long offset)

void NA set Int64 (PyArrayObject *, long offset, Int64 v)

Int64 NA get1 Int64 (PyArrayObject *, int i)

void NA set1 Int64 (PyArrayObject *, int i, Int64 v)

Int64 NA get2 Int64 (PyArrayObject *, int i, int j)

void NA set2 Int64 (PyArrayObject *, int i, int j, Int64 v)

Complex64 NA get Complex64 (PyArrayObject *, long offset)

void NA set Complex64 (PyArrayObject *, long offset, Complex64 v)

Complex64 NA get1 Complex64 (PyArrayObject *, int i)

void NA set1 Complex64 (PyArrayObject *, int i, Complex64 v)

Complex64 NA get2 Complex64 (PyArrayObject *, int i, int j)

void NA set2 Complex64 (PyArrayObject *, int i, int j, Complex64 v)

14.5.2 Example

Theconvolve1D wrapper function corresponding to section 14.4.3 using the element-wise API could look like:2

2This function is also available as an example in the source distribution.

122 Chapter 14. C extension API

static PyObject *
Py_Convolve1d(PyObject *obj, PyObject *args)
{

PyObject *okernel, *odata, *oconvolved=Py_None;
PyArrayObject *kernel, *data, *convolved;

if (!PyArg_ParseTuple(args, "OO|O", &okernel, &odata, &oconvolved)) {
PyErr_Format(_Error, "Convolve1d: Invalid parameters.");
goto _fail;

}

kernel = NA_InputArray(okernel, tAny, 0);
data = NA_InputArray(odata, tAny, 0);

For the kernel and data arrays,numarray s of any type are accepted without conversion. Thus there is no copy of
the data made except for lists or tuples. All types, byteswapping, misalignment, and discontiguity must be handled
by Convolve1d. This can be done easily using the get/set functions. Macros, while faster than the functions, can only
handle a single type.

convolved = NA_OptionalOutputArray(oconvolved, tFloat64, 0, data);

Also for the output array we accept any variety of type tFloat without conversion. No copy is made except for non-
tFloat. Non-numarray sequences are not permitted as output arrays. Byteswaping, misaligment, and discontiguity
must be handled by Convolve1d. If the Pythoncaller did not specify the oconvolved array, it initially retains the value
Py None. In that case,convolvedis cloned from the arraydatausing the specified type. It is important to clone from
dataand notodata, since the latter may be an ordinary Pythonsequence which was converted into numarraydata.

14.5. Element-wise API 123

if (!kernel || !data || !convolved)
goto _fail;

if ((kernel->nd != 1) || (data->nd != 1)) {
PyErr_Format(_Error,

"Convolve1d: arrays must have exactly 1 dimension.");
goto _fail;

}

if (!NA_ShapeEqual(data, convolved)) {
PyErr_Format(_Error,

"Convolve1d: data and output arrays must have identical length.");
goto _fail;

}
if (!NA_ShapeLessThan(kernel, data)) {

PyErr_Format(_Error,
"Convolve1d: kernel must be smaller than data in both dimensions");

goto _fail;
}

if (Convolve1d(kernel, data, convolved) < 0) /* Error? */
goto _fail;

else {
Py_XDECREF(kernel);
Py_XDECREF(data);
return NA_ReturnOutput(oconvolved, convolved);

}
_fail:

Py_XDECREF(kernel);
Py_XDECREF(data);
Py_XDECREF(convolved);
return NULL;

}

This function is very similar to the high-level API wrapper, the notable difference is that we ask for the unconverted
arrayskernelanddataandconvolved. This requires some attention in their usage. The function that does the actual
convolution in the example has to useNA get* to read andNA set* to set an element of these arrays, instead of
using straight array notation. These functions perform any necessary type conversion, byteswapping, and alignment.

124 Chapter 14. C extension API

static int
Convolve1d(PyArrayObject *kernel, PyArrayObject *data, PyArrayObject *convolved)
{

int xc, xk;
int ksizex = kernel->dimensions[0];
int halfk = ksizex / 2;
int dsizex = data->dimensions[0];

for(xc=0; xc<halfk; xc++)
NA_set1_Float64(convolved, xc, NA_get1_Float64(data, xc));

for(xc=dsizex-halfk; xc<dsizex; xc++)
NA_set1_Float64(convolved, xc, NA_get1_Float64(data, xc));

for(xc=halfk; xc<dsizex-halfk; xc++) {
Float64 temp = 0;
for (xk=0; xk<ksizex; xk++) {

int i = xc - halfk + xk;
temp += NA_get1_Float64(kernel, xk) *

NA_get1_Float64(data, i);
}
NA_set1_Float64(convolved, xc, temp);

}
if (PyErr_Occurred())

return -1;
else

return 0;
}

14.6 One-dimensional API

The 1D in-place API is a set of functions for getting/setting elements from the innermost dimension of an array. These
functions improve speed by moving type switches, “behavior tests”, and function calls out of the per-element loop. The
functions get/set a series of consequtive array elements to/from arrays ofInt64 , Float64 , or Complex64 . These
functions are (even) more intrusive than the single element functions, but have better performance in many cases. They
can operate on arrays of any type, with the exception of the Complex64 functions, which only handle Complex64. The
functions return 0 on success and -1 on failure, with the Python error state already set. To be used profitably, the 1D
API requires either a large single dimension which can be processeed in blocks or a multi-dimensional array such as an
image. In the latter case, the 1D API is suitable for processing one (or more) scanlines at a time rather than the entire
image at once. See the source distribution Examples/convolve/onedimensionalmodule.c for an example of usage.

long NA get offset (PyArrayObject *, int N, ...)
This function applies a (variable length) set ofN indices to an array and returns a byte offset into the array.

int NA get1D Int64 (PyArrayObject *, long offset, int cnt, Int64 *out)

int NA set1D Int64 (PyArrayObject *, long offset, int cnt, Int64 *in)

int NA get1D Float64 (PyArrayObject *, long offset, int cnt, Float64 *out)

int NA set1D Float64 (PyArrayObject *, long offset, int cnt, Float64 *in)

int NA get1D Complex64 (PyArrayObject *, long offset, int cnt, Complex64 *out)

int NA set1D Complex64 (PyArrayObject *, long offset, int cnt, Complex64 *in)

14.6. One-dimensional API 125

14.7 New numarray functions

The following array creation functions share similar behavior. All but one create a newnumarray using the data
specified bydata. If datais NULL, the routine allocates a buffer internally based on the array shape and type; internally
allocated buffers have undefined contents. The data type of the created array is specified bytype.

There are several functions to createnumarray s at the C level:

static PyArrayObject* NA NewArray (void *data, NumarrayType type, int ndim, ...)
ndimspecifies the rank of the array (number of dimensions), and the length of each dimension must be given as
the remaining (variable length) list ofint parameters. The following example allocates a 100x100 uninitialized
array of Int32.

if (!(array = NA_NewArray(NULL, tInt32, 2, 100, 100)))
return NULL;

static PyObject* NA vNewArray (void *data, NumarrayType type, int ndim, maybelong *shape)
ForNA vNewArray the length of each dimension must be given in an array ofmaybelongpointed to byshape.
The following code allocates a 2x2 array initialized to a copy of the specifieddata.

Int32 data[4] = { 1, 2, 3, 4 };
maybelong shape[2] = { 2, 2 };
if (!(array = NA_vNewArray(data, tInt32, 2, shape)))

return NULL;

static PyArrayObject* NA NewAll (int ndim, maybelong *shape, NumarrayType type, void *data, may-
belong byteoffset, maybelong bytestride, int byteorder, int aligned, int
writable)

NA NewAll is similar toNA vNewArray except it provides for the specification of additional parameters.
byteoffsetspecifies the byte offset from the base of the data array at which thereal data begins.bytestride
specifies the miminum stride to use, the seperation in bytes between adjacent elements in the array.byteorder
takes one of the valuesNUMBIG ENDIANor NUMLITTLE ENDIAN. writable defines whether the buffer
object associated with the resulting array is readonly or writable.

static PyArrayObject* NA NewAllStrides (int ndim, maybelong *shape, maybelong *strides, Numar-
rayType type, void *data, maybelong byteoffset, maybelong
byteorder, int aligned, int writable)

NA NewAllStrides is a variant ofNA vNewAll which also permits the specification of the array strides.
The strides are not checked for correctness.

static PyArrayObject* NA NewAllFromBuffer (int ndim, maybelong *shape, NumarrayType type,
PyObject *buffer, maybelong byteoffset, maybelong
bytestride, int byteorder, int aligned, int writable)

NA NewAllFromBuffer is similar toNA NewAll except it accepts a buffer object rather than a pointer to C
data. Thebufferobject must support the buffer protocol. Ifbuffer is non-NULL, the returned array object stores
a reference tobufferand locates its data there. Ifbuffer is specified as NULL, a buffer object and associated data
space are allocated internally and the returned array object refers to that. It is possible to create a Python buffer
object from an array of C data and then construct anumarray using this function which refers to the C data
without making a copy.

int NA ShapeEqual (PyArrayObject*a,PyArrayObject*b)
This function compares the shapes of two arrays, and returns 1 if they are the same, 0 otherwise.

int NA ShapeLessThan (PyArrayObject*a,PyArrayObject*b)
This function compares the shapes of two arrays, and returns 1 if each dimension of ’a’ is less than the corre-
sponding dimension of ’b’, 0 otherwise.

126 Chapter 14. C extension API

int NA ByteOrder ()
This function returns the system byte order, either NUMLITTLE ENDIAN or NUM BIG ENDIAN.

Bool NA IeeeMask32 (Float32 value, Int32 mask)
This function returns 1 IFF Float32valuematches any of the IEEE special value criteria specified bymask. See
ieeespecial.h for the mask bit values which can be or’ed together to specify mask.NA IeeeSpecial32 has
been deprecated and will eventually be removed.

Bool NA IeeeMask64 (Float64 value,Int32 mask)
This function returns 1 IFF Float64valuematches any of the IEEE special value criteria specified bymask. See
ieeespecial.h for the mask bit values which can be or’ed together to specify mask.NA IeeeSpecial64 has
been deprecated and will eventually be removed.

PyArrayObject * NA updateDataPtr (PyArrayObject *)
This function updates the values derived from the “data” buffer, namely the data pointer and buffer WRITABLE
flag bit. This needs to be called upon entering or re-entering C-code from Python, since it is possible for buffer
objects to move their data buffers as a result of executing arbitrary Python and hence arbitrary C-code. The high
level interface routines, e.g.NA InputArray , call this routine automatically.

char* NA typeNoToName (int)
NA typeNoToName translates a NumarrayType into a character string which can be used to display it: e.g.
tInt32 converts to the string “Int32”

PyObject* NA typeNoToTypeObject (int)
This function converts a NumarrayType C type code into the NumericType object which implements and repre-
sents it more fully. tInt32 converts to the type object numarray.Int32.

int NA typeObjectToTypeNo (PyObject*)
This function converts a numarray type object (e.g. numarray.Int32) into the corresponding NumarrayType (e.g.
tInt32) C type code.

PyObject* NA intTupleFromMaybeLongs (int,maybelong*)
This function creates a tuple of Python ints from an array of C maybelong integers.

long NA maybeLongsFromIntTuple (int,maybelong*,PyObject*)
This function fills an array of C long integers with the converted values from a tuple of Python ints. It returns
the number of conversions, or -1 for error.

long NA isIntegerSequence (PyObject*)
This function returns 1 iff the single parameter is a sequence of Python integers, and 0 otherwise.

PyObject* NA setArrayFromSequence (PyArrayObject*,PyObject*)
This function copies the elementwise from a sequence object to a numarray.

int NA maxType(PyObject*)
This function returns an integer code corresponding to the highest kind of Python numeric object in a sequence.
INT(0) LONG(1) FLOAT(2) COMPLEX(3). On error -1 is returned.

PyObject* NA getPythonScalar (PyArrayObject *a, long offset)
This function returns the Python object corresponding to the single element of the array ’a’ at the given byte
offset.

int NA setFromPythonScalar (PyArrayObject *a, long offset, PyObject*value)
This function sets the single element of the array ’a’ at the given byte offset to ’value’.

int NA NDArrayCheck (PyObject*o)
This function returns 1 iff the ’o’ is an instance of NDArray or an instance of a subclass of NDArray, and 0
otherwise.

int NA NumArrayCheck (PyObject*)
This function returns 1 iff the ’o’ is an instance of NumArray or an instance of a subclass of NumArray, and 0
otherwise.

14.7. New numarray functions 127

int NA ComplexArrayCheck (PyObject*)
This function returns 1 iff the ’o’ is an instance of ComplexArray or an instance of a subclass of ComplexArray,
and 0 otherwise.

unsigned long NA elements (PyArrayObject*)
This function returns the total count of elements in an array, essentially the product of the elements of the array’s
shape.

PyArrayObject * NA copy (PyArrayObject*)
This function returns a copy of the given array. The array copy is guaranteed to be well-behaved, i.e. neither
byteswapped, misaligned, nor discontiguous.

int NA copyArray (PyArrayObject*to, const PyArrayObject *from)
This function returns a copies one array onto another; used in f2py.

int NA swapAxes (PyArrayObject*a, int dim1, int dim2)
This function mutates the specified arraya to exchange the shape and strides values for the two dimensions,dim1
anddim2. Negative dimensions count backwards from the innermost, with -1 being the innermost dimension.
Returns 0 on success and -1 on error.

128 Chapter 14. C extension API

Part II

Extension modules

129

CHAPTER

FIFTEEN

Convolution

This package (numarray.convolve) provides functions for one- and two-dimensional convolutions and
correlations ofnumarray s. Each of the following examples assumes that the following code has been
executed:

import numarray.convolve as conv

15.1 Convolution functions

boxcar (data, boxshape, output=None, mode=’nearest’, cval=0.0)
boxcar computes a 1-D or 2-D boxcar filter on every 1-D or 2-D subarray ofdata . boxshape is a tuple
of integers specifying the dimensions of the filter, e.g.(3,3) . If output is specified, it should be the same
shape asdata and the result will be stored in it. In that caseNone will be returned.

mode can be any of the following values:

nearest: Elements beyond boundary come from nearest edge pixel.

wrap: Elements beyond boundary come from the opposite array edge.

reflect: Elements beyond boundary come from reflection on same array edge.

constant: Elements beyond boundary are set to what is specified incval , an optional numerical parameter; the
default value is0.0 .

>>> print a
[1 5 4 7 2 9 3 6]
>>> print conv.boxcar(a,(3,))
[2.33333333 3.33333333 5.33333333 4.33333333 6. 4.66666667

6. 5.]
for even number box size, it will take the extra point from the lower end
>>> print conv.boxcar(a,(2,))
[1. 3. 4.5 5.5 4.5 5.5 6. 4.5]

convolve (data, kernel, mode=FULL)
Returns the discrete, linear convolution of 1-D sequencesdata andkernel ; mode can beVALID , SAME, or
FULL to specify the size of the resulting sequence. See section 15.2.

convolve2d (data, kernel, output=None, fft=0, mode=’nearest’, cval=0.0)
Return the 2-dimensional convolution ofdata andkernel . If output is notNone, the result is stored in
output andNone is returned.fft is used to switch between FFT-based convolution and the naive algorithm,
defaulting to naive. Usingfft mode becomes more beneficial as the size of the kernel grows; for small kernels,

131

the naive algorithm is more efficient.mode has the same choices as those ofboxcar . A number of storage
considerations come into play with large arrays: (1) boundary modes are implemented by making an oversized
temporary copy of thedata array which has a shape equal to the sum of thedata andkernel shapes. (2)
likewise, thekernel is copied into an array with the same shape as the oversizeddata array. (3) In FFT mode,
the fourier transforms of thedata andkernel arrays are stored in double precision complex temporaries. The
aggregate effect is that storage roughly equal to a factor of eight (x2 from 2 and x4 from 3) times the size of the
data is required to compute the convolution of a Float32data array.

correlate (data, kernel, mode=FULL)
Return the cross-correlation ofdata andkernel ; mode can beVALID , SAME, or FULL to specify the size
of the resulting sequence.correlate is very closely related toconvolve in implementation. See section
15.2.

correlate2d (data, kernel, output=None, fft=0, mode=’nearest’, cval=0.0)
Return the 2-dimensional convolution ofdata andkernel . If output is notNone, the result is stored in
output andNone is returned.fft is used to switch between FFT-based convolution and the naive algorithm,
defaulting to naive. Usingfft mode becomes more beneficial as the size of the kernel grows; for small kernels,
the naive algorithm is more efficient.mode has the same choices as those ofboxcar . See alsoconvolve2d
for notes regarding storage consumption.

Note: cross correlate is deprecated and should not be used.

15.2 Global constants

These constants specify what part of the result theconvolve andcorrelate functions of this module return. Each
of the following examples assumes that the following code has been executed:

arr = numarray.arange(8)

FULL
Return the full convolution or correlation of two arrays.

>>> conv.correlate(arr, [1, 2, 3], mode=conv.FULL)
array([0, 3, 8, 14, 20, 26, 32, 38, 20, 7])

PASS
Correlate the arrays without padding the data.

>>> conv.correlate(arr, [1, 2, 3], mode=conv.PASS)
array([0, 8, 14, 20, 26, 32, 38, 7])

SAME
Return the part of the convolution or correlation of two arrays that corresponds to an array of the same shape as
the input data.

>>> conv.correlate(arr, [1, 2, 3], mode=conv.SAME)
array([3, 8, 14, 20, 26, 32, 38, 20])

VALID
Return the valid part of the convolution or correlation of two arrays.

132 Chapter 15. Convolution

>>> conv.correlate(arr, [1, 2, 3], mode=conv.VALID)
array([8, 14, 20, 26, 32, 38])

15.2. Global constants 133

134

CHAPTER

SIXTEEN

Fast-Fourier-Transform

This package provides functions for one- and two-dimensional Fast-Fourier-Transforms (FFT) and inverse
FFTs.

The numarray.fft module provides a simple interface to the FFTPACK Fortran library, which is a powerful
standard library for doing fast Fourier transforms of real and complex data sets, or the C fftpack library, which is
algorithmically based on FFTPACK and provides a compatible interface.

16.1 Installation

The default installation uses the providednumarray.fft.fftpack C implementation of these routines and this
works without any further interaction.

16.1.1 Installation using FFTPACK

On some platforms, precompiled optimized versions of the FFTPACK libraries are preinstalled on the operating sys-
tem, and the setup procedure needs to be modified to force thenumarray.fft module to be linked against those
rather than the builtin replacement functions.

16.2 FFT Python Interface

The Python user imports thenumarray.fft module, which provides a set of utility functions of the most commonly
used FFT routines, and allows the specification of which axes (dimensions) of the input arrays are to be used for the
FFT’s. These routines are:

fft (a, n=None, axis=-1)
Performs an-point discrete Fourier transform of the arraya, n defaults to the size ofa. It is most efficient for
n a power of two. Ifn is larger thanlen(a) , thena will be zero-padded to make up the difference. Ifn is
smaller thanlen(a) , thena will be aliased to reduce its size. This also stores a cache of working memory for
different sizes offft ’s, so you could theoretically run into memory problems if you call this too many times
with too many differentn’s.

The FFT is performed along the axis indicated by theaxis argument, which defaults to be the last dimension
of a.

The format of the returned array is a complex array of the same shape asa, where the first element in the result
array contains the DC (steady-state) value of the FFT.

Some examples are:

135

>>> a = array([1., 0., 1., 0., 1., 0., 1., 0.]) + 10
>>> b = array([0., 1., 0., 1., 0., 1., 0., 1.]) + 10
>>> c = array([0., 1., 0., 0., 0., 1., 0., 0.]) + 10
>>> print numarray.fft.fft(a).real
[84. 0. 0. 0. 4. 0. 0. 0.]
>>> print numarray.fft.fft(b).real
[84. 0. 0. 0. -4. 0. 0. 0.]
>>> print numarray.fft.fft(c).real
[82. 0. 0. 0. -2. 0. 0. 0.]

inverse fft (a, n=None, axis=-1)
Will return then point inverse discrete Fourier transform ofa; n defaults to the length ofa. It is most efficient
for n a power of two. Ifn is larger thana, thena will be zero-padded to make up the difference. Ifn is smaller
thana, thena will be aliased to reduce its size. This also stores a cache of working memory for different sizes
of FFT’s, so you could theoretically run into memory problems if you call this too many times with too many
differentn’s.

real fft (a, n=None, axis=-1)
Will return then point discrete Fourier transform of the real valued arraya; n defaults to the length ofa. It is
most efficient forn a power of two. The returned array will be one half of the symmetric complex transform of
the real array.

>>> x = cos(arange(30.0)/30.0*2*pi)
>>> print numarray.fft.real_fft(x)
[-5.82867088e-16 +0.00000000e+00j 1.50000000e+01 -3.08862614e-15j

7.13643755e-16 -1.04457106e-15j 1.13047653e-15 -3.23843935e-15j
-1.52158521e-15 +1.14787259e-15j 3.60822483e-16 +3.60555504e-16j

1.34237661e-15 +2.05127011e-15j 1.98981960e-16 -1.02472357e-15j
1.55899290e-15 -9.94619821e-16j -1.05417678e-15 -2.33364171e-17j

-2.08166817e-16 +1.00955541e-15j -1.34094426e-15 +8.88633386e-16j
5.67513742e-16 -2.24823896e-15j 2.13735778e-15 -5.68448962e-16j

-9.55398954e-16 +7.76890265e-16j -1.05471187e-15 +0.00000000e+00j]

inverse real fft (a, n=None, axis=-1)
Will return the inverse FFT of the real valued arraya.

fft2d (a, s=None, axes=(-2,-1))
Will return the 2-dimensional FFT of the arraya. This is really justfft nd() with different default behavior.

inverse fft2d (a, s=None, axes=(-2,-1))
The inverse offft2d() . This is really justinverse fftnd() with different default behavior.

real fft2d (a, s=None, axes=(-2,-1))
Will return the 2-D FFT of the real valued arraya.

inverse real fft2d (a, s=None, axes=(-2,-1))
The inverse ofreal fft2d() . This is really justinverse real fftnd() with different default behav-
ior.

16.3 fftpack Python Interface

The interface to the FFTPACK library is performed via thefftpack module, which is responsible for making sure
that the arrays sent to the FFTPACK routines are in the right format (contiguous memory locations, right numerical
storage format, etc). It provides interfaces to the following FFTPACK routines, which are also the names of the Python
functions:
cffti (i)

136 Chapter 16. Fast-Fourier-Transform

cfftf (data, savearea)

cfftb (data, savearea)

rffti (i)

rfftf (data, savearea)

rfftb (data, savearea)

The routines which start withc expect arrays of complex numbers, the routines which start withr expect real numbers
only. The routines which end withi are the initalization functions, those which end withf perform the forward FFTs
and those which end withb perform the backwards FFTs.

The initialization functions require a single integer argument corresponding to the size of the dataset, and returns a
work array. The forward and backwards FFTs require two array arguments – the first is the data array, the second is the
work array returned by the initialization function. They return arrays corresponding to the coefficients of the FFT, with
the first element in the returned array corresponding to the DC component, the second one to the first fundamental,
etc.The length of the returned array is 1 + half the length of the input array in the case of real FFTs, and the same size
as the input array in the case of complex data.

>>> import numarray.fft.fftpack as fftpack
>>> x = cos(arange(30.0)/30.0*2*pi)
>>> w = fftpack.rffti(30)
>>> f = fftpack.rfftf(x, w)
>>> print f[0:5]
[-5.68989300e-16 +0.00000000e+00j 1.50000000e+01 -3.08862614e-15j

6.86516117e-16 -1.00588467e-15j 1.12688689e-15 -3.19983494e-15j
-1.52158521e-15 +1.14787259e-15j]

16.3. fftpack Python Interface 137

138

CHAPTER

SEVENTEEN

Linear Algebra

The numarray.linearalgebra module provides a simple interface to some commonly used linear algebra
routines.

The numarray.linear algebra module provides a simple high-level interface to some com-
mon linear algebra problems. It uses either the LAPACK Fortran library or the compatible
numarray.linear algebra.lapack lite C library shipped withnumarray .

17.1 Installation

The default installation uses the providednumarray.linear algebra.lapack lite implementation of
these routines and this works without any further interaction.

Nevertheless if LAPACK is installed already or you are concerned about the performance of these routines you should
consider installingnumarray.linear algebra to take advantage of the real LAPACK library. See the next
section for instructions.

17.1.1 Installation using LAPACK

On some platforms, precompiled optimized versions of the LAPACK and BLAS libraries are preinstalled on the
operating system, and the setup procedure needs to be modified to force thelapack lite module to be linked
against those rather than the builtin replacement functions.

Here’s a recipe for building using LAPACK:

% setenv USE_LAPACK 1
% setenv LINALG_LIB <where your lapack, blas, atlas, etc are>
% setenv LINALG_INCLUDE <where your lapack, blas, atlas headers are>
% python setup.py install --selftest

For your particular system and library installations, you may need to editaddons.py and adjust the variables
sourcelist , lapack dirs , andlapack libs .

Note: A frequent request is that somehow the maintainers of Numerical Python invent a procedure which will au-
tomatically find and use thebestavailable versions of these libraries. We welcome any patches that provide the
functionality in a simple, platform independent, and reliable way. Thescipyproject has done some work to provide
such functionality, but is probably not mature enough for use bynumarray yet.

139

17.2 Python Interface

All examples in this section assume that you performed a

from numarray import *
import numarray.linear_algebra as la

cholesky decomposition (a)
This function returns a lower triangular matrix L which, when multiplied by its transpose yields the original
matrix a; a must be square, Hermitian, and positive definite. L is often referred to as the Cholesky lower-
triangular square-root ofa.

determinant (a)
This function returns the determinant of the square matrixa.

>>> print a
[[1 2]

[3 15]]
>>> print la.determinant(a)
9.0

eigenvalues (a)
This function returns the eigenvalues of the square matrixa.

>>> print a
[[1. 0. 0. 0.]

[0. 2. 0. 0.01]
[0. 0. 5. 0.]
[0. 0.01 0. 2.5]]

>>> print la.eigenvalues(a)
[2.50019992 1.99980008 1. 5.]

eigenvectors (a)
This function returns both the eigenvalues and the eigenvectors, the latter as a two-dimensional array (i.e. a
sequence of vectors).

>>> print a
[[1. 0. 0. 0.]

[0. 2. 0. 0.01]
[0. 0. 5. 0.]
[0. 0.01 0. 2.5]]

>>> eval, evec = la.eigenvectors(a)
>>> print eval # same as eigenvalues()
[2.50019992 1.99980008 1. 5.]
>>> print transpose(evec)
[[0. 0. 1. 0.]

[0.01998801 0.99980022 0. 0.]
[0. 0. 0. 1.]
[0.99980022 -0.01998801 0. 0.]]

generalized inverse (a, rcond=1e-10)
This function returns the generalized inverse (also known as pseudo-inverse or Moore-Penrose-inverse) of the
matrixa. It has numerous applications related to linear equations and least-squares problems.

140 Chapter 17. Linear Algebra

>>> ainv = la.generalized_inverse(a)
>>> print array_str(innerproduct(a,ainv),suppress_small=1,precision=8)
[[1. 0. 0. 0.]

[0. 1. 0. -0.]
[0. 0. 1. 0.]
[0. -0. 0. 1.]]

Heigenvalues (a)
returns the (real positive) eigenvalues of the square, Hermitian positive definite matrix a.

Heigenvectors (a)
returns both the (real positive) eigenvalues and the eigenvectors of a square, Hermitian positive definite matrix
a. The eigenvectors are returned in an (orthornormal) two-dimensional matrix.

inverse (a)
This function returns the inverse of the specified matrix a which must be square and non-singular. To
within floating point precision, it should always be true thatmatrixmultiply(a, inverse(a)) ==
identity(len(a)) . To test this claim, one can do e.g.:

>>> a = reshape(arange(25.0), (5,5)) + identity(5)
>>> print a
[[1. 1. 2. 3. 4.]

[5. 7. 7. 8. 9.]
[10. 11. 13. 13. 14.]
[15. 16. 17. 19. 19.]
[20. 21. 22. 23. 25.]]

>>> inv_a = la.inverse(a)
>>> print inv_a
[[0.20634921 -0.52380952 -0.25396825 0.01587302 0.28571429]

[-0.5026455 0.63492063 -0.22751323 -0.08994709 0.04761905]
[-0.21164021 -0.20634921 0.7989418 -0.1957672 -0.19047619]
[0.07936508 -0.04761905 -0.17460317 0.6984127 -0.42857143]
[0.37037037 0.11111111 -0.14814815 -0.40740741 0.33333333]]

Verify the inverse by printing the largest absolute element ofa a−1 − identity(5):

>>> print "Inversion error:", maximum.reduce(fabs(ravel(dot(a, inv_a)-identity(5))))
Inversion error: 8.18789480661e-16

linear least squares (a, b, rcond=1e-10)
This function returns the least-squares solution of an overdetermined system of linear equations. An optional
third argument indicates the cutoff for the range of singular values (defaults to10−10). There are four return
values: the least-squares solution itself, the sum of the squared residuals (i.e. the quantity minimized by the
solution), the rank of the matrix a, and the singular values of a in descending order.

solve linear equations (a, b)
This function solves a system of linear equations with a square non-singular matrix a and a right-hand-side
vector b. Several right-hand-side vectors can be treated simultaneously by making b a two-dimensional array
(i.e. a sequence of vectors). The function inverse(a) calculates the inverse of the square non-singular matrix a
by calling solve linear equations(a, b) with a suitable b.

singular value decomposition (a, full matrices=0)
This function returns three arrays V, S, and WT whose matrix product is the original matrix a. V and WT are
unitary matrices (rank-2 arrays), whereas S is the vector (rank-1 array) of diagonal elements of the singular-value
matrix. This function is mainly used to check whether (and in what way) a matrix is ill-conditioned.

17.2. Python Interface 141

142

CHAPTER

EIGHTEEN

Masked Arrays

Masked arrays are arrays that may have missing or invalid entries. Modulenumarray.ma provides a
nearly work-alike replacement for numarray that supports data arrays with masks.

18.1 What is a masked array?

Masked arrays are arrays that may have missing or invalid entries. Modulenumarray.ma provides a work-alike
replacement fornumarray that supports data arrays with masks. A mask is either None or an array of ones and
zeros, that determines for each element of the masked array whether or not it contains an invalid entry. The package
assures that invalid entries are not used in computations. A particular element is said to be masked (invalid) if the
mask is not None and the corresponding element of the mask is 1; otherwise it is unmasked (valid).

This package was written by Paul F. Dubois at Lawrence Livermore National Laboratory. Please see the legal notice
in the software and section “License and disclaimer for packages numarray.ma”.

18.2 Using numarray.ma

Use numarray.ma as a replacement for numarray:

from numarray.ma import *
>>> x = array([1, 2, 3])

To create an array with the second element invalid, we would do:

>>> y = array([1, 2, 3], mask = [0, 1, 0])

To create a masked array where all values “near” 1.e20 are invalid, we can do:

>>> z = masked_values([1.0, 1.e20, 3.0, 4.0], 1.e20)

For a complete discussion of creation methods for masked arrays please see section 18.3.3 “Constructing masked
arrays”.

The numarray module is an attribute innumarray.ma , so to execute a methodfoo from numarray, you can
reference it asnumarray.foo .

Usually people use both numarray.ma and numarray this way, but of course you can always fully-qualify the names:

143

>>> import numarray.ma
>>> x = numarray.ma.array([1, 2, 3])

The principal feature of modulenumarray.ma is classMaskedArray , the class whose instances are returned
by the array constructors and most functions in modulenumarray.ma . We will discuss this class first, and later
cover the attributes and functions in modulenumarray.ma . For now suffice it to say that among the attributes of
the module are the constants from modulenumarray including those for declaring typecodes,NewAxis , and the
mathematical constants such aspi ande. An additional typecode,MaskType , is the typecode used for masks.

18.3 Class MaskedArray

In Module numarray.ma , an array is an instance of classMaskedArray , which is defined in the module
numarray.ma . An instance of classMaskedArray can be thought of as containing the following parts:

• An array of data, of any shape;

• A mask of ones and zeros of the same shape as the data where a one value (true) indicates that the element is
masked and the corresponding data is invalid.

• A “fill value” — this is a value that may be used to replace the invalid entries in order to return a plain
numarray array. The chief method that does this is the methodfilled discussed below.

We will use the terms “invalid value” and “invalid entry” to refer to the data value at a place corresponding to a mask
value of 1. It should be emphasized that the invalid values areneverused in any computation, and that the fill value
is not used forany computational purpose. When an instancex of classMaskedArray is converted to its string
representation, it is the result returned byfilled(x) that is converted to a string.

18.3.1 Attributes of masked arrays

flat
(deprecated) Returns the masked array as a one-dimensional one. This is provided for compatibility with
numarray . ravel is preferred.flat can be assigned to: ‘x.flat = value ’ will change the values ofx.

real
Returns the real part of the array if complex. It can be assigned to: ‘x.real = value ’ will change the real
parts ofx.

imaginary
Returns the imaginary part of the array if complex. It can be assigned to: ‘x.imaginary = value ’ will
change the imaginary parts of x.

shape
The shape of a masked array can be accessed or changed by using the special attributeshape , as with
numarray arrays. It can be assigned to: ‘x.shape = newshape ’ will change the shape ofx. The new
shape has to describe the same total number of elements.

shared data
This read-only flag if true indicates that the masked array shared a reference with the original data used to
construct it at the time of construction. Changes to the original array will affect the masked array. (This is not
the default behavior; see “Copying or not”.) This flag is informational only.

shared mask
This read-only flag if true indicates that the masked arraycurrentlyshares a reference to the mask used to create
it. Unlike shared data , this flag may change as the result of modifying the array contents, as the mask uses
copy on write semantics if it is shared.

144 Chapter 18. Masked Arrays

18.3.2 Methods on masked arrays

array (A)
special method allows conversion to anumarray array if no element is actually masked. If there is
a masked element, annumarray.maError exception is thrown. Manynumarray functions, such as
numarray.sqrt , will attempt this conversion on their arguments. See also module functionfilled in
section 18.3.2.

yn = numarray.array(x)

astype (type)
Returnself as array of giventype.

y = x.astype(Float32)

byte swapped ()
Returns the raw datanumarray byte-swapped; included for consistency withnumarray but probably mean-
ingless.

y = x.byte_swapped()

compressed ()
Return an array of the valid elements. Result is one-dimensional.

y = x.compressed()

count (axis=None)
If axis is None return the count of non-masked elements in the whole array. Otherwise return an array of such
counts along the axis given.

n = x.count()
y = x.count(0)

fill value ()
Get the current fill value.

v = x.fill_value()

filled (fill value=None)
Returns anumarray array with the masked values replaced by the fill value. See also the description of module
function filled in section 18.3.2.

yn = x.filled()

ids ()
Return the ids of the data and mask areas.

id1, id2 = x.ids()

iscontiguous ()
Is the data area contiguous? Seenumarray.scontiguous in section 9.

18.3. Class MaskedArray 145

if x.iscontiguous():

itemsize ()
Size of individual data items in bytes. ‘n = x.itemsize() ’

mask()
Return the data mask, orNone.

m = x.mask()

put (values)
Set the value at each non-masked entry to the corresponding entry invalues. The mask is unchanged. See also
module functionput .

x.put(values)

putmask (values)
Eliminate any masked values by setting the value at each masked entry to the corresponding entry invalues. Set
the mask toNone.

x.putmask(values)
assert getmask(x) is None

raw data ()
A reference to the non-filled data; portions may be meaningless. Expert use only.

d = x.raw_data ()

savespace (v)
Set the spacesaver attribute tov.

x.savespace (1)

set fill value (v)
Set the fill value tov. Omit v to restore default. ‘x.set fill value(1.e21) ’

set shape (args...)
Set the shape.

x.set_shape (3, 12)

size (axis)
Number of elements in array, or along a particularaxis.

totalsize = x.size ()
col_len = x.size (1)

spacesaver ()
Query the spacesave flag.

flag = x.spacesaver()

tolist (fill value=None)
Return the Pythonlist self.filled(fill value).tolist() ; note that masked values are filled.

146 Chapter 18. Masked Arrays

alist=x.tolist()

tostring (fill value=None)
Return the stringself.filled(fill value).tostring()s = x.tostring()

typecode ()
Return the type of the data. See modulePrecision , section??.

z = x.typecode()

unmask()
Replaces the mask byNone if possible. Subsequent operations may be faster if the array previously had an
all-zero mask.

x.unmask()

unshare mask()
If shared mask is currently true, replaces the reference to it with a copy.

x.unshare_mask()

18.3.3 Constructing masked arrays

array (data, type=None, copy=1, savespace=0, mask=None, fillvalue=None)
Creates a masked array with the givendataandmask. The namearray is simply an alias for the class name,
MaskedArray . The fill value is set tofill value, and thesavespaceflag is applied. Ifdatais aMaskedArray ,
its mask, typecode , spacesaver flag, andfill value will be used unless specifically overridden by
one of the remaining arguments. In particular, ifd is a masked array,array(d, copy=0) is d.

masked array (data, mask=None, fillvalue=None)
This is an easier-to-use version ofarray , for the common case oftypecode = None , copy = 0 . When
data is newly-created this function can be used to make it a masked array without copying the data ifdata is
already anumarray array.

masked values (data, value, rtol=1.e-5, atol=1.e-8, type=None, copy=1, savespace=0))
Constructs a masked array whose mask is set at those places where

abs(data− value) < atol + rtol ∗ abs(data) (18.1)

That is a careful way of saying that those elements of thedata that have a value ofvalue(to within a tolerance)
are to be treated as invalid. If data is not of a floating point type, callsmasked object instead.

masked object (data, value, copy=1, savespace=0)
Creates a masked array with those entries marked invalid that are equal tovalue. Again, copyand/savespace
are passed on to thenumarray array constructor.

asarray (data, type=None)
This is the same asarray(data, typecode, copy=0) . It is a short way of ensuring that something is
an instance ofMaskedArray of a giventypebefore proceeding, as in ‘data = asarray(data) ’.

If dataalready is a masked array andtypeis None then the return value isdata; nothing is copied in that case.

masked where (condition, data, copy=1))
Creates a masked array whose shape is that ofcondition, whose values are those ofdata, and which is masked
where elements ofconditionare true.

18.3. Class MaskedArray 147

masked
This is a module constant that represents a scalar masked value. For example, ifx is a masked array and
a particular location such asx[1] is masked, the quantityx[1] will be this special constant. This special
element is discussed more fully in section 18.6.1 “The constantmasked”.

The following additional constructors are provided for convenience.

masked equal (data, value, copy=1)

masked greater (data, value, copy=1)

masked greater equal (data, value, copy=1)

masked less (data, value, copy=1)

masked less equal (data, value, copy=1)

masked not equal (data, value, copy=1)
masked greater is equivalent tomasked where(greater(data, value), data)) . Sim-
ilarly, masked greater equal , masked equal , masked not equal , masked less ,
masked less equal are called in the same way with the obvious meanings. Note that for floating
point data,masked values is preferable tomasked equal in most cases.

masked inside (data, v1, v2, copy=1)
Creates an array with values in the closed interval[v1, v2] masked.v1andv2may be in either order.

masked outside (data, v1, v2, copy=1)
Creates an array with values outside the closed interval[v1, v2] masked.v1andv2may be in either order.

On entry to any of these constructors,datamust be any object which thenumarray package can accept to create an
array (with the desiredtype, if specified). Themask, if given, must beNone or any object that can be turned into a
numarray array of integer type (it will be converted to typeMaskType , if necessary), have the same shape asdata,
and contain only values of 0 or 1.

If the maskis notNone but its shape does not match that ofdata, an exception will be thrown, unless one of the two
is of length 1, in which case the scalar will be resized (usingnumarray.resize) to match the other.

See section 18.3.7 “Copying or not” for a discussion of whether or not the resulting array shares its data or its mask
with the arguments given to these constructors.

Important Tip filled is very important. It converts its argument to a plainnumarray array.

filled (x, value=None)
Returnsx with any invalid locations replaced by a fillvalue. filled is guaranteed to return a plain
numarray array. The argumentx does not have to be a masked array or even an array, just something that
numarray /numarray.ma can turn into one.

•If x is not a masked array, and not anumarray array,numarray.array(x) is returned.

•If x is a contiguousnumarray array thenx is returned. (Anumarray array is contiguous if its data
storage region is layed out in column-major order;numarray allows non-contiguous arrays to exist but
they are not allowed in certain operations).

•If x is a masked array, but the mask isNone, andx’s data array is contiguous, then it is returned. If the
data array is not contiguous, a (contiguous) copy of it is returned.

•If x is a masked array with an actual mask, then an array formed by replacing the invalid entries withvalue,
or fill value(x) if valueis None, is returned. If the fill value used is of a different type or precision
thanx, the result may be of a different type or precision thanx.

Note that a new array is created only if necessary to create a correctly filled, contiguous,numarray array.

The functionfilled plays a central role in our design. It is the “exit” back tonumarray , and is used
whenever the invalid values must be replaced before an operation. For example, adding two masked arraysa

148 Chapter 18. Masked Arrays

andb is roughly:

masked_array(filled(a, 0) + filled(b, 0), mask_or(getmask(a), getmask(b))

That is, fill the invalid entries ofa andb with zeros, add them up, and declare any entry of the result invalid if
eithera or b was invalid at that spot. The functionsgetmask andmask or are discussed later.

filled also can be used to simply be certain that some expression is a contiguousnumarray array at little
cost. If its argument is anumarray array already, it is returned without copying.

If you are certain that a masked arrayx contains a mask that is None or is all zeros, you can convert it to
a numarray array with thenumarray.array(x) constructor. If you turn out to be wrong, anMAError
exception is raised.

fill value (x)

fill value ()
fill value(x) and the methodx.fill value() on masked arrays, return a value suitable for fillingx
based on its type. Ifx is a masked array, thenx.fill value()results. The returned value for a given type can be
changed by assigning to the following names in modulenumarray.ma . They should be set to scalars or one
element arrays.

default_real_fill_value = numarray.array([1.0e20], Float32)
default_complex_fill_value = numarray.array([1.0e20 + 0.0j], Complex32)
default_character_fill_value = masked
default_integer_fill_value = numarray.array([0]).astype(UnsignedInt8)
default_object_fill_value = masked

The variablemaskedis a module variable ofnumarray.ma and is discussed in section 18.6.1. Calling
filled with a fill valueof masked sometimes produces a useful printed representation of a masked array.
The functionfill value works on any kind of object.

set fill value(a, fill value) is the same asa.set fill value (fill value) if a is a masked
array; otherwise it does nothing. Please note that the fill value is mostly cosmetic; it is used when it is needed to
convert the masked array to a plainnumarray array but not involved in most operations. In particular, setting the
fill value to 1.e20 will not, repeat not, cause elements of the array whose values are currently 1.e20 to be
masked. For that sort of behavior use themasked value constructor.

18.3.4 What are masks?

Masks are eitherNone or 1-bytenumarray arrays of 1’s and 0’s. To avoid excessive performance penalties, mask
arrays are never checked to be sure that the values are 1’s and 0’s, and supplying amaskargument to a constructor
with an illegal mask will have undefined consequences later.

Masks have the savespace attribute set.This attribute, discussed in part I, may have surprising consequences if you
attempt to do any operations on them other than those supplied by this package. In particular, do not add or multiply
a quantity involving a mask. For example, ifm is a mask consisting of 1080 1 values,sum(m) is 56, not 1080. Oops.

18.3.5 Working with masks

is mask(m)
Returns true ifm is of a type and precision that would be allowed as the mask field of a masked array (that is,
it is an array of integers withnumarray ’s typecodeMaskType , or it is None). To be a legal mask,m should
contain only zeros or ones, but this is not checked.

make mask(m, copy=0, flag=0)
Returns an object whose entries are equal tom and for whichis mask would return true. Ifm is already a
mask orNone, it returnsm or a copy of it. Otherwise it will attempt to make a mask, so it will accept any

18.3. Class MaskedArray 149

sequence of integers form. If flag is true,make mask returnsNone if its return value otherwise would contain
no true elements. To make a legal mask,mshould contain only zeros or ones, but this is not checked.

make mask none (s)
Returns a mask of all zeros of shapes (deprecated name: createmask).

getmask (x)
Returnsx.mask() , the mask ofx, if x is a masked array, andNone otherwise.Note: getmask may return
None if x is a masked array but has a mask ofNone. (Please see caution above about operating on the result).

getmaskarray (x)
Returnsx.mask() if x is a masked array and has a mask that is notNone; otherwise it returns a zero mask
array of the same shape asx. Unlike getmask , getmaskarray always returns annumarray array of
typecodeMaskType . (Please see caution above about operating on the result).

mask or (m1, m2)
Returns an object which when used as a mask behaves like the element-wise “logical or” ofm1andm2, where
m1 and /m2 are either masks orNone (e.g., they are the results of callinggetmask). A None is treated as
everywhere false. If bothm1andm2areNone, it returnsNone. If just one of them isNone, it returns the other.
If m1andm2refer to the same object, a reference to that object is returned.

18.3.6 Operations

Masked arrays support the operators+, ∗, /, −, ∗∗, and unary plus and minus. The other operand can be another
masked array, a scalar, anumarray array, or somethingnumarray.array can convert to anumarray array. The
results are masked arrays.

In addition masked arrays support the in-place operators+ =, − =, ∗ =, and/ =. Implementation of in-place
operators differs fromnumarray semantics in being more generous about converting the right-hand side to the
required type: any kind or lesser type accepted via anastype conversion. In-place operators truly operate in-place
when the target is not masked.

18.3.7 Copying or not?

Depending on the arguments results of constructors may or may not contain a separate copy of the data or mask
arguments. The easiest way to think about this is as follows: the given field, be it data or a mask, is required to be
a numarray array, possibly with a given typecode, and a mask’s shape must match that of the data. If the copy
argument is zero, and the candidate array otherwise qualifies, a reference will be made instead of a copy. If for any
reason the data is unsuitable as is, an attempt will be made to make a copy that is suitable. Should that fail, an exception
will be thrown. Thus, acopy=0 argument is more of a hope than a command.

If the basic array constructor is given a masked array as the first argument, its mask, typecode, spacesaver flag, and
fill value will be used unless specifically specified by one of the remaining arguments. In particular, ifd is a masked
array,array(d, copy=0) is d.

Since the default behavior for masks is to use a reference if possible, rather than a copy, which produces a sizeable
time and space savings, it is especially important not to modify something you used as a mask argument to a masked
array creation routine, if it was anumarray array of typecodeMaskType .

18.3.8 Behaviors

float (a)

int (a)
The conversion operatorsfloat , and int are defined to operate on masked arrays consisting of a single
unmasked element. Masked values and multi-element arrays are not convertible.

150 Chapter 18. Masked Arrays

repr (a)

str (a)
A masked array defines the conversion operatorsstr andrepr by applying the corresponding operator to the
numarray arrayfilled(a) .

18.3.9 Indexing and Slicing

Indexing and slicing differ from Numeric: while generally the same, they return a copy, not a reference, when used in
an expression that produces a non-scalar result. Consider this example:

from Numeric import *
x = array([1.,2.,3.])
y = x[1:]
y[0] = 9.
print x

This will print [1., 9., 3.] sincex[1:] returns a reference to a portion ofx. Doing the same operation using
numarray.ma ,

from numarray.ma import *
x = array([1.,2.,3.])
y = x[1:]
y[0] = 9.
print x

will print [1., 2., 3.] , while y will be a separate array whose present value would be[9., 3.] . While
sentiment on the correct semantics here is divided amongst the Numeric Python community as a whole, it is not
divided amongst the author’s community, on whose behalf this package is written.

18.3.10 Indexing in assignments

Using multiple sets of square brackets on the left side of an assignment statement will not produce the desired result:

x = array([[1,2],[3,4]])
x[1][1] = 20. # Error, does not change x
x[1,1] = 20. # Correct, changes x

The reason is thatx[1] is a copy, so changing it changes that copy, notx. Always use just one single square bracket
for assignments.

18.3.11 Operations that produce a scalar result

If indexing or another operation on a masked array produces a scalar result, then a scalar value is returned rather than
a one-element masked array. This raises the issue of what to return if that result is masked. The answer is that the
module constantmasked is returned. This constant is discussed in section 18.6.1. While this most frequently occurs
from indexing, you can also get such a result from other functions. For example, averaging a 1-D array, all of whom’s
values are invalid, would result inmasked .

18.3.12 Assignment to elements and slices

18.3. Class MaskedArray 151

Assignment of a normal value to a single element or slice of a masked array has the effect of clearing the mask in
those locations. In this way previously invalid elements become valid. The value being assigned is filled first, so that
you are guaranteed that all the elements on the left-hand side are now valid.

Assignment ofNone to a single element or slice of a masked array has the effect of setting the mask in those locations,
and the locations become invalid.

Since these operations change the mask, the result afterwards will no longer share a mask, since masks have copy-on-
write semantics.

18.4 MaskedArray Attributes

e

pi

NewAxis
Constantse, pi , NewAxis from numarray , and the constants from modulePrecision that define nice
names for the typecodes.

The special variablesmasked and maskedprint option are discussed in section 18.6.1.

The modulenumarray is an element ofnumarray.ma , so after ‘from numarray.ma import * ’, you can
refer to the functions innumarray such asnumarray.ones ; see part I for the constants available innumarray .

18.5 MaskedArray Functions

Each of the operations discussed below returns an instance ofnumarray.ma classMaskedArray , having per-
formed the desired operation element-wise. In most cases the array arguments can be masked arrays ornumarray
arrays or something thatnumarray can turn into anumarray array, such as a list of real numbers.

In most cases, ifnumarray has a function of the same name, the behavior of the one innumarray.ma is the same,
except that it “respects” the mask.

18.5.1 Unary functions

The result of a unary operation will be masked wherever the original operand was masked. It may also be masked if
the argument is not in the domain of the function. The following functions have their standard meaning:

absolute , arccos , arcsin , arctan , around , conjugate , cos , cosh , exp , floor , log ,
log10 , negative (also as operator -),nonzero , sin , sinh , sqrt , tan , tanh .

fabs (x)
The absolute value ofx as aFloat32 array.

18.5.2 Binary functions

Binary functions return a result that is masked wherever either of the operands were masked; it may also be masked
where the arguments are not in the domain of the function.

add (also as operator +),subtract (also as operator -),multiply (also as operator *),divide (also
as operator /),power (also as operator **),remainder , fmod , hypot , arctan2 , bitwise and ,
bitwise or , bitwise xor .

152 Chapter 18. Masked Arrays

18.5.3 Comparison operators

To compare arrays, use the following binary functions. Each of them returns a masked array of 1’s and 0’s.

equal , greater , greater equal , less , less equal , not equal .

Note that as innumarray , you can use a scalar for one argument and an array for the other.Note: See section??
why operators and comparison functions are not excatly equivalent.

18.5.4 Logical operators

Arrays of logical values can be manipulated with:

logical and , logical not (unary) , logical or , logical xor .

alltrue (x)
Returns 1 if all elements ofx are true. Masked elements are treated as true.

sometrue (x)
Returns 1 if any element ofx is true. Masked elements are treated as false.

18.5.5 Special array operators

isarray (x)
Return truex is a masked array.

rank (x)
The number of dimensions inx.

shape (x)
Returns the shape ofx, a tuple of array extents.

resize (x, shape)
Returns a new array with specifiedshape.

reshape (x, shape)
Returns a copy ofx with the given newshape.

ravel (x)
Returnsx as one-dimensionalMaskedArray .

concatenate ((a0, ... an), axis=0)
Concatenates the arraysa0, ... an along the specifiedaxis.

repeat (a, repeats, axis=0)
Repeat elementsi of a repeats[i] times alongaxis. repeatsis a sequence of lengtha.shape[axis]
telling how many times to repeat each element.

identity (n)
Returns the identity matrix of shapen by n.

indices (dimensions, type=None)
Returns an array representing a grid of indices with row-only and column-only variation.

len (x)
This is defined to be the length of the first dimension ofx. This definition, peculiar from the array point of view,
is required by the way Python implements slicing. Usesize for the total length ofx.

18.5. MaskedArray Functions 153

size (x, axis=None)
This is the total size ofx, or the length of a particular dimensionaxiswhose index is given. When axis is given
the dimension of the result is one less than the dimension ofx.

count (x, axis=None)
Count the number of (non-masked) elements in the array, or in the array along a certainaxis. Whenaxisis given
the dimension of the result is one less than the dimension ofx.

arange ()

arrayrange ()

diagonal ()

fromfunction ()

ones ()

zeros ()
are the same as in numarray, but return masked arrays.

sum()

product ()
are called the same way as count; the difference is that the result is the sum or product of the unmasked element.

average (x, axis=0, weights=None, returned=0)
Compute the average value of the non-masked elements ofx along the selectedaxis. If weightsis given, it must
match the size and shape ofx, and the value returned is:

average=
∑

weightsi · xi∑
weightsi

(18.2)

In computing these sums, elements that correspond to those that are masked inx or weightsare ignored. If
successful a 2-tuple consisting of the average and the sum of the weights is returned.

allclose (x, y, fill value=1, rtol=1.e-5, atol=1.e-8)
Test whether or not arraysx andy are equal subject to the given relative and absolute tolerances. Iffill valueis
1, masked values are considered equal, otherwise they are considered different. The formula used for elements
where bothx andy have a valid value is:

|x− y| < atol + rtol · |y| (18.3)

This means essentially that both elements are small compared toatol or their difference divided by their value
is small compared tortol.

allequal (x, y, fill value=1)
This function is similar toallclose , except that exact equality is demanded.Note: Consider the problems of
floating-point representations when using this function on non-integer numbers arrays.

take (a, indices, axis=0)
Returns a selection of items froma. See the documentation ofnumarray.take in section 8.

transpose (a, axes=None)
Performs a reordering of the axes depending on the tuple of indicesaxes; the default is to reverse the order of
the axes.

put (a, indices, values)
The opposite oftake . The values of the arraya at the locations specified inindicesare set to the corresponding
value ofvalues. The arraya must be a contiguous array. The argumentindicescan be any integer sequence
object with values suitable for indexing into the flat form ofa. The argumentvaluesmust be any sequence of
values that can be converted to the typecode ofa.

154 Chapter 18. Masked Arrays

>>> x = arange(6)
>>> put(x, [2,4], [20,40])
>>> print x
[0 1 20 3 40 5]

Note that the target arraya is not required to be one-dimensional. Since it is contiguous and stored in row-major
order, the array indices can be treated as indexingas elements in storage order.

The wrinkle on this for masked arrays is that if the locations being set byput are masked, the mask is cleared
in those locations.

choose (condition, t)
This function has a result shaped likecondition. t must be a tuple. Each element of the tuple can be an array,
a scalar, or the constant elementmasked (See section 18.6.1). Each element of the result is the corresponding
element oft[i] whereconditionhas the valuei. The result is masked whereconditionis masked or where the
selected element is masked or the selected element oft is the constantmasked .

where (condition, x, y)
Returns an array that isfilled(x) whereconditionis true,filled(y) where the condition is false. One
of x or y can be the constant elementmasked (See section 18.6.1). The result is masked wherecondition is
masked, where the element selected fromx or y is masked, or wherex or y itself is the constantmasked and it
is selected.

innerproduct (a, b)

dot (a, b)
These functions work as innumarray , but missing values don’t contribute. The result is always a masked
array, possibly of length one, because of the possibility that one or more entries in it may be invalid since all the
data contributing to that entry was invalid.

outerproduct (a, b)
Produces a masked array such thatresult[i, j] = a[i] * b[j] . The result will be masked where
a[i] or b[j] is masked.

compress (condition, x, dimension=-1)
Compresses out only those valid values wherecondition is true. Masked values inconditionare considered
false.

maximum(x, y=None)

minimum (x, y=None)
Compute the maximum (minimum) valid values ofx if y is None; with two arguments, they return the element-
wise larger or smaller of valid values, and mask the result where eitherx or y is masked. If both arguments are
scalars a scalar is returned.

sort (x, axis=-1, value=None)
Returns the arrayx sorted along the given axis, with masked values treated as if they have a sort value ofvalue
but locations containingvalueare masked in the result ifx had a mask to start with.Note: Thus if x contains
valueat a non-masked spot, but has other spots masked, the result may not be what you want.

argsort (x, axis=-1, fill value=None)
This function is unusual in that it returns anumarray array, equal tonumarray.argsort(filled(x,
fill value), axis) ; this is an array of indices for sorting along a given axis.

18.5.6 Controlling the size of the string representations

get print limit ()

set print limit (n=0)

18.5. MaskedArray Functions 155

These functions are used to limit printing of large arrays; query and set the limit for converting arrays usingstr
or repr .

If an array is printed that is larger than this, the values are not printed; rather you are informed of the type and
size of the array. Ifn is zero, the standardnumarray conversion functions are used.

When imported,numarray.ma sets this limit to 300, and the limit is also made to apply to standard
numarray arrays as well.

18.6 Helper classes

This section discusses other classes defined in module numarray.ma.

classMAError (T)
his class inherits from Exception, used to raise exceptions in thenumarray.ma module. Other exceptions are
possible, such as errors from the underlyingnumarray module.

18.6.1 The constant masked

A constant namedmasked in numarray.ma serves several purposes.

1. When a indexing operation on anMaskedArray instance returns a scalar result, but the location indexed was
masked, thenmasked is returned. For example, given a one-dimensional arrayx such thatx.mask()[3] is
1, thenx[3] is masked .

2. Whenmasked is assigned to elements of an array via indexing or slicing, those elements become masked. So
afterx[3] = masked , x[3] is masked.

3. Some other operations that may return scalar values, such asaverage , may returnmasked if given only
invalid data.

4. To test whether or not a variable is this element, use theis or is not operator, not== or != .

5. Operations involving the constantmasked may result in an exception. In operations,masked behaves as an
integer array of shape() with one masked element. For example, using+ for illustration,

• masked + masked is masked .

• masked + numeric scalar or numeric scalar +masked is masked .

• masked + array or array +masked is a masked array with all elementsmasked if array is of a numeric
type. The same is true if array is anumarray array.

18.6.2 The constant masked print option

Another constant,masked print option controls what happens when masked arrays and the constantmasked
are printed:

display ()
Returns a string that may be used to indicate those elements of an array that are masked when the array is
converted to a string, as happens with the print statement.

set display (string)
This functions can be used to set the string that is used to indicate those elements of an array that are masked
when the array is converted to a string, as happens with the print statement.

156 Chapter 18. Masked Arrays

enable (flag)
can be used to enable (flag = 1, default) the use of the display string. If disabled (flag = 0), the conversion to
string becomes equivalent tostr(self.filled()) .

enabled ()
Returns the state of the display-enabling flag.

Example of masked behavior
>>> from numarray.ma import *
>>> x=arange(5)
>>> x[3] = masked
>>> print x
[0 ,1 ,2 ,-- ,4 ,]
>>> print repr(x)
array(data =

[0,1,2,0,4,],
mask =

[0,0,0,1,0,],
fill_value=[0,])

>>> print x[3]
--
>>> print x[3] + 1.0
--
>>> print masked + x
[-- ,-- ,-- ,-- ,-- ,]
>>> masked_print_option.enable(0)
>>> print x
[0,1,2,0,4,]
>>> print x + masked
[0,0,0,0,0,]
>>> print filled(x+masked, -99)
[-99,-99,-99,-99,-99,]

classmasked unary function (f, fill=0, domain=None)
Given a unary array functionf , give a function which when applied to an argumentx returnsf applied to the
arrayfilled(x, fill) , with a mask equal tomask or(getmask(x), domain(x)) .

The argument domain therefore should be a callable object that returns true wherex is not in the domain off .

The following domains are also supplied as members of modulenumarray.ma :
classdomain check interval (a, b)(x)

Returns true wherex < a or y > b .

classdomain tan (eps)
x This is true whereabs(cos (x)) < eps , that is, a domain suitable for the tangent function.

classdomain greater (v)(x)
True wherex <= v .

classdomain greater equal (v)(x)
True where x ¡ v.

classmasked binary function (f, fillx=0, filly=0)
Given a binary array functionf , masked binary function(f, fillx=0, filly=0) defines a
function whose value atx is f(filled(x, fillx), filled (y, filly)) with a resulting mask
of mask or(getmask (x), getmask(y)) . The valuesfillx andfilly must be chosen so that(fillx,
filly) is in the domain off .

In addition, an instance ofmasked binary function has two methods defined upon it:

18.6. Helper classes 157

reduce (target, axis = 0)

accumulate (target, axis = 0)

outer (a, b)
These methods perform reduction, accumulation, and applying the function in an outer-product-like manner, as
discussed in the section 7.1.2.

classdomained binary function ()
This class exists to implement division-related operations. It is the same asmasked binary function ,
except that a new second argument is a domain which is used to mask operations that would otherwise cause
failure, such as dividing by zero. The functions that are created from this class aredivide , remainder
(mod), andfmod .

The following domains are available for use as the domain argument:

classdomain safe divide ()(x, y)
True whereabsolute(x)*divide tolerance > absolute(y) . As the comments in the code say,
better ideas welcome. The constantdivide tolerance is set to1.e-35 in the source and can be changed
by editing its value in ‘MA.py’ and reinstalling. This domain is used for the divide operator.

18.7 Examples of Using numarray.ma

18.7.1 Data with a given value representing missing data

Suppose we have read a one-dimensional list of elements namedx. We also know that if any of the values are1.e20 ,
they represent missing data. We want to compute the average value of the data and the vector of deviations from
average.

>>> from numarray.ma import *
>>> x = array([0.,1.,2.,3.,4.])
>>> x[2] = 1.e20
>>> y = masked_values (x, 1.e20)
>>> print average(y)
2.0
>>> print y-average(y)
[-2.00000000e+00, -1.00000000e+00, --, 1.00000000e+00,

2.00000000e+00,]

18.7.2 Filling in the missing data

Suppose now that we wish to print that same data, but with the missing values replaced by the average value.

>>> print filled (y, average(y))

18.7.3 Numerical operations

We can do numerical operations without worrying about missing values, dividing by zero, square roots of negative
numbers, etc.

158 Chapter 18. Masked Arrays

>>> from numarray.ma import *
>>> x=array([1., -1., 3., 4., 5., 6.], mask=[0,0,0,0,1,0])
>>> y=array([1., 2., 0., 4., 5., 6.], mask=[0,0,0,0,0,1])
>>> print sqrt(x/y)
[1.00000000e+00, --, --, 1.00000000e+00, --, --,]

Note that four values in the result are invalid: one from a negative square root, one from a divide by zero, and two
more where the two arraysx andy had invalid data. Since the result was of a real type, the print command printed
str(filled(sqrt (x/y))) .

18.7.4 Seeing the mask

There are various ways to see the mask. One is to print it directly, the other is to convert to therepr representation,
and a third is get the mask itself. Use ofgetmask is more robust thanx.mask() , since it will work (returning
None) if x is anumarray array or list.

>>> x = arange(10)
>>> x[3:5] = masked
>>> print x
[0 ,1 ,2 ,-- ,-- ,5 ,6 ,7 ,8 ,9 ,]
>>> print repr(x)
*** Masked array, mask present ***
Data:
[0 ,1 ,2 ,-- ,-- ,5 ,6 ,7 ,8 ,9 ,]
Mask (fill value [0,])
[0,0,0,1,1,0,0,0,0,0,]
>>> print getmask(x)
[0,0,0,1,1,0,0,0,0,0,]

18.7.5 Filling it your way

If we want to print the data with-1 ’s where the elements are masked, we usefilled .

>>> print filled(z, -1)
[1.,-1.,-1., 1.,-1.,-1.,]

18.7.6 Ignoring extreme values

Suppose we have an arrayd and we wish to compute the average of the values ind but ignore any data outside the
range -100. to 100.

v = masked_outside(d, -100., 100.)
print average(v)

18.7.7 Averaging an entire multidimensional array

18.7. Examples of Using numarray.ma 159

The problem with averaging over an entire array is that the average function only reduces one dimension at a time. So
to average the entire array,ravel it first.

>>> x
*** Masked array, no mask ***
Data:
[[0, 1, 2,]

[3, 4, 5,]
[6, 7, 8,]
[9,10,11,]]

>>> average(x)
*** Masked array, no mask ***
Data:
[4.5, 5.5, 6.5,]
>>> average(ravel(x))
5.5

160 Chapter 18. Masked Arrays

CHAPTER

NINETEEN

Mlab

19.1 Matlab(tm) compatible functions

numarray.mlab provides a set of Matlab(tm) compatible functions.

This will hopefully become a complete set of the basic functions available in Matlab. The syntax is kept as close
to the Matlab syntax as possible. One fundamental change is that the first index in Matlab varies the fastest (as in
FORTRAN). That means that it will usually perform reductions over columns, whereas with this object the most
natural reductions are over rows. It’s perfectly possible to make this work the way it does in Matlab if that’s desired.

mean(m, axis=0)
returns the mean along the axis’th dimension of m. Note: if m is an integer array, the result will be floating
point. This was changed in release 10.1; previously, a meaningless integer divide was used.

median (m)
returns a mean of m along the first dimension of m.

min (m, axis=0)
returns the minimum along the axis’th dimension of m.

msort (m)
returns a sort along the first dimension of m as in MATLAB.

prod (m, axis=0)
returns the product of the elements along the axis’th dimension of m.

ptp (m, axis = 0)
returns the maximum - minimum along the axis’th dimension of m.

rand (d1, ..., dn)
returns a matrix of the given dimensions which is initialized to random numbers from a uniform distribution in
the range [0,1).

rot90 (m,k=1)
returns the matrix found by rotating m by k*90 degrees in the counterclockwise direction.

sinc (x)
returns sin(pi*x)

squeeze (a)
removes any ones from the shape of a

std (m, axis = 0)
returns the unbiased estimate of the population standard deviation from a sample along the axis’th dimension of
m. (That is, the denominator for the calculation is n-1, not n.)

161

sum(m, axis=0)
returns the sum of the elements along the axis’th dimension of m.

svd (m)
return the singular value decomposition of m [u,x,v]

trapz (y,x=None)
integrates y = f(x) using the trapezoidal rule

tri (N, M=N, k=0, typecode=None)
returns a N-by-M matrix where all the diagonals starting from lower left corner up to the k-th are all ones.

tril (m,k=0)
returns the elements on and below the k-th diagonal of m. k=0 is the main diagonal,k > 0 is above andk < 0
is below the main diagonal.

triu (m,k=0)
returns the elements on and above the k-th diagonal of m. k=0 is the main diagonal,k > 0 is above andk < 0
is below the main diagonal.

162 Chapter 19. Mlab

CHAPTER

TWENTY

Random Numbers

The numarray.random array module (in conjunction with the
numarray.random array.ranlib submodule) provides a high-level interface to ranlib, which
provides a good quality C implementation of a random-number generator.

20.1 General functions

seed (x=0, y=0)
Theseed function takes two integers and sets the two seeds of the random number generator to those values.
If the default values of 0 are used for bothx andy, then a seed is generated from the current time, providing a
pseudo-random seed.

get seed ()
This function returns the two seeds used by the current random-number generator. It is most often used to find
out what seeds theseed function chose at the last iteration.

random (shape=[])
Therandom function takes ashape, and returns an array ofFloat numbers between 0.0 and 1.0. Neither 0.0
nor 1.0 is ever returned by this function. The array is filled from the generator following the canonical array
organization.

If no argument is specified, the function returns a single floating point number, not an array.

Note: See discussion of theflat attribute in section 10.

uniform (minimum, maximum, shape=[])
Theuniform function returns an array of the specifiedshapeand containingFloat random numbers strictly
betweenminimumandmaximum.

The minimumandmaximumarguments can be arrays. If this is the case, and the outputshapeis specified,
minimumandmaximumare broadcasted if their dimensions are not equal toshape. If shapeis not specified, the
shape of the output is equal to the shape ofminimumandmaximumafter broadcasting.

If no shapeis specified, andminimumandmaximumare scalars, a single value is returned.

randint (minimum, maximum, shape=[])
Therandint function returns an array of the specifiedshapeand containing random (standard) integers greater
than or equal tominimumand strictly less thanmaximum.

The minimumandmaximumarguments can be arrays. If this is the case, and the outputshapeis specified,
minimumandmaximumare broadcasted if their dimensions are not equal toshape. If shapeis not specified, the
shape of the output is equal to the shape ofminimumandmaximumafter broadcasting.

If no shapeis specified, andminimumandmaximumare scalars, a single value is returned.

permutation (n)

163

Thepermutation function returns an array of the integers between0 andn-1 , in an array of shape(n,)
with its elements randomly permuted.

20.2 Special random number distributions

20.2.1 Random floating point number distributions

beta (a, b, shape=[])
The beta function returns an array of the specified shape that containsFloat numbersβ-distributed with
α-parametera andβ-parameterb.

Thea andb arguments can be arrays. If this is the case, and the outputshapeis specified,a andb are broadcasted
if their dimensions are not equal toshape. If shapeis not specified, the shape of the output is equal to the shape
of a andb after broadcasting.

If no shapeis specified, anda andb are scalars, a single value is returned.

chi square (df, shape=[])
The chi square function returns an array of the specifiedshapethat containsFloat numbers with the
χ2-distribution withdf degrees of freedom.

Thedf argument can be an array. If this is the case, and the outputshapeis specified,df is broadcasted if its
dimensions are not equal toshape. If shapeis not specified, the shape of the output is equal to the shape ofdf .

If no shapeis specified, anddf is a scalar, a single value is returned.

exponential (mean, shape=[])
Theexponential function returns an array of the specifiedshapethat containsFloat numbers exponen-
tially distributed with the specifiedmean.

Themeanargument can be an array. If this is the case, and the outputshapeis specified,meanis broadcasted if
its dimensions are not equal toshape. If shapeis not specified, the shape of the output is equal to the shape of
mean.

If no shapeis specified, andmeanis a scalar, a single value is returned.

F(dfn, dfd, shape=[])
TheF function returns an array of the specifiedshapethat containsFloat numbers with the F-distribution with
dfndegrees of freedom in the numerator anddfd degrees of freedom in the denominator.

Thedfn anddfd arguments can be arrays. If this is the case, and the outputshapeis specified,dfn anddfd are
broadcasted if their dimensions are not equal toshape. If shapeis not specified, the shape of the output is equal
to the shape ofdfnanddfd after broadcasting.

If no shapeis specified, anddfnanddfd are scalars, a single value is returned.

gamma(a, r, shape=[])
Thegammafunction returns an array of the specifiedshapethat containsFloat numbersβ-distributed with
location parametera and distribution shape parameterr.

Thea andr arguments can be arrays. If this is the case, and the outputshapeis specified,a andr are broadcasted
if their dimensions are not equal toshape. If shapeis not specified, the shape of the output is equal to the shape
of a andr after broadcasting.

If no shapeis specified, anda andr are scalars, a single value is returned.

multivariate normal (mean, cov, shape=[])
The multivariate normal function takes a one dimensional array argumentmeanand a two dimensional array
argumentcov. Suppose the shape ofmeanis (n,) . Then the shape ofcovmust be(n,n) . The function returns
an array ofFloat s.

The effect of theshapeparameter is:

164 Chapter 20. Random Numbers

•If no shapeis specified, then an array with shape(n,) is returned containing a vector of numbers with a
multivariate normal distribution with the specified mean and covariance.

•If shape is specified, then an array of such vectors is returned. The shape of the output is
shape.append((n,)) . The leading indices into the output array select a multivariate normal from
the array. The final index selects one number from within the multivariate normal.

In either case, the behavior ofmultivariate normal is undefined ifcov is not symmetric and positive
definite.

normal (mean, std, shape=[])
Thenormal function returns an array of the specifiedshapethat containsFloat numbers normally distributed
with the specifiedmeanand standard deviationstd.

Themeanandstd arguments can be arrays. If this is the case, and the outputshapeis specified,meanandstd
are broadcasted if their dimensions are not equal toshape. If shapeis not specified, the shape of the output is
equal to the shape ofmeanandstdafter broadcasting.

If no shapeis specified, andmeanandstdare scalars, a single value is returned.

noncentral chi square (df, nonc, shape=[])
Thenoncentral chi square function returns an array of the specifiedshapethat containsFloat num-
bers with theχ2-distribution withdf degrees of freedom and noncentrality parameternconc.

Thedf andnoncarguments can be arrays. If this is the case, and the outputshapeis specified,df andnoncare
broadcasted if their dimensions are not equal toshape. If shapeis not specified, the shape of the output is equal
to the shape ofdf andnoncafter broadcasting.

If no shapeis specified, anddf andnoncare scalars, a single value is returned.

noncentral F(dfn, dfd, nconc, shape=[])
Thenoncentral F function returns an array of the specifiedshapethat containsFloat numbers with the
F-distribution withdfn degrees of freedom in the numerator,dfd degrees of freedom in the denominator, and
noncentrality parameternconc.

Thedfn, dfd andnoncarguments can be arrays. If this is the case, and the outputshapeis specified,dfn, dfd and
noncare broadcasted if their dimensions are not equal toshape. If shapeis not specified, the shape of the output
is equal to the shape ofdfn, dfd andnoncafter broadcasting.

If no shapeis specified, anddfn, dfd andnoncare scalars, a single value is returned.

standard normal (shape=[])
Thestandard normal function returns an array of the specifiedshapethat containsFloat numbers nor-
mally (Gaussian) distributed with mean zero and variance and standard deviation one.

If no shapeis specified, a single number is returned.

F(dfn, dfd, shape=[])
Returns array of F distributed random numbers withdfndegrees of freedom in the numerator anddfd degrees of
freedom in the denominator.

noncentral F(dfn, dfd, nconc, shape=[])
Returns array of noncentral F distributed random numbers with dfn degrees of freedom in the numerator and
dfd degrees of freedom in the denominator, and noncentrality parameter nconc.

20.2.2 Random integer number distributions

binomial (trials, p, shape=[])
The binomial function returns an array with the specifiedshapethat containsInteger numbers with the
binomial distribution withtrials and event probabilityp. In other words, each value in the returned array is the
number of times an event with probabilityp occurred withintrials repeated trials.

20.2. Special random number distributions 165

The trials andp arguments can be arrays. If this is the case, and the outputshapeis specified,trials andp are
broadcasted if their dimensions are not equal toshape. If shapeis not specified, the shape of the output is equal
to the shape oftrials andp after broadcasting.

If no shapeis specified, andtrials andp are scalars, a single value is returned.

negative binomial (trials, p, shape=[])
Thenegative binomial function returns an array with the specifiedshapethat containsInteger num-
bers with the negative binomial distribution withtrials and event probabilityp.

The trials andp arguments can be arrays. If this is the case, and the outputshapeis specified,trials andp are
broadcasted if their dimensions are not equal toshape. If shapeis not specified, the shape of the output is equal
to the shape oftrials andp after broadcasting.

If no shapeis specified, andtrials andp are scalars, a single value is returned.

multinomial (trials, probs, shape=[])
The multinomial function returns an array with that contains integer numbers with the multinomial dis-
tribution with trials and event probabilities given inprobs. probs must be a one dimensional array. There
are len(probs)+1 events.probs[i] is the probability of the i-th event for0<=i<len(probs) . The
probability of eventlen(probs) is 1.-Numeric.sum(prob) .

The function returns an integer array of shapeshape + (len(probs)+1,) . If shape is not
specified this is one multinomially distributed vector of shape(len(prob)+1,) . Otherwise each
returnarray[i,j,...,:] is an integer array of shape(len(prob)+1,) containing one multinomi-
ally distributed vector.

poisson (mean, shape=[])
The poisson function returns an array with the specified shape that containsInteger numbers with the
Poisson distribution with the specifiedmean.

Themeanargument can be an array. If this is the case, and the outputshapeis specified,meanis broadcasted if
its dimensions are not equal toshape. If shapeis not specified, the shape of the output is equal to the shape of
mean.

If no shapeis specified, andmeanis a scalar, a single value is returned.

20.3 Examples

Some example uses of thenumarray.random array module.Note: Naturally the exact output of running these
examples will be different each time!

166 Chapter 20. Random Numbers

>>> from numarray.random_array import *
>>> seed() # Set seed based on current time
>>> print get_seed() # Find out what seeds were used
(897800491, 192000)
>>> print random()
0.0528018975065
>>> print random((5,2))
[[0.14833829 0.99031458]
[0.7526806 0.09601787]
[0.1895229 0.97674777]
[0.46134511 0.25420982]
[0.66132009 0.24864472]]
>>> print uniform(-1,1,(10,))
[0.72168852 -0.75374185 -0.73590945 0.50488248 -0.74462822 0.09293685
-0.65898308 0.9718067 -0.03252475 0.99611011]
>>> print randint(0,100, (12,))
[28 5 96 19 1 32 69 40 56 69 53 44]
>>> print permutation(10)
[4 2 8 9 1 7 3 6 5 0]
>>> seed(897800491, 192000) # resetting the same seeds
>>> print random() # yields the same numbers
0.0528018975065

Most of the functions in this package take zero or more distribution specific parameters plus an optionalshapeparam-
eter. Theshapeparameter gives the shape of the output array:

20.3. Examples 167

>>> from numarray.random_array import *
>>> print standard_normal()
-0.435568600893
>>> print standard_normal(5)
[-1.36134553 0.78617644 -0.45038718 0.18508556 0.05941355]
>>> print standard_normal((5,2))
[[1.33448863 -0.10125473]
[0.66838062 0.24691346]
[-0.95092064 0.94168913]
[-0.23919107 1.89288616]
[0.87651485 0.96400219]]
>>> print normal(7., 4., (5,2)) #mean=7, std. dev.=4
[[2.66997623 11.65832615]
[6.73916003 6.58162862]
[8.47180378 4.30354905]
[1.35531998 -2.80886841]
[7.07408469 11.39024973]]
>>> print exponential(10., 5) #mean=10
[18.03347754 7.11702306 9.8587961 32.49231603 28.55408891]
>>> print beta(3.1, 9.1, 5) # alpha=3.1, beta=9.1
[0.1175056 0.17504358 0.3517828 0.06965593 0.43898219]
>>> print chi_square(7, 5) # 7 degrees of freedom (dfs)
[11.99046516 3.00741053 4.72235727 6.17056274 8.50756836]
>>> print noncentral_chi_square(7, 3, 5) # 7 dfs, noncentrality 3
[18.28332138 4.07550335 16.0425396 9.51192093 9.80156231]
>>> F(5, 7, 5) # 5 and 7 dfs
array([0.24693671, 3.76726145, 0.66883826, 0.59169068, 1.90763224])
>>> noncentral_F(5, 7, 3., 5) # 5 and 7 dfs, noncentrality 3
array([1.17992553, 0.7500126 , 0.77389943, 9.26798989, 1.35719634])
>>> binomial(32, .5, 5) # 32 trials, prob of an event = .5
array([12, 20, 21, 19, 17])
>>> negative_binomial(32, .5, 5) # 32 trials: prob of an event = .5
array([21, 38, 29, 32, 36])

Two functions that return generate multivariate random numbers (that is, random vectors with some known relation-
ship between the elements of each vector, defined by the distribution). They aremultivariate normal and
multinomial . For these two functions, the lengths of the leading axes of the output may be specified. The length
of the last axis is determined by the length of some other parameter.

>>> multivariate_normal([1,2], [[1,2],[2,1]], [2,3])
array([[[0.14157988, 1.46232224],
[-1.11820295, -0.82796288],
[1.35251635, -0.2575901]],
[[-0.61142141, 1.0230465],
[-1.08280948, -0.55567217],
[2.49873002, 3.28136372]]])
>>> x = multivariate_normal([10,100], [[1,2],[2,1]], 10000)
>>> x_mean = sum(x)/10000
>>> print x_mean
[9.98599893 100.00032416]
>>> x_minus_mean = x - x_mean
>>> cov = matrixmultiply(transpose(x_minus_mean), x_minus_mean) / 9999.
>>> cov
array([[2.01737122, 1.00474408],
[1.00474408, 2.0009806]])

The a priori probabilities for a multinomial distribution must sum to one. The prior probability argument to

168 Chapter 20. Random Numbers

multinomial doesn’t give the prior probability of the last event: it is computed to be one minus the sum of the
others.

>>> multinomial(16, [.1, .4, .2]) # prior probabilities [.1, .4, .2, .3]
array([2, 7, 1, 6])
>>> multinomial(16, [.1, .4, .2], [2,3]) # output shape [2,3,4]
array([[[1, 9, 1, 5],
[0, 10, 3, 3],
[4, 9, 3, 0]],
[[1, 6, 1, 8],
[3, 4, 5, 4],
[1, 5, 2, 8]]])

Many of the functions accept arrays or sequences for the distribution arguments. If noshapeargument is given, then
the shape of the output is determined by the shape of the parameter argument. For instance:

>>> beta([5.0, 50.0], [10.0, 100.])
array([0.54379648, 0.35352072])

Broadcasting rules apply if two or more arguments are arrays:

>>> beta([5.0, 50.0], [[10.0, 100.], [20.0, 200.0]])
array([[0.30204576, 0.32154009],

[0.10851908, 0.19207685]])

Theshapeargument can still be used to specify the output shape. Any array argument will be broadcasted to have the
given shape:

>>> beta(5.0, [10.0, 100.0], shape = (3, 2))
array([[0.49521708, 0.02218186],

[0.21000148, 0.04366644],
[0.43169656, 0.05285903]])

20.3. Examples 169

170

CHAPTER

TWENTYONE

Multi-dimensional image processing

Thenumarray.nd image module provides functions for multidimensional image analysis.

21.1 Introduction

Image processing and analysis are generally seen as operations on two-dimensional arrays of values. There are how-
ever a number of fields where images of higher dimensionality must be analyzed. Good examples of these are medical
imaging and biological imaging.numarray is suited very well for this type of applications due its inherent multi-
dimensional nature. Thenumarray.nd image packages provides a number of general image processing and anal-
ysis functions that are designed to operate with arrays of arbitrary dimensionality. The packages currently includes
functions for linear and non-linear filtering, binary morphology, B-spline interpolation, and object measurements.

21.2 Properties shared by all functions

All functions share some common properties. Notably, all functions allow the specification of an output array with the
outputargument. With this argument you can specify an array that will be changed in-place with the result with the
operation. In this case the result is not returned. Usually, using theoutputargument is more efficient, since an existing
array is used to store the result.

The type of arrays returned is dependent on the type of operation, but it is in most cases equal to the type of the input.
If, however, theoutputargument is used, the type of the result is equal to the type of the specified output argument.
If no output argument is given, it is still possible to specify what the result of the output should be. This is done by
simply assigning the desired numarray type object to the output argument. For example:

>>> print correlate(arange(10), [1, 2.5])
[0 2 6 9 13 16 20 23 27 30]
>>> print correlate(arange(10), [1, 2.5], output = Float64)
[0. 2.5 6. 9.5 13. 16.5 20. 23.5 27. 30.5]

Note: In previous versions ofnumarray.nd image , some functions accepted theoutput typeargument to achieve
the same effect. This argument is still supported, but its use will generate an deprecation warning. In a future version
all instances of this argument will be removed. The preferred way to specify an output type, is by using theoutput
argument, either by specifying an output array of the desired type, or by specifying the type of the output that is to be
returned.

21.3 Filter functions

171

The functions described in this section all perform some type of spatial filtering of the the input array: the elements
in the output are some function of the values in the neighborhood of the corresponding input element. We refer to
this neighborhood of elements as the filter kernel, which is often rectangular in shape but may also have an arbitrary
footprint. Many of the functions described below allow you to define the footprint of the kernel, by passing a mask
through thefootprint parameter. For example a cross shaped kernel can be defined as follows:

>>> footprint = array([[0,1,0],[1,1,1],[0,1,0]])
>>> print footprint
[[0 1 0]

[1 1 1]
[0 1 0]]

Usually the origin of the kernel is at the center calculated by dividing the dimensions of the kernel shape by two.
For instance, the origin of a one-dimensional kernel of length three is at the second element. Take for example the
correlation of a one-dimensional array with a filter of length 3 consisting of ones:

>>> a = [0, 0, 0, 1, 0, 0, 0]
>>> correlate1d(a, [1, 1, 1])
[0 0 1 1 1 0 0]

Sometimes it is convenient to choose a different origin for the kernel. For this reason most functions support theorigin
parameter which gives the origin of the filter relative to its center. For example:

>>> a = [0, 0, 0, 1, 0, 0, 0]
>>> print correlate1d(a, [1, 1, 1], origin = -1)
[0 1 1 1 0 0 0]

The effect is a shift of the result towards the left. This feature will not be needed very often, but it may be useful
especially for filters that have an even size. A good example is the calculation of backward and forward differences:

>>> a = [0, 0, 1, 1, 1, 0, 0]
>>> print correlate1d(a, [-1, 1]) ## backward difference
[0 0 1 0 0 -1 0]
>>> print correlate1d(a, [-1, 1], origin = -1) ## forward difference
[0 1 0 0 -1 0 0]

We could also have calculated the forward difference as follows:

>>> print correlate1d(a, [0, -1, 1])
[0 1 0 0 -1 0 0]

however, using the origin parameter instead of a larger kernel is more efficient. For multi-dimensional kernelsorigin
can be a number, in which case the origin is assumed to be equal along all axes, or a sequence giving the origin along
each axis.

Since the output elements are a function of elements in the neighborhood of the input elements, the borders of the
array need to be dealt with appropriately by providing the values outside the borders. This is done by assuming that
the arrays are extended beyond their boundaries according certain boundary conditions. In the functions described
below, the boundary conditions can be selected using themodeparameter which must be a string with the name of the
boundary condition. Following boundary conditions are currently supported:

172 Chapter 21. Multi-dimensional image processing

Boundary condition Description Example
"nearest" Use the value at the boundary [1 2 3]->[1 1 2 3 3]
"wrap" Periodically replicate the array [1 2 3]->[3 1 2 3 1]
"reflect" Reflect the array at the boundary [1 2 3]->[1 1 2 3 3]
"constant" Use a constant value, default value is 0.0[1 2 3]->[0 1 2 3 0]

The"constant" mode is special since it needs an additional parameter to specify the constant value that should be
used.

Note: The easiest way to implement such boundary conditions would be to copy the data to a larger array and extend
the data at the borders according to the boundary conditions. For large arrays and large filter kernels, this would be
very memory consuming, and the functions described below therefore use a different approach that does not require
allocating large temporary buffers.

21.3.1 Correlation and convolution

correlate1d (input, weights, axis=-1, output=None, mode=’reflect’, cval=0.0, origin=0, outputtype=None)
Thecorrelate1d function calculates a one-dimensional correlation along the given axis. The lines of the ar-
ray along the given axis are correlated with the givenweights. Theweightsparameter must be a one-dimensional
sequences of numbers.

correlate (input, weights, output=None, mode=’reflect’, cval=0.0, origin=0, outputtype=None)
The functioncorrelate implements multi-dimensional correlation of the input array with a given kernel.

convolve1d (input, weights, axis=-1, output=None, mode=’reflect’, cval=0.0, origin=0, outputtype=None)
The convolve1d function calculates a one-dimensional convolution along the given axis. The lines of the
array along the given axis are convoluted with the givenweights. The weightsparameter must be a one-
dimensional sequences of numbers.

Note: A convolution is essentially a correlation after mirroring the kernel. As a result, theorigin parameter
behaves differently than in the case of a correlation: the result is shifted in the opposite directions.

convolve (input, weights, output=None, mode=’reflect’, cval=0.0, origin=0, outputtype=None)
The functionconvolve implements multi-dimensional convolution of the input array with a given kernel.

Note: A convolution is essentially a correlation after mirroring the kernel. As a result, theorigin parameter
behaves differently than in the case of a correlation: the results is shifted in the opposite direction.

21.3.2 Smoothing filters

gaussian filter1d (input, sigma, axis=-1, order=0, output=None, mode=’reflect’, cval=0.0, out-
put type=None)

Thegaussian filter1d function implements a one-dimensional Gaussian filter. The standard-deviation
of the Gaussian filter is passed through the parametersigma. Settingorder=0 corresponds to convolution with a
Gaussian kernel. An order of 1, 2, or 3 corresponds to convolution with the first, second or third derivatives of
a Gaussian. Higher order derivatives are not implemented.

gaussian filter (input, sigma, order=0, output=None, mode=’reflect’, cval=0.0, outputtype=None)
Thegaussian filter function implements a multi-dimensional Gaussian filter. The standard-deviations of
the Gaussian filter along each axis are passed through the parametersigmaas a sequence or numbers. Ifsigma
is not a sequence but a single number, the standard deviation of the filter is equal along all directions. The order
of the filter can be specified separately for each axis. An order of 0 corresponds to convolution with a Gaussian
kernel. An order of 1, 2, or 3 corresponds to convolution with the first, second or third derivatives of a Gaussian.
Higher order derivatives are not implemented. Theorderparameter must be a number, to specify the same order
for all axes, or a sequence of numbers to specify a different order for each axis.

Note: The multi-dimensional filter is implemented as a sequence of one-dimensional Gaussian filters. The
intermediate arrays are stored in the same data type as the output. Therefore, for output types with a lower

21.3. Filter functions 173

precision, the results may be imprecise because intermediate results may be stored with insufficient precision.
This can be prevented by specifying a more precise output type.

uniform filter1d (input, size, axis=-1, output=None, mode=’reflect’, cval=0.0, origin=0, outputtype=None)
The uniform filter1d function calculates a one-dimensional uniform filter of the givensizealong the
given axis.

uniform filter (input, size, output=None, mode=’reflect’, cval=0.0, origin=0, outputtype=None)
The uniform filter implements a multi-dimensional uniform filter. The sizes of the uniform filter are
given for each axis as a sequence of integers by thesizeparameter. Ifsizeis not a sequence, but a single number,
the sizes along all axis are assumed to be equal.

Note: The multi-dimensional filter is implemented as a sequence of one-dimensional uniform filters. The
intermediate arrays are stored in the same data type as the output. Therefore, for output types with a lower
precision, the results may be imprecise because intermediate results may be stored with insufficient precision.
This can be prevented by specifying a more precise output type.

21.3.3 Filters based on order statistics

minimum filter1d (input, size, axis=-1, output=None, mode=’reflect’, cval=0.0, origin=0)
Theminimum filter1d function calculates a one-dimensional minimum filter of givensizealong the given
axis.

maximum filter1d (input, size, axis=-1, output=None, mode=’reflect’, cval=0.0, origin=0)
Themaximum filter1d function calculates a one-dimensional maximum filter of givensizealong the given
axis.

minimum filter (input, size=None, footprint=None, output=None, mode=’reflect’, cval=0.0, origin=0)
Theminimum filter function calculates a multi-dimensional minimum filter. Either the sizes of a rectan-
gular kernel or the footprint of the kernel must be provided. Thesizeparameter, if provided, must be a sequence
of sizes or a single number in which case the size of the filter is assumed to be equal along each axis. The
footprint, if provided, must be an array that defines the shape of the kernel by its non-zero elements.

maximum filter (input, size=None, footprint=None, output=None, mode=’reflect’, cval=0.0, origin=0)
Themaximum filter function calculates a multi-dimensional maximum filter. Either the sizes of a rectan-
gular kernel or the footprint of the kernel must be provided. Thesizeparameter, if provided, must be a sequence
of sizes or a single number in which case the size of the filter is assumed to be equal along each axis. The
footprint, if provided, must be an array that defines the shape of the kernel by its non-zero elements.

rank filter (input, rank, size=None, footprint=None, output=None, mode=’reflect’, cval=0.0, origin=0)
The rank filter function calculates a multi-dimensional rank filter. Therank may be less then zero, i.e.,
rank=-1 indicates the largest element. Either the sizes of a rectangular kernel or the footprint of the kernel must
be provided. Thesizeparameter, if provided, must be a sequence of sizes or a single number in which case the
size of the filter is assumed to be equal along each axis. Thefootprint, if provided, must be an array that defines
the shape of the kernel by its non-zero elements.

percentile filter (input, percentile, size=None, footprint=None, output=None, mode=’reflect’, cval=0.0, ori-
gin=0)

Thepercentile filter function calculates a multi-dimensional percentile filter. Thepercentilemay be
less then zero, i.e.,percentile=-20 equalspercentile=80. Either the sizes of a rectangular kernel or the footprint
of the kernel must be provided. Thesizeparameter, if provided, must be a sequence of sizes or a single number
in which case the size of the filter is assumed to be equal along each axis. Thefootprint, if provided, must be an
array that defines the shape of the kernel by its non-zero elements.

median filter (input, size=None, footprint=None, output=None, mode=’reflect’, cval=0.0, origin=0)
Themedian filter function calculates a multi-dimensional median filter. Either the sizes of a rectangular
kernel or the footprint of the kernel must be provided. Thesizeparameter, if provided, must be a sequence of
sizes or a single number in which case the size of the filter is assumed to be equal along each axis. Thefootprint

174 Chapter 21. Multi-dimensional image processing

if provided, must be an array that defines the shape of the kernel by its non-zero elements.

21.3.4 Derivatives

Derivative filters can be constructed in several ways. The functiongaussian filter1d described in section
21.3.2 can be used to calculate derivatives along a given axis using theorder parameter. Other derivative filters are the
Prewitt and Sobel filters:

prewitt (input, axis=-1, output=None, mode=’reflect’, cval=0.0)
Theprewitt function calculates a derivative along the given axis.

sobel (input, axis=-1, output=None, mode=’reflect’, cval=0.0)
Thesobel function calculates a derivative along the given axis.

The Laplace filter is calculated by the sum of the second derivatives along all axes. Thus, different Laplace filters
can be constructed using different second derivative functions. Therefore we provide a general function that takes a
function argument to calculate the second derivative along a given direction and to construct the Laplace filter:

generic laplace (input, derivative2, output=None, mode=’reflect’, cval=0.0, outputtype=None, ex-
tra arguments = (), extrakeywords =)

The functiongeneric laplace calculates a laplace filter using the function passed throughderivative2to
calculate second derivatives. The functionderivative2 should have the following signature:

derivative2(input, axis, output, mode, cval, *extra arguments,
**extra keywords)

It should calculate the second derivative along the dimensionaxis. If output is notNone it should use that for
the output and returnNone, otherwise it should return the result.mode, cvalhave the usual meaning.

The extra argumentsand extra keywordsarguments can be used to pass a tuple of extra arguments and a
dictionary of named arguments that are passed toderivative2 at each call.

For example:

>>> def d2(input, axis, output, mode, cval):
... return correlate1d(input, [1, -2, 1], axis, output, mode, cval, 0)
...
>>> a = zeros((5, 5))
>>> a[2, 2] = 1
>>> print generic_laplace(a, d2)
[[0 0 0 0 0]

[0 0 1 0 0]
[0 1 -4 1 0]
[0 0 1 0 0]
[0 0 0 0 0]]

To demonstrate the use of theextra argumentsargument we could do:

>>> def d2(input, axis, output, mode, cval, weights):
... return correlate1d(input, weights, axis, output, mode, cval, 0,)
...
>>> a = zeros((5, 5))
>>> a[2, 2] = 1
>>> print generic_laplace(a, d2, extra_arguments = ([1, -2, 1],))
[[0 0 0 0 0]

[0 0 1 0 0]
[0 1 -4 1 0]
[0 0 1 0 0]
[0 0 0 0 0]]

or:

21.3. Filter functions 175

>>> print generic_laplace(a, d2, extra_keywords = {’weights’: [1, -2, 1]})
[[0 0 0 0 0]

[0 0 1 0 0]
[0 1 -4 1 0]
[0 0 1 0 0]
[0 0 0 0 0]]

The following two functions are implemented usinggeneric laplace by providing appropriate functions for the
second derivative function:

laplace (input, output=None, mode=’reflect’, cval=0.0, outputtype=None)
The functionlaplace calculates the Laplace using discrete differentiation for the second derivative (i.e. con-
volution with [1, -2, 1]).

gaussian laplace (input, sigma, output=None, mode=’reflect’, cval=0.0, outputtype=None)
The functiongaussian laplace calculates the Laplace usinggaussian filter to calculate the second
derivatives. The standard-deviations of the Gaussian filter along each axis are passed through the parameter
sigmaas a sequence or numbers. Ifsigmais not a sequence but a single number, the standard deviation of the
filter is equal along all directions.

The gradient magnitude is defined as the square root of the sum of the squares of the gradients in all directions. Similar
to the generic Laplace function there is ageneric gradient magnitude function that calculated the gradient
magnitude of an array:

generic gradient magnitude (input, derivative, output=None, mode=’reflect’, cval=0.0, out-
put type=None, extraarguments = (), extrakeywords =)

The functiongeneric gradient magnitude calculates a gradient magnitude using the function passed
throughderivativeto calculate first derivatives. The functionderivative should have the following signa-
ture:

derivative(input, axis, output, mode, cval, *extra arguments,
**extra keywords)

It should calculate the derivative along the dimensionaxis. If outputis notNone it should use that for the output
and returnNone, otherwise it should return the result.mode, cvalhave the usual meaning.

The extra argumentsand extra keywordsarguments can be used to pass a tuple of extra arguments and a
dictionary of named arguments that are passed toderivative at each call.

For example, thesobel function fits the required signature:

>>> a = zeros((5, 5))
>>> a[2, 2] = 1
>>> print generic_gradient_magnitude(a, sobel)
[[0 0 0 0 0]

[0 1 2 1 0]
[0 2 0 2 0]
[0 1 2 1 0]
[0 0 0 0 0]]

See the documentation ofgeneric laplace for examples of using theextra argumentsandextra keywords
arguments.

The sobel and prewitt functions fit the required signature and can therefore directly be used with
generic gradient magnitude . The following function implements the gradient magnitude using Gaussian
derivatives:

gaussian gradient magnitude (input, sigma, output=None, mode=’reflect’, cval=0.0, outputtype=None)
The function gaussian gradient magnitude calculates the gradient magnitude using
gaussian filter to calculate the first derivatives. The standard-deviations of the Gaussian filter

176 Chapter 21. Multi-dimensional image processing

along each axis are passed through the parametersigmaas a sequence or numbers. Ifsigmais not a sequence
but a single number, the standard deviation of the filter is equal along all directions.

21.3.5 Generic filter functions

To implement filter functions, generic functions can be used that accept a callable object that implements the filtering
operation. The iteration over the input and output arrays is handled by these generic functions, along with such details
as the implementation of the boundary conditions. Only a callable object implementing a callback function that does
the actual filtering work must be provided. The callback function can also be written in C and passed using a CObject
(see 21.11 for more information).

generic filter1d (input, function, filter size, axis=-1, output=None, mode=”reflect”, cval=0.0, origin=0, out-
put type=None, extraarguments = (), extrakeywords =)

The generic filter1d function implements a generic one-dimensional filter function, where the actual
filtering operation must be supplied as a python function (or other callable object). Thegeneric filter1d
function iterates over the lines of an array and callsfunctionat each line. The arguments that are passed to
functionare one-dimensional arrays of thetFloat64 type. The first contains the values of the current line. It
is extended at the beginning end the end, according to thefilter sizeandorigin arguments. The second array
should be modified in-place to provide the output values of the line. For example consider a correlation along
one dimension:

>>> a = arange(12, shape = (3,4))
>>> print correlate1d(a, [1, 2, 3])
[[3 8 14 17]

[27 32 38 41]
[51 56 62 65]]

The same operation can be implemented usinggeneric filter1d as follows:

>>> def fnc(iline, oline):
... oline[...] = iline[:-2] + 2 * iline[1:-1] + 3 * iline[2:]
...
>>> print generic_filter1d(a, fnc, 3)
[[3 8 14 17]

[27 32 38 41]
[51 56 62 65]]

Here the origin of the kernel was (by default) assumed to be in the middle of the filter of length 3. Therefore,
each input line was extended by one value at the beginning and at the end, before the function was called.

Optionally extra arguments can be defined and passed to the filter function. Theextra argumentsand ex-
tra keywordsarguments can be used to pass a tuple of extra arguments and/or a dictionary of named arguments
that are passed to derivative at each call. For example, we can pass the parameters of our filter as an argument:

>>> def fnc(iline, oline, a, b):
... oline[...] = iline[:-2] + a * iline[1:-1] + b * iline[2:]
...
>>> print generic_filter1d(a, fnc, 3, extra_arguments = (2, 3))
[[3 8 14 17]

[27 32 38 41]
[51 56 62 65]]

or

21.3. Filter functions 177

>>> print generic_filter1d(a, fnc, 3, extra_keywords = {’a’:2, ’b’:3})
[[3 8 14 17]

[27 32 38 41]
[51 56 62 65]]

generic filter (input, function, size=None, footprint=None, output=None, mode=’reflect’, cval=0.0, origin=0,
output type=None, extraarguments = (), extrakeywords =)

The generic filter function implements a generic filter function, where the actual filtering operation
must be supplied as a python function (or other callable object). Thegeneric filter function iterates
over the array and callsfunctionat each element. The argument offunction is a one-dimensional array of the
tFloat64 type, that contains the values around the current element that are within the footprint of the filter.
The function should return a single value that can be converted to a double precision number. For example
consider a correlation:

>>> a = arange(12, shape = (3,4))
>>> print correlate(a, [[1, 0], [0, 3]])
[[0 3 7 11]

[12 15 19 23]
[28 31 35 39]]

The same operation can be implemented usinggeneric filter as follows:

>>> def fnc(buffer):
... return (buffer * array([1, 3])).sum()
...
>>> print generic_filter(a, fnc, footprint = [[1, 0], [0, 1]])
[[0 3 7 11]

[12 15 19 23]
[28 31 35 39]]

Here a kernel footprint was specified that contains only two elements. Therefore the filter function receives a
buffer of length equal to two, which was multiplied with the proper weights and the result summed.

When callinggeneric filter , either the sizes of a rectangular kernel or the footprint of the kernel must be
provided. Thesizeparameter, if provided, must be a sequence of sizes or a single number in which case the size
of the filter is assumed to be equal along each axis. Thefootprint, if provided, must be an array that defines the
shape of the kernel by its non-zero elements.

Optionally extra arguments can be defined and passed to the filter function. Theextra argumentsand ex-
tra keywordsarguments can be used to pass a tuple of extra arguments and/or a dictionary of named arguments
that are passed to derivative at each call. For example, we can pass the parameters of our filter as an argument:

>>> def fnc(buffer, weights):
... weights = asarray(weights)
... return (buffer * weights).sum()
...
>>> print generic_filter(a, fnc, footprint = [[1, 0], [0, 1]], extra_arguments = ([1, 3],))
[[0 3 7 11]

[12 15 19 23]
[28 31 35 39]]

or

>>> print generic_filter(a, fnc, footprint = [[1, 0], [0, 1]], extra_keywords= {’weights’: [1, 3]})
[[0 3 7 11]

[12 15 19 23]
[28 31 35 39]]

178 Chapter 21. Multi-dimensional image processing

These functions iterate over the lines or elements starting at the last axis, i.e. the last index changest the fastest. This
order of iteration is garantueed for the case that it is important to adapt the filter dependening on spatial location. Here
is an example of using a class that implements the filter and keeps track of the current coordinates while iterating.
It performs the same filter operation as described above forgeneric filter , but additionally prints the current
coordinates:

>>> a = arange(12, shape = (3,4))
>>>
>>> class fnc_class:
... def __init__(self, shape):
... # store the shape:
... self.shape = shape
... # initialize the coordinates:
... self.coordinates = [0] * len(shape)
...
... def filter(self, buffer):
... result = (buffer * array([1, 3])).sum()
... print self.coordinates
... # calculate the next coordinates:
... axes = range(len(self.shape))
... axes.reverse()
... for jj in axes:
... if self.coordinates[jj] < self.shape[jj] - 1:
... self.coordinates[jj] += 1
... break
... else:
... self.coordinates[jj] = 0
... return result
...
>>> fnc = fnc_class(shape = (3,4))
>>> print generic_filter(a, fnc.filter, footprint = [[1, 0], [0, 1]])
[0, 0]
[0, 1]
[0, 2]
[0, 3]
[1, 0]
[1, 1]
[1, 2]
[1, 3]
[2, 0]
[2, 1]
[2, 2]
[2, 3]
[[0 3 7 11]

[12 15 19 23]
[28 31 35 39]]

For thegeneric filter1d function the same approach works, except that this function does not iterate over the
axis that is being filtered. The example forgeneric filte1d then becomes this:

21.3. Filter functions 179

>>> a = arange(12, shape = (3,4))
>>>
>>> class fnc1d_class:
... def __init__(self, shape, axis = -1):
... # store the filter axis:
... self.axis = axis
... # store the shape:
... self.shape = shape
... # initialize the coordinates:
... self.coordinates = [0] * len(shape)
...
... def filter(self, iline, oline):
... oline[...] = iline[:-2] + 2 * iline[1:-1] + 3 * iline[2:]
... print self.coordinates
... # calculate the next coordinates:
... axes = range(len(self.shape))
... # skip the filter axis:
... del axes[self.axis]
... axes.reverse()
... for jj in axes:
... if self.coordinates[jj] < self.shape[jj] - 1:
... self.coordinates[jj] += 1
... break
... else:
... self.coordinates[jj] = 0
...
>>> fnc = fnc1d_class(shape = (3,4))
>>> print generic_filter1d(a, fnc.filter, 3)
[0, 0]
[1, 0]
[2, 0]
[[3 8 14 17]

[27 32 38 41]
[51 56 62 65]]

21.4 Fourier domain filters

The functions described in this section perform filtering operations in the Fourier domain. Thus, the input array
of such a function should be compatible with an inverse Fourier transform function, such as the functions from the
numarray.fft module. We therefore have to deal with arrays that may be the result of a real or a complex Fourier
transform. In the case of a real Fourier transform only half of the of the symmetric complex transform is stored.
Additionally, it needs to be known what the length of the axis was that was transformed by the real fft. The functions
described here provide a parametern that in the case of a real transform must be equal to the length of the real
transform axis before transformation. If this parameter is less than zero, it is assumed that the input array was the
result of a complex Fourier transform. The parameteraxiscan be used to indicate along which axis the real transform
was executed.

fourier shift (input, shift, n=-1, axis=-1, output=None)
The fourier shift function multiplies the input array with the multi-dimensional Fourier transform of a
shift operation for the given shift. Theshift parameter is a sequences of shifts for each dimension, or a single
value for all dimensions.

fourier gaussian (input, sigma, n=-1, axis=-1, output=None)
Thefourier gaussian function multiplies the input array with the multi-dimensional Fourier transform of

180 Chapter 21. Multi-dimensional image processing

a Gaussian filter with given standard-deviationssigma. Thesigmaparameter is a sequences of values for each
dimension, or a single value for all dimensions.

fourier uniform (input, size, n=-1, axis=-1, output=None)
The fourier uniform function multiplies the input array with the multi-dimensional Fourier transform of
a uniform filter with given sizessize. Thesizeparameter is a sequences of values for each dimension, or a single
value for all dimensions.

fourier ellipsoid (input, size, n=-1, axis=-1, output=None)
The fourier ellipsoid function multiplies the input array with the multi-dimensional Fourier transform
of a elliptically shaped filter with given sizessize. Thesizeparameter is a sequences of values for each dimen-
sion, or a single value for all dimensions.Note: This function is only implemented for dimensions 1, 2, and
3.

21.5 Interpolation functions

This section describes various interpolation functions that are based on B-spline theory. A good introduction to B-
splines can be found in: M. Unser, ”Splines: A Perfect Fit for Signal and Image Processing,” IEEE Signal Processing
Magazine, vol. 16, no. 6, pp. 22-38, November 1999.

21.5.1 Spline pre-filters

Interpolation using splines of an order larger than 1 requires a pre- filtering step. The interpolation functions described
in section 21.5.2 apply pre-filtering by callingspline filter , but they can be instructed not to do this by setting
the prefilter keyword equal toFalse . This is useful if more than one interpolation operation is done on the same
array. In this case it is more efficient to do the pre-filtering only once and use a prefiltered array as the input of the
interpolation functions. The following two functions implement the pre-filtering:

spline filter1d (input, order=3, axis=-1, output=None, outputtype=numarray.Float64)
Thespline filter1d function calculates a one-dimensional spline filter along the given axis. An output
array can optionally be provided. The order of the spline must be larger then 1 and less than 6.

spline filter (input, order=3, output=None, outputtype=numarray.Float64)
Thespline filter function calculates a multi-dimensional spline filter.

Note: The multi-dimensional filter is implemented as a sequence of one-dimensional spline filters. The inter-
mediate arrays are stored in the same data type as the output. Therefore, if an output with a limited precision is
requested, the results may be imprecise because intermediate results may be stored with insufficient precision.
This can be prevented by specifying a output type of high precision.

21.5.2 Interpolation functions

Following functions all employ spline interpolation to effect some type of geometric transformation of the input array.
This requires a mapping of the output coordinates to the input coordinates, and therefore the possibility arises that
input values outside the boundaries are needed. This problem is solved in the same way as described in section 21.3
for the multi-dimensional filter functions. Therefore these functions all support amodeparameter that determines how
the boundaries are handled, and acval parameter that gives a constant value in case that the’constant’ mode is
used.

geometric transform (input, mapping, outputshape=None, outputtype=None, output=None, order=3,
mode=’constant’, cval=0.0, prefilter=True, extraarguments = (), extrakeywords =
)

Thegeometric transform function applies an arbitrary geometric transform to the input. The givenmap-
ping function is called at each point in the output to find the corresponding coordinates in the input.mapping

21.5. Interpolation functions 181

must be a callable object that accepts a tuple of length equal to the output array rank and returns the correspond-
ing input coordinates as a tuple of length equal to the input array rank. The output shape and output type can
optionally be provided. If not given they are equal to the input shape and type.

For example:

>>> a = arange(12, shape=(4,3), type = Float64)
>>> def shift_func(output_coordinates):
... return (output_coordinates[0] - 0.5, output_coordinates[1] - 0.5)
...
>>> print geometric_transform(a, shift_func)
[[0. 0. 0.]

[0. 1.3625 2.7375]
[0. 4.8125 6.1875]
[0. 8.2625 9.6375]]

Optionally extra arguments can be defined and passed to the filter function. Theextra argumentsand ex-
tra keywordsarguments can be used to pass a tuple of extra arguments and/or a dictionary of named arguments
that are passed to derivative at each call. For example, we can pass the shifts in our example as arguments:

>>> def shift_func(output_coordinates, s0, s1):
... return (output_coordinates[0] - s0, output_coordinates[1] - s1)
...
>>> print geometric_transform(a, shift_func, extra_arguments = (0.5, 0.5))
[[0. 0. 0.]

[0. 1.3625 2.7375]
[0. 4.8125 6.1875]
[0. 8.2625 9.6375]]

or

>>> print geometric_transform(a, shift_func, extra_keywords = {’s0’: 0.5, ’s1’: 0.5})
[[0. 0. 0.]

[0. 1.3625 2.7375]
[0. 4.8125 6.1875]
[0. 8.2625 9.6375]]

Note: The mapping function can also be written in C and passed using a CObject. See 21.11 for more informa-
tion.

map coordinates (input, coordinates, outputtype=None, output=None, order=3, mode=’constant’, cval=0.0,
prefilter=True)

The functionmap coordinates applies an arbitrary coordinate transformation using the given array of
coordinates. The shape of the output is derived from that of the coordinate array by dropping the first axis. The
parametercoordinatesis used to find for each point in the output the corresponding coordinates in the input. The
values ofcoordinatesalong the first axis are the coordinates in the input array at which the output value is found.
(See also the numarraycoordinates function.) Since the coordinates may be non- integer coordinates, the
value of the input at these coordinates is determined by spline interpolation of the requested order. Here is an
example that interpolates a 2D array at (0.5, 0.5) and (1, 2):

182 Chapter 21. Multi-dimensional image processing

>>> a = arange(12, shape=(4,3), type = numarray.Float64)
>>> print a
[[0. 1. 2.]

[3. 4. 5.]
[6. 7. 8.]
[9. 10. 11.]]

>>> print map_coordinates(a, [[0.5, 2], [0.5, 1]])
[1.3625 7.]

affine transform (input, matrix, offset=0.0, outputshape=None, outputtype=None, output=None, order=3,
mode=’constant’, cval=0.0, prefilter=True)

Theaffine transform function applies an affine transformation to the input array. The given transforma-
tion matrixandoffsetare used to find for each point in the output the corresponding coordinates in the input. The
value of the input at the calculated coordinates is determined by spline interpolation of the requested order. The
transformationmatrixmust be two-dimensional or can also be given as a one-dimensional sequence or array. In
the latter case, it is assumed that the matrix is diagonal. A more efficient interpolation algorithm is then applied
that exploits the separability of the problem. The output shape and output type can optionally be provided. If
not given they are equal to the input shape and type.

shift (input, shift, output type=None, output=None, order=3, mode=’constant’, cval=0.0, prefilter=True)
Theshift function returns a shifted version of the input, using spline interpolation of the requestedorder.

zoom(input, zoom, outputtype=None, output=None, order=3, mode=’constant’, cval=0.0, prefilter=True)
Thezoom function returns a rescaled version of the input, using spline interpolation of the requestedorder.

rotate (input, angle, axes=(-1, -2), reshape=1, outputtype=None, output=None, order=3, mode=’constant’,
cval=0.0, prefilter=True)

Therotate function returns the input array rotated in the plane defined by the two axes given by the parameter
axes, using spline interpolation of the requestedorder. The angle must be given in degrees. Ifreshapeis true,
then the size of the output array is adapted to contain the rotated input.

21.6 Binary morphology

generate binary structure (rank, connectivity)
The generate binary structure functions generates a binary structuring element for use in binary
morphology operations. Therank of the structure must be provided. The size of the structure that is returned is
equal to three in each direction. The value of each element is equal to one if the square of the Euclidean distance
from the element to the center is less or equal toconnectivity. For instance, two dimensional 4-connected and
8-connected structures are generated as follows:

>>> print generate_binary_structure(2, 1)
[[0 1 0]

[1 1 1]
[0 1 0]]

>>> print generate_binary_structure(2, 2)
[[1 1 1]

[1 1 1]
[1 1 1]]

Most binary morphology functions can be expressed in terms of the basic operations erosion and dilation:

binary erosion (input, structure=None, iterations=1, mask=None, output=None, bordervalue=0, origin=0)
Thebinary erosion function implements binary erosion of arrays of arbitrary rank with the given struc-
turing element. The origin parameter controls the placement of the structuring element as described in sec-
tion 21.3. If no structuring element is provided, an element with connectivity equal to one is generated using

21.6. Binary morphology 183

generate binary structure . Theborder valueparameter gives the value of the array outside bound-
aries. The erosion is repeatediterationstimes. Ifiterationsis less than one, the erosion is repeated until the result
does not change anymore. If amaskarray is given, only those elements with a true value at the corresponding
mask element are modified at each iteration.

binary dilation (input, structure=None, iterations=1, mask=None, output=None, bordervalue=0, origin=0)
Thebinary dilation function implements binary dilation of arrays of arbitrary rank with the given struc-
turing element. The origin parameter controls the placement of the structuring element as described in sec-
tion 21.3. If no structuring element is provided, an element with connectivity equal to one is generated using
generate binary structure . Theborder valueparameter gives the value of the array outside bound-
aries. The dilation is repeatediterations times. If iterations is less than one, the dilation is repeated until the
result does not change anymore. If amaskarray is given, only those elements with a true value at the corre-
sponding mask element are modified at each iteration.

Here is an example of usingbinary dilation to find all elements that touch the border, by repeatedly
dilating an empty array from the border using the data array as the mask:

>>> struct = array([[0, 1, 0], [1, 1, 1], [0, 1, 0]])
>>> a = array([[1,0,0,0,0], [1,1,0,1,0], [0,0,1,1,0], [0,0,0,0,0]])
>>> print a
[[1 0 0 0 0]

[1 1 0 1 0]
[0 0 1 1 0]
[0 0 0 0 0]]

>>> print binary_dilation(zeros(a.shape), struct, -1, a, border_value=1)
[[1 0 0 0 0]

[1 1 0 0 0]
[0 0 0 0 0]
[0 0 0 0 0]]

The binary erosion andbinary dilation functions both have aniterationsparameter which allows the
erosion or dilation to be repeated a number of times. Repeating an erosion or a dilation with a given structuren times
is equivalent to an erosion or a dilation with a structure that isn-1 times dilated with itself. A function is provided
that allows the calculation of a structure that is dilated a number of times with itself:

iterate structure (structure, iterations, origin=None)
The iterate structure function returns a structure by dilation of the input structureiteration - 1 times
with itself. For instance:

>>> struct = generate_binary_structure(2, 1)
>>> print struct
[[0 1 0]

[1 1 1]
[0 1 0]]

>>> print iterate_structure(struct, 2)
[[0 0 1 0 0]

[0 1 1 1 0]
[1 1 1 1 1]
[0 1 1 1 0]
[0 0 1 0 0]]

If the origin of the original structure is equal to 0, then it is also equal to 0 for the iterated structure. If not,
the origin must also be adapted if the equivalent of theiterationserosions or dilations must be achieved with
the iterated structure. The adapted origin is simply obtained by multiplying with the number of iterations. For
convenience theiterate structure also returns the adapted origin if theorigin parameter is notNone:

184 Chapter 21. Multi-dimensional image processing

>>> print iterate_structure(struct, 2, -1)
(array([[0, 0, 1, 0, 0],

[0, 1, 1, 1, 0],
[1, 1, 1, 1, 1],
[0, 1, 1, 1, 0],
[0, 0, 1, 0, 0]], type=Bool), [-2, -2])

Other morphology operations can be defined in terms of erosion and d dilation. Following functions provide a few of
these operations for convenience:

binary opening (input, structure=None, iterations=1, output=None, origin=0)
Thebinary opening function implements binary opening of arrays of arbitrary rank with the given struc-
turing element. Binary opening is equivalent to a binary erosion followed by a binary dilation with the same
structuring element. The origin parameter controls the placement of the structuring element as described in
section 21.3. If no structuring element is provided, an element with connectivity equal to one is generated using
generate binary structure . The iterationsparameter gives the number of erosions that is performed
followed by the same number of dilations.

binary closing (input, structure=None, iterations=1, output=None, origin=0)
Thebinary closing function implements binary closing of arrays of arbitrary rank with the given struc-
turing element. Binary closing is equivalent to a binary dilation followed by a binary erosion with the same
structuring element. The origin parameter controls the placement of the structuring element as described in
section 21.3. If no structuring element is provided, an element with connectivity equal to one is generated using
generate binary structure . Theiterationsparameter gives the number of dilations that is performed
followed by the same number of erosions.

binary fill holes (input, structure = None, output = None, origin = 0)
Thebinary fill holes function is used to close holes in objects in a binary image, where the structure
defines the connectivity of the holes. The origin parameter controls the placement of the structuring element
as described in section??. If no structuring element is provided, an element with connectivity equal to one is
generated usinggenerate binary structure .

binary hit or miss (input, structure1=None, structure2=None, output=None, origin1=0, origin2=None)
Thebinary hit or miss function implements a binary hit-or-miss transform of arrays of arbitrary rank
with the given structuring elements. The hit-or-miss transform is calculated by erosion of the input with
the first structure, erosion of the logicalnot of the input with the second structure, followed by the log-
ical and of these two erosions. The origin parameters control the placement of the structuring elements
as described in section 21.3. Iforigin2 equalsNone it is set equal to theorigin1 parameter. If the first
structuring element is not provided, a structuring element with connectivity equal to one is generated using
generate binary structure , if structure2is not provided, it is set equal to the logicalnot of struc-
ture1.

21.7 Grey-scale morphology

Grey-scale morphology operations are the equivalents of binary morphology operations that operate on arrays with
arbitrary values. Below we describe the grey-scale equivalents of erosion, dilation, opening and closing. These
operations are implemented in a similar fashion as the filters described in section 21.3, and we refer to this section
for the description of filter kernels and footprints, and the handling of array borders. The grey-scale morphology
operations optionally take astructureparameter that gives the values of the structuring element. If this parameter
is not given the structuring element is assumed to be flat with a value equal to zero. The shape of the structure
can optionally be defined by thefootprint parameter. If this parameter is not given, the structure is assumed to be
rectangular, with sizes equal to the dimensions of thestructurearray, or by thesizeparameter ifstructureis not given.
The sizeparameter is only used if bothstructureand footprint are not given, in which case the structuring element
is assumed to be rectangular and flat with the dimensions given bysize. Thesizeparameter, if provided, must be a

21.7. Grey-scale morphology 185

sequence of sizes or a single number in which case the size of the filter is assumed to be equal along each axis. The
footprint parameter, if provided, must be an array that defines the shape of the kernel by its non-zero elements.

Similar to binary erosion and dilation there are operations for grey-scale erosion and dilation:

grey erosion (input, size=None, footprint=None, structure=None, output=None, mode=’reflect’, cval=0.0, ori-
gin=0)

Thegrey erosion function calculates a multi-dimensional grey- scale erosion.

grey dilation (input, size=None, footprint=None, structure=None, output=None, mode=’reflect’, cval=0.0, ori-
gin=0)

Thegrey dilation function calculates a multi-dimensional grey- scale dilation.

Grey-scale opening and closing operations can be defined similar to their binary counterparts:

grey opening (input, size=None, footprint=None, structure=None, output=None, mode=’reflect’, cval=0.0, ori-
gin=0)

Thegrey opening function implements grey-scale opening of arrays of arbitrary rank. Grey-scale opening
is equivalent to a grey-scale erosion followed by a grey-scale dilation.

grey closing (input, size=None, footprint=None, structure=None, output=None, mode=’reflect’, cval=0.0, ori-
gin=0)

Thegrey closing function implements grey-scale closing of arrays of arbitrary rank. Grey-scale opening
is equivalent to a grey-scale dilation followed by a grey-scale erosion.

morphological gradient (input, size=None, footprint=None, structure=None, output=None, mode=’reflect’,
cval=0.0, origin=0)

The morphological gradient function implements a grey-scale morphological gradient of arrays of
arbitrary rank. The grey-scale morphological gradient is equal to the difference of a grey-scale dilation and a
grey-scale erosion.

morphological laplace (input, size=None, footprint=None, structure=None, output=None, mode=’reflect’,
cval=0.0, origin=0)

Themorphological laplace function implements a grey-scale morphological laplace of arrays of arbi-
trary rank. The grey-scale morphological laplace is equal to the sum of a grey-scale dilation and a grey-scale
erosion minus twice the input.

white tophat (input, size=None, footprint=None, structure=None, output=None, mode=’reflect’, cval=0.0, ori-
gin=0)

Thewhite tophat function implements a white top-hat filter of arrays of arbitrary rank. The white top-hat
is equal to the difference of the input and a grey-scale opening.

black tophat (input, size=None, footprint=None, structure=None, output=None, mode=’reflect’, cval=0.0, ori-
gin=0)

Theblack tophat function implements a black top-hat filter of arrays of arbitrary rank. The black top-hat
is equal to the difference of the a grey-scale closing and the input.

21.8 Distance transforms

Distance transforms are used to calculate the minimum distance from each element of an object to the background.
The following functions implement distance transforms for three different distance metrics: Euclidean, City Block,
and Chessboard distances.

distance transform cdt (input, structure=”chessboard”, returndistances=True, returnindices=False,
distances=None, indices=None)

The functiondistance transform cdt uses a chamfer type algorithm to calculate the distance trans-
form of the input, by replacing each object element (defined by values larger than zero) with the shortest dis-
tance to the background (all non-object elements). The structure determines the type of chamfering that is
done. If the structure is equal to ’cityblock’ a structure is generated usinggenerate binary structure
with a squared distance equal to 1. If the structure is equal to ’chessboard’, a structure is generated using

186 Chapter 21. Multi-dimensional image processing

generate binary structure with a squared distance equal to the rank of the array. These choices cor-
respond to the common interpretations of the cityblock and the chessboard distancemetrics in two dimensions.

In addition to the distance transform, the feature transform can be calculated. In this case the index of the closest
background element is returned along the first axis of the result. Thereturn distances, andreturn indicesflags
can be used to indicate if the distance transform, the feature transform, or both must be returned.

Thedistancesandindicesarguments can be used to give optional output arrays that must be of the correct size
and type (bothInt32).

The basics of the algorithm used to implement this function is described in: G. Borgefors, ”Distance transfor-
mations in arbitrary dimensions.”, Computer Vision, Graphics, and Image Processing, 27:321–345, 1984.

distance transform edt (input, sampling=None, returndistances=True, returnindices=False, dis-
tances=None, indices=None)

The functiondistance transform edt calculates the exact euclidean distance transform of the input, by
replacing each object element (defined by values larger than zero) with the shortest euclidean distance to the
background (all non-object elements).

In addition to the distance transform, the feature transform can be calculated. In this case the index of the closest
background element is returned along the first axis of the result. Thereturn distances, andreturn indicesflags
can be used to indicate if the distance transform, the feature transform, or both must be returned.

Optionally the sampling along each axis can be given by thesamplingparameter which should be a sequence of
length equal to the input rank, or a single number in which the sampling is assumed to be equal along all axes.

Thedistancesandindicesarguments can be used to give optional output arrays that must be of the correct size
and type (Float64 andInt32).

The algorithm used to implement this function is described in: C. R. Maurer, Jr., R. Qi, and V. Raghavan, ”A lin-
ear time algorithm for computing exact euclidean distance transforms of binary images in arbitrary dimensions.
IEEE Trans. PAMI 25, 265-270, 2003.

distance transform bf (input, metric=”euclidean”, sampling=None, returndistances=True, re-
turn indices=False, distances=None, indices=None)

The functiondistance transform bf uses a brute-force algorithm to calculate the distance transform
of the input, by replacing each object element (defined by values larger than zero) with the shortest distance
to the background (all non-object elements). The metric must be one of"euclidean" , "cityblock" , or
"chessboard" .

In addition to the distance transform, the feature transform can be calculated. In this case the index of the closest
background element is returned along the first axis of the result. Thereturn distances, andreturn indicesflags
can be used to indicate if the distance transform, the feature transform, or both must be returned.

Optionally the sampling along each axis can be given by thesamplingparameter which should be a sequence of
length equal to the input rank, or a single number in which the sampling is assumed to be equal along all axes.
This parameter is only used in the case of the euclidean distance transform.

Thedistancesandindicesarguments can be used to give optional output arrays that must be of the correct size
and type (Float64 andInt32).

Note: This function uses a slow brute-force algorithm, the functiondistance transform cdt
can be used to more efficiently calculate cityblock and chessboard distance transforms. The function
distance transform edt can be used to more efficiently calculate the exact euclidean distance trans-
form.

21.9 Segmentation and labeling

Segmentation is the process of separating objects of interest from the background. The most simple approach is
probably intensity thresholding, which is easily done withnumarray functions:

21.9. Segmentation and labeling 187

>>> a = array([[1,2,2,1,1,0],
... [0,2,3,1,2,0],
... [1,1,1,3,3,2],
... [1,1,1,1,2,1]])
>>> print where(a > 1, 1, 0)
[[0 1 1 0 0 0]

[0 1 1 0 1 0]
[0 0 0 1 1 1]
[0 0 0 0 1 0]]

The result is a binary image, in which the individual objects still need to be identified and labeled. The function
label generates an array where each object is assigned a unique number:

label (input, structure=None, output=None)
Thelabel function generates an array where the objects in the input are labeled with an integer index. It returns
a tuple consisting of the array of object labels and the number of objects found, unless theoutputparameter is
given, in which case only the number of objects is returned. The connectivity of the objects is defined by a
structuring element. For instance, in two dimensions using a four-connected structuring element gives:

>>> a = array([[0,1,1,0,0,0],[0,1,1,0,1,0],[0,0,0,1,1,1],[0,0,0,0,1,0]])
>>> s = [[0, 1, 0], [1,1,1], [0,1,0]]
>>> print label(a, s)
(array([[0, 1, 1, 0, 0, 0],

[0, 1, 1, 0, 2, 0],
[0, 0, 0, 2, 2, 2],
[0, 0, 0, 0, 2, 0]]), 2)

These two objects are not connected because there is no way in which we can place the structuring element such
that it overlaps with both objects. However, an 8-connected structuring element results in only a single object:

>>> a = array([[0,1,1,0,0,0],[0,1,1,0,1,0],[0,0,0,1,1,1],[0,0,0,0,1,0]])
>>> s = [[1,1,1], [1,1,1], [1,1,1]]
>>> print label(a, s)[0]
[[0 1 1 0 0 0]

[0 1 1 0 1 0]
[0 0 0 1 1 1]
[0 0 0 0 1 0]]

If no structuring element is provided, one is generated by callinggenerate binary structure (see
section??) using a connectivity of one (which in 2D is the 4-connected structure of the first example). The input
can be of any type, any value not equal to zero is taken to be part of an object. This is useful if you need to
’re-label’ an array of object indices, for instance after removing unwanted objects. Just apply the label function
again to the index array. For instance:

>>> l, n = label([1, 0, 1, 0, 1])
>>> print l
[1 0 2 0 3]
>>> l = where(l != 2, l, 0)
>>> print l
[1 0 0 0 3]
>>> print label(l)[0]
[1 0 0 0 2]

Note: The structuring element used bylabel is assumed to be symmetric.

There is a large number of other approaches for segmentation, for instance from an estimation of the borders of

188 Chapter 21. Multi-dimensional image processing

the objects that can be obtained for instance by derivative filters. One such an approach is watershed segmentation.
The functionwatershed ift generates an array where each object is assigned a unique label, from an array that
localizes the object borders, generated for instance by a gradient magnitude filter. It uses an array containing initial
markers for the objects:
watershed ift (input, markers, structure=None, output=None)

Thewatershed ift function applies a watershed from markers algorithm, using an Iterative Forest Trans-
form, as described in: P. Felkel, R. Wegenkittl, and M. Bruckschwaiger, ”Implementation and Complexity of the
Watershed-from-Markers Algorithm Computed as a Minimal Cost Forest.”, Eurographics 2001, pp. C:26-35.

The inputs of this function are the array to which the transform is applied, and an array of markers that designate
the objects by a unique label, where any non-zero value is a marker. For instance:

>>> input = array([[0, 0, 0, 0, 0, 0, 0],
... [0, 1, 1, 1, 1, 1, 0],
... [0, 1, 0, 0, 0, 1, 0],
... [0, 1, 0, 0, 0, 1, 0],
... [0, 1, 0, 0, 0, 1, 0],
... [0, 1, 1, 1, 1, 1, 0],
... [0, 0, 0, 0, 0, 0, 0]], numarray.UInt8)
>>> markers = array([[1, 0, 0, 0, 0, 0, 0],
... [0, 0, 0, 0, 0, 0, 0],
... [0, 0, 0, 0, 0, 0, 0],
... [0, 0, 0, 2, 0, 0, 0],
... [0, 0, 0, 0, 0, 0, 0],
... [0, 0, 0, 0, 0, 0, 0],
... [0, 0, 0, 0, 0, 0, 0]], numarray.Int8)
>>> print watershed_ift(input, markers)
[[1 1 1 1 1 1 1]

[1 1 2 2 2 1 1]
[1 2 2 2 2 2 1]
[1 2 2 2 2 2 1]
[1 2 2 2 2 2 1]
[1 1 2 2 2 1 1]
[1 1 1 1 1 1 1]]

Here two markers were used to designate an object (marker=2) and the background (marker=1). The order in
which these are processed is arbitrary: moving the marker for the background to the lower right corner of the
array yields a different result:

>>> markers = array([[0, 0, 0, 0, 0, 0, 0],
... [0, 0, 0, 0, 0, 0, 0],
... [0, 0, 0, 0, 0, 0, 0],
... [0, 0, 0, 2, 0, 0, 0],
... [0, 0, 0, 0, 0, 0, 0],
... [0, 0, 0, 0, 0, 0, 0],
... [0, 0, 0, 0, 0, 0, 1]], numarray.Int8)
>>> print watershed_ift(input, markers)
[[1 1 1 1 1 1 1]

[1 1 1 1 1 1 1]
[1 1 2 2 2 1 1]
[1 1 2 2 2 1 1]
[1 1 2 2 2 1 1]
[1 1 1 1 1 1 1]
[1 1 1 1 1 1 1]]

The result is that the object (marker=2) is smaller because the second marker was processed earlier. This
may not be the desired effect if the first marker was supposed to designate a background object. Therefore
watershed ift treats markers with a negative value explicitly as background markers and processes them

21.9. Segmentation and labeling 189

after the normal markers. For instance, replacing the first marker by a negative marker gives a result similar to
the first example:

>>> markers = array([[0, 0, 0, 0, 0, 0, 0],
... [0, 0, 0, 0, 0, 0, 0],
... [0, 0, 0, 0, 0, 0, 0],
... [0, 0, 0, 2, 0, 0, 0],
... [0, 0, 0, 0, 0, 0, 0],
... [0, 0, 0, 0, 0, 0, 0],
... [0, 0, 0, 0, 0, 0, -1]], numarray.Int8)
>>> print watershed_ift(input, markers)
[[-1 -1 -1 -1 -1 -1 -1]

[-1 -1 2 2 2 -1 -1]
[-1 2 2 2 2 2 -1]
[-1 2 2 2 2 2 -1]
[-1 2 2 2 2 2 -1]
[-1 -1 2 2 2 -1 -1]
[-1 -1 -1 -1 -1 -1 -1]]

The connectivity of the objects is defined by a structuring element. If no structuring element is provided, one is
generated by callinggenerate binary structure (see section??) using a connectivity of one (which
in 2D is a 4-connected structure.) For example, using an 8-connected structure with the last example yields a
different object:

>>> print watershed_ift(input, markers,
... structure = [[1,1,1], [1,1,1], [1,1,1]])
[[-1 -1 -1 -1 -1 -1 -1]

[-1 2 2 2 2 2 -1]
[-1 2 2 2 2 2 -1]
[-1 2 2 2 2 2 -1]
[-1 2 2 2 2 2 -1]
[-1 2 2 2 2 2 -1]
[-1 -1 -1 -1 -1 -1 -1]]

Note: The implementation ofwatershed ift limits the data types of the input toUInt8 andUInt16 .

21.10 Object measurements

Given an array of labeled objects, the properties of the individual objects can be measured. Thefind objects
function can be used to generate a list of slices that for each object, give the smallest sub-array that fully contains the
object:

find objects (input, max label=0)
The find objects finds all objects in a labeled array and returns a list of slices that correspond to the
smallest regions in the array that contains the object. For instance:

190 Chapter 21. Multi-dimensional image processing

>>> a = array([[0,1,1,0,0,0],[0,1,1,0,1,0],[0,0,0,1,1,1],[0,0,0,0,1,0]])
>>> l, n = label(a)
>>> f = find_objects(l)
>>> print a[f[0]]
[[1 1]

[1 1]]
>>> print a[f[1]]
[[0 1 0]

[1 1 1]
[0 1 0]]

find objects returns slices for all objects, unless themax labelparameter is larger then zero, in which case
only the firstmax labelobjects are returned. If an index is missing in thelabelarray,None is return instead of
a slice. For example:

>>> print find_objects([1, 0, 3, 4], max_label = 3)
[(slice(0, 1, None),), None, (slice(2, 3, None),)]

The list of slices generated byfind objects is useful to find the position and dimensions of the objects in the
array, but can also be used to perform measurements on the individual objects. Say we want to find the sum of the
intensities of an object in image:

>>> image = arange(4*6,shape=(4,6))
>>> mask = array([[0,1,1,0,0,0],[0,1,1,0,1,0],[0,0,0,1,1,1],[0,0,0,0,1,0]])
>>> labels = label(mask)[0]
>>> slices = find_objects(labels)

Then we can calculate the sum of the elements in the second object:

>>> print where(labels[slices[1]] == 2, image[slices[1]], 0).sum()
80

That is however not particularly efficient, and may also be more complicated for other types of measurements. There-
fore a few measurements functions are defined that accept the array of object labels and the index of the object to be
measured. For instance calculating the sum of the intensities can be done by:

>>> print sum(image, labels, 2)
80.0

For large arrays and small objects it is more efficient to call the measurement functions after slicing the array:

>>> print sum(image[slices[1]], labels[slices[1]], 2)
80.0

Alternatively, we can do the measurements for a number of labels with a single function call, returning a list of results.
For instance, to measure the sum of the values of the background and the second object in our example we give a list
of labels:

>>> print sum(image, labels, [0, 2])
[178.0, 80.0]

21.10. Object measurements 191

The measurement functions described below all support theindexparameter to indicate which object(s) should be
measured. The default value ofindex is None. This indicates that all elements where the label is larger than zero
should be treated as a single object and measured. Thus, in this case thelabelsarray is treated as a mask defined by
the elements that are larger than zero. Ifindexis a number or a sequence of numbers it gives the labels of the objects
that are measured. Ifindexis a sequence, a list of the results is returned. Functions that return more than one result,
return their result as a tuple ifindexis a single number, or as a tuple of lists, ifindexis a sequence.

sum(input, labels=None, index=None)
Thesum function calculates the sum of the elements of the object with label(s) given byindex, using thelabels
array for the object labels. Ifindex is None, all elements with a non-zero label value are treated as a single
object. If label is None, all elements ofinput are used in the calculation.

mean(input, labels=None, index=None)
The mean function calculates the mean of the elements of the object with label(s) given byindex, using the
labelsarray for the object labels. Ifindex is None, all elements with a non-zero label value are treated as a
single object. Iflabel is None, all elements ofinput are used in the calculation.

variance (input, labels=None, index=None)
Thevariance function calculates the variance of the elements of the object with label(s) given byindex, using
the labelsarray for the object labels. Ifindexis None, all elements with a non-zero label value are treated as a
single object. Iflabel is None, all elements ofinput are used in the calculation.

standard deviation (input, labels=None, index=None)
The standard deviation function calculates the standard deviation of the elements of the object with
label(s) given byindex, using thelabelsarray for the object labels. Ifindexis None, all elements with a non-
zero label value are treated as a single object. Iflabel is None, all elements ofinput are used in the calculation.

minimum (input, labels=None, index=None)
Theminimum function calculates the minimum of the elements of the object with label(s) given byindex, using
the labelsarray for the object labels. Ifindexis None, all elements with a non-zero label value are treated as a
single object. Iflabel is None, all elements ofinput are used in the calculation.

maximum(input, labels=None, index=None)
The maximum function calculates the maximum of the elements of the object with label(s) given byindex,
using thelabelsarray for the object labels. Ifindexis None, all elements with a non-zero label value are treated
as a single object. Iflabel is None, all elements ofinput are used in the calculation.

minimum position (input, labels=None, index=None)
Theminimum position function calculates the position of the minimum of the elements of the object with
label(s) given byindex, using thelabelsarray for the object labels. Ifindexis None, all elements with a non-zero
label value are treated as a single object. Iflabel is None, all elements ofinput are used in the calculation.

maximum position (input, labels=None, index=None)
Themaximum position function calculates the position of the maximum of the elements of the object with
label(s) given byindex, using thelabelsarray for the object labels. Ifindexis None, all elements with a non-zero
label value are treated as a single object. Iflabel is None, all elements ofinput are used in the calculation.

extrema (input, labels=None, index=None)
The extrema function calculates the minimum, the maximum, and their positions, of the elements of the
object with label(s) given byindex, using thelabelsarray for the object labels. Ifindex is None, all elements
with a non-zero label value are treated as a single object. Iflabel is None, all elements ofinput are used in
the calculation. The result is a tuple giving the minimum, the maximum, the position of the mininum and the
postition of the maximum. The result is the same as a tuple formed by the results of the functionsminimum ,
maximum, minimum position , andmaximum position that are described above.

center of mass(input, labels=None, index=None)
Thecenter of mass function calculates the center of mass of the of the object with label(s) given byindex,
using thelabelsarray for the object labels. Ifindexis None, all elements with a non-zero label value are treated
as a single object. Iflabel is None, all elements ofinput are used in the calculation.

192 Chapter 21. Multi-dimensional image processing

histogram (input, min, max, bins, labels=None, index=None)
The histogram function calculates a histogram of the of the object with label(s) given byindex, using the
labelsarray for the object labels. Ifindex is None, all elements with a non-zero label value are treated as a
single object. Iflabel is None, all elements ofinput are used in the calculation. Histograms are defined by their
minimum (min), maximum (max) and the number of bins (bins). They are returned as one-dimensional arrays
of type Int32.

21.11 Extending nd image in C

21.11.1 C callback functions

A few functions in thenumarray.nd image take a call-back argument. This can be a python function, but also a
CObject containing a pointer to a C function. To use this feature, you must write your own C extension that defines
the function, and define a python function that returns a CObject containing a pointer to this function.

An example of a function that supports this isgeometric transform (see section??). You can pass it a python
callable object that defines a mapping from all output coordinates to corresponding coordinates in the input array. This
mapping function can also be a C function, which generally will be much more efficient, since the overhead of calling
a python function at each element is avoided.

For example to implement a simple shift function we define the following function:

static int
_shift_function(int *output_coordinates, double* input_coordinates,

int output_rank, int input_rank, void *callback_data)
{

int ii;
/* get the shift from the callback data pointer: */
double shift = *(double*)callback_data;
/* calculate the coordinates: */
for(ii = 0; ii < irank; ii++)

icoor[ii] = ocoor[ii] - shift;
/* return OK status: */
return 1;

}

This function is called at every element of the output array, passing the current coordinates in theoutput coordinates
array. On return, theinput coordinatesarray must contain the coordinates at which the input is interpolated. The
ranks of the input and output array are passed throughoutput rank andinput rank. The value of the shift is passed
through thecallback data argument, which is a pointer to void. The function returns an error status, in this case
always 1, since no error can occur.

A pointer to this function and a pointer to the shift value must be passed togeometric transform . Both are
passed by a single CObject which is created by the following python extension function:

21.11. Extending nd image in C 193

static PyObject *
py_shift_function(PyObject *obj, PyObject *args)
{

double shift = 0.0;
if (!PyArg_ParseTuple(args, "d", &shift)) {

PyErr_SetString(PyExc_RuntimeError, "invalid parameters");
return NULL;

} else {
/* assign the shift to a dynamically allocated location: */
double *cdata = (double*)malloc(sizeof(double));
*cdata = shift;
/* wrap function and callback_data in a CObject: */
return PyCObject_FromVoidPtrAndDesc(_shift_function, cdata,

_destructor);
}

}

The value of the shift is obtained and then assigned to a dynamically allocated memory location. Both this data pointer
and the function pointer are then wrapped in a CObject, which is returned. Additionally, a pointer to a destructor
function is given, that will free the memory we allocated for the shift value when the CObject is destroyed. This
destructor is very simple:

static void
_destructor(void* cobject, void *cdata)
{

if (cdata)
free(cdata);

}

To use these functions, an extension module is build:

static PyMethodDef methods[] = {
{"shift_function", (PyCFunction)py_shift_function, METH_VARARGS, ""},
{NULL, NULL, 0, NULL}

};

void
initexample(void)
{

Py_InitModule("example", methods);
}

This extension can then be used in Python, for example:

>>> import example
>>> array = arange(12, shape=(4,3), type = Float64)
>>> fnc = example.shift_function(0.5)
>>> print geometric_transform(array, fnc)
[[0. 0. 0.]

[0. 1.3625 2.7375]
[0. 4.8125 6.1875]
[0. 8.2625 9.6375]]

C Callback functions for use withnd image functions must all be written according to this scheme. The next section
lists thend image functions that acccept a C callback function and gives the prototype of the callback function.

194 Chapter 21. Multi-dimensional image processing

21.11.2 Functions that support C callback functions

The nd image functions that support C callback functions are described here. Obviously, the prototype of the
function that is provided to these functions must match exactly that what they expect. Therefore we give here the
prototypes of the callback functions. All these callback functions accept a voidcallback data pointer that must be
wrapped in a CObject using the PythonPyCObject FromVoidPtrAndDesc function, which can also accept
a pointer to a destructor function to free any memory allocated forcallback data. If callback data is not needed,
PyCObject FromVoidPtr may be used instead. The callback functions must return an integer error status that is
equal to zero if something went wrong, or 1 otherwise. If an error occurs, you should normally set the python error
status with an informative message before returning, otherwise, a default error message is set by the calling function.

The functiongeneric filter (see section 21.3.5) accepts a callback function with the following prototype:
int FilterFunction (double *buffer, int filter size, double *returnvalue, void *callbackdata)

The calling function iterates over the elements of the input and output arrays, calling the callback function at
each element. The elements within the footprint of the filter at the current element are passed through thebuffer
parameter, and the number of elements within the footprint throughfilter size. The calculated valued should be
returned in thereturn valueargument.

The functiongeneric filter1d (see section 21.3.5) accepts a callback function with the following prototype:
int FilterFunction1D (double *input line, int input length, double *outputline, int output length, void

*callback data)
The calling function iterates over the lines of the input and output arrays, calling the callback function at each
line. The current line is extended according to the border conditions set by the calling function, and the result is
copied into the array that is passed through theinput line array. The length of the input line (after extension) is
passed throughinput length. The callback function should apply the 1D filter and store the result in the array
passed throughoutput line. The length of the output line is passed throughoutput length.

The functiongeometric transform (see section 21.5.2) expects a function with the following prototype:
int MapCoordinates (int *output coordinates, double* inputcoordinates, int outputrank, int input rank,

void *callback data)
The calling function iterates over the elements of the output array, calling the callback function at each element.
The coordinates of the current output element are passed throughoutput coordinates. The callback function
must return the coordinates at which the input must be interpolated ininput coordinates. The rank of the input
and output arrays are given byinput rank andoutput rank respectively.

21.11. Extending nd image in C 195

196

CHAPTER

TWENTYTWO

Memory Mapping

22.1 Introduction

numarray provides support for the creation of arrays which are mapped directly onto files with the
numarray.memmap module. Much ofnumarray ’s design, the ability to handle misaligned and byteswapped
arrays for instance, was motivated by the desire to create arrays from portable files which contain binary array data.
One advantage of memory mapping is efficient random access to small regions of a large file: only the region of the
mapped file which is actually used in array operations needs to be paged into system memory; the rest of the file
remains unread and unwritten.

numarray.memmap is pure Python and is layered on top of Python’smmapmodule. The basic idea behind
numarray ’s memory mapping is to create a “buffer” referring to a region in a mapped file and to use it as the data
store for an array. Thenumarray.memmap module contains two classes, one which corresponds to an entire mapped
file (Memmap) and one which corresponds to a contiguous region within a file (MemmapSlice). MemmapSlice
objects have these properties:

• MemmapSlices can be used as NumArray buffers.

• MemmapSlices are non-overlapping.

• MemmapSlices are resizable.

• Changing the size of a MemmapSlice changes the parent Memmap.

22.2 Opening a Memmap

You can create aMemmapobject by calling theopen function, as in:

>>> m = open("memmap.tst","w+",len=48)
>>> m
<Memmap on file ’memmap.tst’ with mode=’w+’, length=48, 0 slices>

Here, the file “memmap.tst” is created/truncated to a length of 48 bytes and used to construct a Memmap object in
write mode whose contents are considered undefined.

22.3 Slicing a Memmap

Once opened, aMemmapobject can be sliced into regions.

197

Slice m into the buffers "n" and "p" which will correspond to numarray:

>>> n = m[0:16]
>>> n
<MemmapSlice of length:16 writable>

>>> p = m[24:48]
>>> p
<MemmapSlice of length:24 writable>

NOTE: You cannot makeoverlappingslices of a Memmap:

>>> q = m[20:28]
Traceback (most recent call last):
...
IndexError: Slice overlaps prior slice of same file.

Deletion of a slice is possible once all other references to it are forgotten, e.g. all arrays that used it have themselves
been deleted. Deletion of a slice of a Memmap ”un-registers” the slice, making that region of the Memmap available
for reallocation. Delete directly from the Memmap without referring to the MemmapSlice:

>>> m = Memmap("memmap.tst",mode="w+",len=100)
>>> m1 = m[0:50]
>>> del m[0:50] # note: delete from m, not m1
>>> m2 = m[0:70]

Note that since the region of m1 was deleted, there is no overlap when m2 is created. However, deleting the region of
m1 has invalidated it:

>>> m1
Traceback (most recent call last):
...
RuntimeError: A deleted MemmapSlice has been used.

Don’t mix operations on a Memmap which modify its data or file structure with slice deletions. In this case, the status
of the modifications is undefined; the underlying map may or may not reflect the modifications after the deletion.

22.4 Creating an array from a MemmapSlice

Arrays are created fromMemmapSlice s simply by specifying the slice as thebuffer parameter of the array. Since
the slice is essentially just a byte string, it’s necessary to specify thetypeof the binary data as well.

>>> a = num.NumArray(buffer=n, shape=(len(n)/4,), type=num.Int32)
>>> a[:] = 0 # Since the initial contents of ’n’ are undefined.
>>> a += 1
array([1, 1, 1, 1], type=Int32)

198 Chapter 22. Memory Mapping

22.5 Resizing a MemmapSlice

Arrays based onMemmapSlice objects are resizable. As soon as they’re resized, slices become un-mapped or “free
floating”. Resizing a slice affects the parentMemmap.

>>> a.resize(6)
array([1, 1, 1, 1, 1, 1], type=Int32)

22.6 Forcing file updates and closing the Memmap

After doing slice resizes or inserting new slices, callflush to synchronize the underlying map file with any free
floating slices. This explicit step is required to avoid implicitly shuffling huge amounts of file space for everyresize
or insert . After calling flush , all slices are once again memory mapped rather than free floating.

>>> m.flush()

A related concept is “syncing” which applies even to arrays which have not been resized. Since memory maps don’t
guarantee when the underlying file will be updated with the values you have written to the map, callsync when you
want to be sure your changes are on disk. This is similar to syncing a UNIX file system. Note thatsync does not
consolidate the mapfile with any free floating slices (newly inserted or resized), it merely ensures that mapped slices
whose contents have been altered are written to disk.

>>> m.sync()

Now ”a” and ”b” are both memory mapped on ”memmap.tst” again.

When you’re done with the memory map and numarray, callclose . close calls flush which will consolidate
resized or inserted slices as necessary.

>>> m.close()

It is an error to use ”m” (or slices of m) any further after closing it.

22.7 numarray.memmap functions

open (filename, mode=’r+’, len=None)
open opens aMemmapobject on the filefilenamewith the specifiedmode. Available modevalues include
’readonly’ (’r’), ’copyonwrite’ (’c’), ’readwrite’ (’r+’), and ’write’ (’w+’), all but the last of which have contents
defined by the file.

Neither mode ’r’ nor mode ’c’ can affect the underlying map file. Readonly maps impose no requirement on
system swap space and raise exceptions when their contents are modified. Copy-on-write maps require system
swap space corresponding to their size, but have modifiable pages which become reassociated with system swap
as they are changed leaving the original map file unaltered. Insufficient swap space can prevent the creation of
a copy-on-write memory map. Modifications to readwrite memory maps are eventually reflected onto the map
file; see flushing and syncing.

close (map)
close closes theMemmapobject specified bymap.

22.5. Resizing a MemmapSlice 199

22.8 Memmap methods

A Memmap object represents an entire mapped file and is sliced to create objects which can be used as array buffers.
It has these public methods:

close ()
close unites theMemmapand any RAM based slices with its underlying file and removes the mapping and all
references to its slices. Once aMemmaphas been closed, all of its slices become unusable.

find (string, offset=0)
find(string, offset=0) returns the first index at which string is found, or -1 on failure.

>>> _open("memmap.tst","w+").write("this is a test")
>>> Memmap("memmap.tst",len=14).find("is")
2
>>> Memmap("memmap.tst",len=14).find("is", 3)
5
>>> _open("memmap.tst","w+").write("x")
>>> Memmap("memmap.tst",len=1).find("is")
-1

insert (offset, size=None, buffer=None)
insert places a new slice at the specifiedoffsetof the Memmap. size indicates the length in bytes of the
inserted slice whenbuffer is not specified. Ifbuffer is specified, it should refer to an existing memory object
created usingnumarray.memory.new memory andsize should not be specified.

flush ()
flush writes aMemmapout to its associated file, reconciling any inserted or resized slices by backing them
directly on the map file rather than a system swap file.flush only makes sense for write and readwrite memory
maps.

sync ()
sync forces slices which are backed on the map file to be immediately written to disk. Resized or newly
inserted slices are not affected.sync only makes sense for write and readwrite memory maps.

22.9 MemmapSlice methods

A MemmapSlice object represents a subregion of aMemmapand has these public methods:

buffer ()
Returns an object which supports the Python buffer protocol and represents this slice. The Python buffer protocol
enables a C function to obtain the pointer and size corresponding to the data region of the slice.

resize (newsize)
resize expands or contracts this slice to the specifiednewsize.

200 Chapter 22. Memory Mapping

Appendix

201

APPENDIX

A

Glossary

This chapter provides a glossary of terms.1

array An array refers to the Python object type defined by the NumPy extensions to store and manipulate numbers
efficiently.

byteswapped

discontiguous

misaligned

misbehaved array A numarray which is byteswapped, misaligned, or discontiguous.

rank The rank of an array is the number of dimensions it has, or the number of integers in its shape tuple.

shape Array objects have an attribute called shape which is necessarily a tuple. An array with an empty tuple shape
is treated like a scalar (it holds one element).

ufunc A callable object which performs operations on all of the elements of its arguments, which can be lists, tuples,
or arrays. Many ufuncs are defined in the umath module.

universal function See ufunc.

1Please let us know of any additions to this list which you feel would be helpful.

203

204

INDEX

Symbols
* (in module numarray.ma), 152
** (in module numarray.ma), 152
*=, 32
+, 152
+=, 32
- (in module numarray.ma), 152
/ (in module numarray.ma), 152
/=, 32

array () (MaskedArray method), 145
buffer () (MemmapSlice method), 200

A
absolute (in module numarray.ma), 152
accumulate()

method, 51
masked binary function method, 158

add (in module numarray.ma), 152
add() (in module numarray.objects), 104
add code() (method), 57
add nary ufunc() (method), 57
affine transform() (in module numar-

ray.nd image), 183
all() (in module numarray), 76
allclose()

in module numarray, 76
in module numarray.ma, 154

allequal() (in module numarray.ma), 154
alltrue()

in module numarray, 75
in module numarray.ma, 153

amap() (RawCharArray method), 92
any() (in module numarray), 76
arange()

in module numarray, 24
in module numarray.ma, 154

arccos (in module numarray.ma), 152
arcsin (in module numarray.ma), 152
arctan (in module numarray.ma), 152
arctan2 (in module numarray.ma), 152
argmax()

in module numarray, 71
numarray method, 77

argmin()
in module numarray, 71
numarray method, 77

argsort()
in module numarray, 70
in module numarray.ma, 155
in module numarray.objects, 103
numarray method, 77
RawCharArray method, 92

around (in module numarray.ma), 152
array()

in module numarray, 19
in module numarray.objects, 102
in module numarray.records, 96
in module numarray.strings, 90
MaskedArray method, 147

array repr() (in module numarray), 74
array str() (in module numarray), 74
arrayrange()

in module numarray, 24
in module numarray.ma, 154

asarray()
in module numarray, 19
in module numarray.objects, 102
MaskedArray method, 147

astype()
method, 29
MaskedArray method, 145
numarray method, 77
ObjectArray method, 104

average() (in module numarray.ma), 154

B
beta() (in module numarray.randomarray), 164
binary closing() (in module numar-

ray.nd image), 185
binary dilation() (in module numar-

ray.nd image), 184
binary erosion() (in module numar-

ray.nd image), 183

205

binary fill holes() (in module numar-
ray.nd image), 185

binary hit or miss() (in module numar-
ray.nd image), 185

binary opening() (in module numar-
ray.nd image), 185

binomial() (in module numarray.randomarray),
165

bitwise and (in module numarray.ma), 152
bitwise or (in module numarray.ma), 152
bitwise xor (in module numarray.ma), 152
black tophat() (in module numar-

ray.nd image), 186
Bool, 20
boxcar() (in module numarray.convolve), 131
broadcasting, 30, 31
byte swapped() (MaskedArray method), 145
byteswap() (numarray method), 77
byteswapped() (numarray method), 78

C
C-API, 107
C-API (extension module),107
center of mass() (in module numar-

ray.nd image), 192
cfftb() (in module numarray.fft.fftpack), 137
cfftf() (in module numarray.fft.fftpack), 137
cffti() (in module numarray.fft.fftpack), 136
character array, 89, 197
CharArray, 89
chi square() (in module numar-

ray.randomarray), 164
cholesky decomposition() (in module nu-

marray.linearalgebra), 140
choose()

in module numarray, 67
in module numarray.ma, 155
in module numarray.objects, 102

clip() (in module numarray), 72
close()

in module numarray.memmap, 199
Memmap method, 200

Complex32, 20
Complex64, 20
compress()

in module numarray, 68
in module numarray.ma, 155

compressed() (MaskedArray method), 145
concatenate, 23
concatenate()

in module numarray, 73
in module numarray.ma, 153
RawCharArray method, 92

conjugate (in module numarray.ma), 152

conjugate() (numarray method), 78
convolve()

in module numarray.convolve, 131
in module numarray.ndimage, 173

convolve1d() (in module numarray.ndimage),
173

convolve2d() (in module numarray.convolve),
131

copy()
numarray method, 78
ObjectArray method, 104
RawCharArray method, 91

correlate()
in module numarray.convolve, 132
in module numarray.ndimage, 173

correlate1d() (in module numarray.ndimage),
173

correlate2d() (in module numarray.convolve),
132

cos (in module numarray.ma), 152
cosh (in module numarray.ma), 152
count()

in module numarray.ma, 154
MaskedArray method, 145
RawCharArray method, 94

cumproduct() (in module numarray), 75
cumsum() (in module numarray), 75

D
determinant() (in module numar-

ray.linear algebra), 140
diagonal()

in module numarray, 69
in module numarray.ma, 154
numarray method, 78

display() (masked print option method), 156
distance transform bf() (in module numar-

ray.nd image), 187
distance transform cdt() (in module nu-

marray.nd image), 186
distance transform edt() (in module nu-

marray.nd image), 187
divide (in module numarray.ma), 152
domain check interval (class in numar-

ray.ma), 157
domain greater (class in numarray.ma), 157
domain greater equal (class in numarray.ma),

157
domain safe divide (class in numarray.ma),

158
domain tan (class in numarray.ma), 157
domained binary function (class in numar-

ray.ma), 158
dot()

206 Index

in module numarray, 71
in module numarray.ma, 155

Dubois, Paul F., 143

E
e (data in numarray.ma), 152
eigenvalues() (in module numar-

ray.linear algebra), 140
eigenvectors() (in module numar-

ray.linear algebra), 140
enable() (masked print option method), 157
enabled() (masked print option method), 157
equal (in module numarray.ma), 153
eval() (RawCharArray method), 93
exp (in module numarray.ma), 152
exponential() (in module numar-

ray.randomarray), 164
extrema() (in module numarray.ndimage), 192

F
F() (in module numarray.randomarray), 164, 165
fabs() (in module numarray.ma), 152
fft() (in module numarray.fft), 135
fft2d() (in module numarray.fft), 136
field()

RecArray method, 98
Record method, 98

fill value()
in module numarray.ma, 149
MaskedArray method, 145, 149

filled()
in module numarray.ma, 148
MaskedArray method, 145

FilterFunction() , 195
FilterFunction1D() , 195
find() (Memmap method), 200
find objects() (in module numar-

ray.nd image), 190
flat

MaskedArray attribute, 144
numarray attribute, 87

float() (in module numarray.ma), 150
Float32, 20
Float64, 20
floor (in module numarray.ma), 152
flush() (Memmap method), 200
fmod (in module numarray.ma), 152
fourier ellipsoid() (in module numar-

ray.nd image), 181
fourier gaussian() (in module numar-

ray.nd image), 180
fourier shift() (in module numar-

ray.nd image), 180

fourier uniform() (in module numar-
ray.nd image), 181

fromfile() (in module numarray), 71
fromfunction()

in module numarray, 25
in module numarray.ma, 154

fromstring() (in module numarray), 71
FULL (data in numarray.convolve), 132

G
gamma() (in module numarray.randomarray), 164
gaussian filter() (in module numar-

ray.nd image), 173
gaussian filter1d() (in module numar-

ray.nd image), 173
gaussian gradient magnitude() (in mod-

ule numarray.ndimage), 176
gaussian laplace() (in module numar-

ray.nd image), 176
generalized inverse() (in module numar-

ray.linear algebra), 140
generate() (method), 57
generate binary structure() (in module

numarray.ndimage), 183
generic filter() (in module numar-

ray.nd image), 178
generic filter1d() (in module numar-

ray.nd image), 177
generic gradient magnitude() (in module

numarray.ndimage), 176
generic laplace() (in module numar-

ray.nd image), 175
geometric transform() (in module numar-

ray.nd image), 181
get print limit() (in module numarray.ma),

155
get seed() (in module numarray.randomarray),

163
getflat() (numarray method), 84
getimag() (numarray method), 84
getimaginary() (numarray method), 84
getmask() (in module numarray.ma), 150
getmaskarray() (in module numarray.ma), 150
getreal() (numarray method), 84
getshape, 21
getshape() (numarray method), 84
greater (in module numarray.ma), 153
greater equal (in module numarray.ma), 153
grep() (RawCharArray method), 93
grey closing() (in module numar-

ray.nd image), 186
grey dilation() (in module numar-

ray.nd image), 186

Index 207

grey erosion() (in module numar-
ray.nd image), 186

grey opening() (in module numar-
ray.nd image), 186

H
Heigenvalues() (in module numar-

ray.linear algebra), 141
Heigenvectors() (in module numar-

ray.linear algebra), 141
histogram() (in module numarray.ndimage), 192
hypot (in module numarray.ma), 152

I
identity()

in module numarray, 27, 75
in module numarray.ma, 153

ids() (MaskedArray method), 145
imag (numarray attribute), 87
imaginary

MaskedArray attribute, 144
numarray attribute, 88

indices()
in module numarray, 72
in module numarray.ma, 153

info()
numarray method, 78
ObjectArray method, 105
RawCharArray method, 94
RecArray method, 98

innerproduct()
in module numarray, 74
in module numarray.ma, 155

inputarray() (in module numarray), 19
insert() (Memmap method), 200
int() (in module numarray.ma), 150
Int16, 20
Int32, 20
Int64, 20
Int8, 20
inverse() (in module numarray.linearalgebra),

141
inverse fft() (in module numarray.fft), 136
inverse fft2d() (in module numarray.fft), 136
inverse real fft() (in module numarray.fft),

136
inverse real fft2d() (in module numar-

ray.fft), 136
is c array() (numarray method), 79
is f array() (numarray method), 79
is fortran contiguous() (numarray

method), 79
is mask() (in module numarray.ma), 149
isaligned() (numarray method), 79

isarray() (in module numarray.ma), 153
isbyteswapped() (numarray method), 79
iscontiguous()

MaskedArray method, 145
numarray method, 79

itemsize()
MaskedArray method, 146
numarray method, 80

iterate structure() (in module numar-
ray.nd image), 184

L
label() (in module numarray.ndimage), 188
laplace() (in module numarray.ndimage), 176
len() (in module numarray.ma), 153
less (in module numarray.ma), 153
less equal (in module numarray.ma), 153
letterCode() (in module numarray.records), 98
linear least squares() (in module numar-

ray.linear algebra), 141
log (in module numarray.ma), 152
log10 (in module numarray.ma), 152
logical and (in module numarray.ma), 153
logical not (in module numarray.ma), 153
logical or (in module numarray.ma), 153
logical xor (in module numarray.ma), 153

M
MAError (class in numarray.ma), 156
make mask() (in module numarray.ma), 149
make mask none() (in module numarray.ma),

150
make stub() (in module numarray), 57
map coordinates() (in module numar-

ray.nd image), 182
MapCoordinates() , 195
mask() (MaskedArray method), 146
mask or() (in module numarray.ma), 150
masked (data in numarray.ma), 148
masked array() (MaskedArray method), 147
masked binary function (class in numar-

ray.ma), 157
masked equal() (MaskedArray method), 148
masked greater() (MaskedArray method), 148
masked greater equal() (MaskedArray

method), 148
masked inside() (MaskedArray method), 148
masked less() (MaskedArray method), 148
masked less equal() (MaskedArray method),

148
masked not equal() (MaskedArray method),

148
masked object() (MaskedArray method), 147
masked outside() (MaskedArray method), 148

208 Index

masked unary function (class in numar-
ray.ma), 157

masked values() (MaskedArray method), 147
masked where() (MaskedArray method), 147
MaskedArray,→numarray.ma
masks, description of, 149
masks, savespace attribute, 149
match() (RawCharArray method), 92
matrixmultiply() (in module numarray), 72
max() (numarray method), 80
maximum()

in module numarray.ma, 155
in module numarray.ndimage, 192

maximum filter() (in module numar-
ray.nd image), 174

maximum filter1d() (in module numar-
ray.nd image), 174

maximum position() (in module numar-
ray.nd image), 192

maxLen() (RawCharArray method), 93
mean()

in module numarray.mlab, 161
in module numarray.ndimage, 192
numarray method, 80

median() (in module numarray.mlab), 161
median filter() (in module numar-

ray.nd image), 174
min()

in module numarray.mlab, 161
numarray method, 80

minimum()
in module numarray.ma, 155
in module numarray.ndimage, 192

minimum filter() (in module numar-
ray.nd image), 174

minimum filter1d() (in module numar-
ray.nd image), 174

minimum position() (in module numar-
ray.nd image), 192

morphological gradient() (in module nu-
marray.nd image), 186

morphological laplace() (in module numar-
ray.nd image), 186

msort() (in module numarray.mlab), 161
multidimensional arrays, 20
multinomial() (in module numar-

ray.randomarray), 166
multiply (in module numarray.ma), 152
multivariate normal() (in module numar-

ray.randomarray), 164

N
NA ByteOrder() , 127
NA ComplexArrayCheck() , 127

NA copy() , 128
NA copyArray() , 128
NA elements() , 128
NA GET1() , 121
NA get1 Complex64() , 122
NA get1 Float64() , 122
NA get1 Int64() , 122
NA GET1a() , 121
NA GET1b() , 121
NA get1D Complex64() , 125
NA get1D Float64() , 125
NA get1D Int64() , 125
NA GET1f() , 121
NA GET2() , 121
NA get2 Complex64() , 122
NA get2 Float64() , 122
NA get2 Int64() , 122
NA GET2a() , 121
NA GET2b() , 121
NA GET2f() , 121
NA get Complex64() , 122
NA get Float64() , 122
NA get Int64() , 122
NA get offset() , 125
NA GETP() , 121
NA GETPa() , 121
NA GETPb() , 121
NA GETPf() , 121
NA getPythonScalar() , 127
NA IeeeMask32() , 127
NA IeeeMask64() , 127
NA InputArray() , 116
NA intTupleFromMaybeLongs() , 127
NA IoArray() , 116
NA isIntegerSequence() , 127
NA maxType() , 127
NA maybeLongsFromIntTuple() , 127
NA NDArrayCheck() , 127
NA NewAll() , 126
NA NewAllFromBuffer() , 126
NA NewAllStrides() , 126
NA NewArray() , 126
NA NumArrayCheck() , 127
NA OptionalOutputArray() , 117
NA OutputArray() , 116
NA ReturnOutput() , 117
NA SET1() , 121
NA set1 Complex64() , 122
NA set1 Float64() , 122
NA set1 Int64() , 122
NA SET1a() , 121
NA SET1b() , 121
NA set1D Complex64() , 125
NA set1D Float64() , 125

Index 209

NA set1D Int64() , 125
NA SET1f() , 121
NA SET2() , 122
NA set2 Complex64() , 122
NA set2 Float64() , 122
NA set2 Int64() , 122
NA SET2a() , 121
NA SET2b() , 122
NA SET2f() , 122
NA set Complex64() , 122
NA set Float64() , 122
NA set Int64() , 122
NA setArrayFromSequence() , 127
NA setFromPythonScalar() , 127
NA SETP() , 121
NA SETPa() , 121
NA SETPb() , 121
NA SETPf() , 121
NA ShapeEqual() , 126
NA ShapeLessThan() , 126
NA swapAxes() , 128
NA typeNoToName() , 127
NA typeNoToTypeObject() , 127
NA typeObjectToTypeNo() , 127
NA updateDataPtr() , 127
NA vNewArray() , 126
negative (in module numarray.ma), 152
negative binomial() (in module numar-

ray.randomarray), 166
nelements() (numarray method), 80
new() (numarray method), 80
NewAxis (data in numarray.ma), 152
noncentral chi square() (in module numar-

ray.randomarray), 165
noncentral F() (in module numar-

ray.randomarray), 165
nonzero (in module numarray.ma), 152
nonzero()

in module numarray, 68
numarray method, 80

normal() (in module numarray.randomarray), 165
not equal (in module numarray.ma), 153
num2char() (in module numarray.strings), 91
numarray (extension module),3
numarray.convolve (extension module),131
numarray.fft (extension module),135
numarray.fft.fftpack (extension module),

136
numarray.linear algebra (extension mod-

ule),139
numarray.ma

*, 152
**, 152
+, 152

-, 152
/, 152
constructor, 147, 148, 150
create mask (deprecated),

→make mask none
default character fill value , 149
default complex fill value , 149
default integer fill value , 149
default object fill value , 149
default real fill value , 149
divide tolerance , 158
invalid, 143, 152
mask, 150
masked , 151, 152, 156
masked (constant), 156
masked binary function , 157
masked print option (constant), 156
MaskedArray , 144, 152
set fill value , 149
valid, 143, 152

numarray.ma (extension module),143
numarray.memmap (extension module),197
numarray.mlab (extension module),161
numarray.nd image (extension module),171
numarray.objects (extension module),101
numarray.random array (extension module),

163
numarray.records (extension module),95
numarray.strings (extension module),89

O
object array, 101
ObjectArray, 101
observations, dealing with missing, 143
ones()

in module numarray, 24
in module numarray.ma, 154

open() (in module numarray.memmap), 199
outer()

method, 52
masked binary function method, 158

outerproduct()
in module numarray, 74
in module numarray.ma, 155

P
PASS(data in numarray.convolve), 132
percentile filter() (in module numar-

ray.nd image), 174
permutation() (in module numar-

ray.randomarray), 163
pi (data in numarray.ma), 152
poisson() (in module numarray.randomarray),

166

210 Index

power (in module numarray.ma), 152
prewitt() (in module numarray.ndimage), 175
printing arrays, 22
prod() (in module numarray.mlab), 161
product()

in module numarray, 75
in module numarray.ma, 154

ptp() (in module numarray.mlab), 161
put, 42
put()

in module numarray, 64
in module numarray.ma, 154
in module numarray.objects, 104
MaskedArray method, 146

putmask()
in module numarray, 65
MaskedArray method, 146

PyArray As1D() , 115
PyArray As2D() , 115
PyArray CanCastSafely() , 115
PyArray Cast() , 115
PyArray Check() , 115
PyArray ContiguousFromObject() , 114
PyArray Copy() , 115
PyArray CopyFromObject() , 115
PyArray DescrFromType() , 115
PyArray Free() , 115
PyArray FromDims() , 114
PyArray FromDimsAndData() , 114
PyArray FromObject() , 115
PyArray isArray(PyObject *o)() , 115
PyArray NBYTES() , 115
PyArray Return() , 115
PyArray Size() , 115

R
rand() (in module numarray.mlab), 161
randint() (in module numarray.randomarray),

163
random() (in module numarray.randomarray), 163
rank, 17, 21
rank() (in module numarray.ma), 153
rank filter() (in module numarray.ndimage),

174
ravel()

in module numarray, 68
in module numarray.ma, 153

raw() (RawCharArray method), 91
raw data() (MaskedArray method), 146
real

MaskedArray attribute, 144
numarray attribute, 87

real fft() (in module numarray.fft), 136
real fft2d() (in module numarray.fft), 136

RecArray, 95
record array, 95
Record object, 98
reduce()

method, 51
masked binary function method, 158

reduceat() (method), 52
remainder (in module numarray.ma), 152
repeat()

in module numarray, 66
in module numarray.ma, 153
numarray method, 81

repr() (in module numarray.ma), 151
reshape()

in module numarray, 21
in module numarray.ma, 153

resize()
in module numarray, 23, 74
in module numarray.ma, 153
MemmapSlice method, 200
numarray method, 81

resized() (method), 91
rfftb() (in module numarray.fft.fftpack), 137
rfftf() (in module numarray.fft.fftpack), 137
rffti() (in module numarray.fft.fftpack), 137
rot90() (in module numarray.mlab), 161
rotate() (in module numarray.ndimage), 183

S
SAME(data in numarray.convolve), 132
savespace() (MaskedArray method), 146
search() (RawCharArray method), 93
searchsorted() (in module numarray), 70
seed() (in module numarray.randomarray), 163
set display() (masked print option method),

156
set fill value() (MaskedArray method), 146
set print limit() (in module numarray.ma),

155
set shape() (MaskedArray method), 146
setfield() (Record method), 98
setimag() (numarray method), 84
setimaginary() (numarray method), 84
setreal() (numarray method), 84
setshape, 21
setshape() (numarray method), 84
shape, 21
shape() (in module numarray.ma), 153
shape

MaskedArray attribute, 144
numarray attribute, 87

shared data (MaskedArray attribute), 144
shared mask (MaskedArray attribute), 144
shift() (in module numarray.ndimage), 183

Index 211

sin (in module numarray.ma), 152
sinc() (in module numarray.mlab), 161
singular value decomposition() (in mod-

ule numarray.linearalgebra), 141
sinh (in module numarray.ma), 152
size()

in module numarray.ma, 154
MaskedArray method, 146
numarray method, 81

sobel() (in module numarray.ndimage), 175
solve linear equations() (in module nu-

marray.linearalgebra), 141
sometrue()

in module numarray, 76
in module numarray.ma, 153

sort()
in module numarray, 70
in module numarray.ma, 155
in module numarray.objects, 103
RawCharArray method, 92

spacesaver() (MaskedArray method), 146
spline filter() (in module numar-

ray.nd image), 181
spline filter1d() (in module numar-

ray.nd image), 181
sqrt (in module numarray.ma), 152
squeeze() (in module numarray.mlab), 161
standard deviation() (in module numar-

ray.nd image), 192
standard normal() (in module numar-

ray.randomarray), 165
std() (in module numarray.mlab), 161
stddev() (numarray method), 82
str() (in module numarray.ma), 151
stride, 35

Negative, 36
string array, 89, 197
sub() (RawCharArray method), 93
subtract (in module numarray.ma), 152
sum()

in module numarray, 75
in module numarray.ma, 154
in module numarray.mlab, 162
in module numarray.ndimage, 192
numarray method, 83

svd() (in module numarray.mlab), 162
swapaxes()

in module numarray, 73
numarray method, 83

sync() (Memmap method), 200

T
take, 42
take()

in module numarray, 63
in module numarray.ma, 154
in module numarray.objects, 103

tan (in module numarray.ma), 152
tanh (in module numarray.ma), 152
tofile() (numarray method), 82
togglebyteorder() (numarray method), 83
tolist()

MaskedArray method, 146
numarray method, 82
ObjectArray method, 104
RawCharArray method, 91

tostring()
MaskedArray method, 147
numarray method, 82

trace()
in module numarray, 69
numarray method, 83

transpose()
in module numarray, 65
in module numarray.ma, 154
numarray method, 82

trapz() (in module numarray.mlab), 162
tri() (in module numarray.mlab), 162
tril() (in module numarray.mlab), 162
triu() (in module numarray.mlab), 162
truncated() (RawCharArray method), 93
type() (numarray method), 81
type argument, 19
typecode()

MaskedArray method, 147
numarray method, 81

U
UfuncModule() (in module numarray), 56
UInt16, 20
UInt32, 20
UInt64, 20
UInt8, 20
unary, 157
uniform() (in module numarray.randomarray),

163
uniform filter() (in module numar-

ray.nd image), 174
uniform filter1d() (in module numar-

ray.nd image), 174
unmask() (MaskedArray method), 147
unshare mask() (MaskedArray method), 147

V
VALID (data in numarray.convolve), 132
variance() (in module numarray.ndimage), 192
view() (numarray method), 83
void NA get offset() , 122

212 Index

W
watershed ift() (in module numar-

ray.nd image), 189
where()

in module numarray, 67
in module numarray.ma, 155

white tophat() (in module numar-
ray.nd image), 186

Z
zeros()

in module numarray, 24
in module numarray.ma, 154

zoom() (in module numarray.ndimage), 183

Index 213

	1 Introduction
	1.1 Where to get information and code
	1.2 Acknowledgments

	2 Installing numarray
	2.1 Testing the Python installation
	2.2 Testing the Numarray Python Extension Installation
	2.3 Installing numarray
	2.3.1 Installing on Unix, Linux, and Mac OSX
	2.3.2 Installing on Windows
	Installation from source
	Installation from self-installing executable
	Testing your Installation
	Installation on Cygwin

	2.4 At the SourceForge...

	3 High-Level Overview
	3.1 Numarray Objects
	3.2 Universal Functions
	3.3 Convenience Functions
	3.4 Differences between numarray and Numeric.

	4 Array Basics
	4.1 Basics
	4.2 Creating arrays from scratch
	4.2.1 array() and types
	4.2.2 Multidimensional Arrays

	4.3 Creating arrays with values specified ``on-the-fly''
	4.3.1 Creating an array from a function

	4.4 Coercion and Casting
	4.4.1 Automatic Coercions and Binary Operations
	4.4.2 The type value table
	4.4.3 Long: the platform relative type
	4.4.4 Deliberate casts (potentially down)

	4.5 Operating on Arrays
	4.5.1 Simple operations
	4.5.2 In-place operations

	5 Array Indexing
	5.1 Getting and Setting array values
	5.2 Slicing Arrays
	5.3 Pseudo Indices
	5.4 Index Arrays

	6 Intermediate Topics
	6.1 Rank-0 Arrays
	6.2 Exception Handling
	6.3 IEEE-754 Not a Number (NAN) and Infinity

	7 Ufuncs
	7.1 What are Ufuncs?
	7.1.1 Ufuncs can take output arguments
	7.1.2 Ufuncs have special methods
	7.1.3 Ufuncs always return new arrays

	7.2 Which are the Ufuncs?
	7.2.1 Unary Mathematical Ufuncs
	7.2.2 Binary Mathematical Ufuncs
	7.2.3 Logical and bitwise ufuncs
	7.2.4 Comparisons
	7.2.5 Ufunc shorthands

	7.3 Writing your own ufuncs!
	7.3.1 Runtime components of a ufunc
	7.3.2 Source components of a ufunc
	7.3.3 Ufunc code generation
	7.3.4 Type signatures and signature ordering
	7.3.5 Forms
	7.3.6 Ufunc Generation Example

	8 Array Functions
	9 Array Methods
	10 Array Attributes
	11 Character Array
	11.1 Introduction
	11.2 Character array stripping, padding, and truncation
	11.3 Character array functions
	11.4 Character array methods

	12 Record Array
	12.1 Introduction
	12.2 Record array functions
	12.3 Record array methods
	12.4 Record object

	13 Object Array
	13.1 Introduction
	13.2 Object array functions
	13.3 Object array methods

	14 C extension API
	14.1 Numarray extension basics
	14.1.1 Include libnumarray.h
	14.1.2 Alternate include method
	14.1.3 Import libnumarray
	14.1.4 Writing a simple setup.py file for a numarray extension

	14.2 Fundamental data structures
	14.2.1 Numarray Numerical Data Types
	14.2.2 NumarrayType
	14.2.3 PyArrayprotect unhbox voidb@x kern .06emvbox {hrule width.55em}Descr
	14.2.4 PyArrayObject
	14.2.5 Flag Bits

	14.3 Numeric simulation API
	14.3.1 Simulation Functions
	14.3.2 Numeric Compatible Functions
	14.3.3 Unsupported Numeric Features

	14.4 High-level API
	14.4.1 High-level functions
	14.4.2 Behaved-ness Requirements
	14.4.3 Example

	14.5 Element-wise API
	14.5.1 Element-wise functions
	Pointer based single element macros
	One index single element macros
	Two index single element macros
	One and Two Index, Offset, Float64/Complex64/Int64 functions

	14.5.2 Example

	14.6 One-dimensional API
	14.7 New numarray functions

	15 Convolution
	15.1 Convolution functions
	15.2 Global constants

	16 Fast-Fourier-Transform
	16.1 Installation
	16.1.1 Installation using FFTPACK

	16.2 FFT Python Interface
	16.3 fftpack Python Interface

	17 Linear Algebra
	17.1 Installation
	17.1.1 Installation using LAPACK

	17.2 Python Interface

	18 Masked Arrays
	18.1 What is a masked array?
	18.2 Using numarray.ma
	18.3 Class MaskedArray
	18.3.1 Attributes of masked arrays
	18.3.2 Methods on masked arrays
	18.3.3 Constructing masked arrays
	18.3.4 What are masks?
	18.3.5 Working with masks
	18.3.6 Operations
	18.3.7 Copying or not?
	18.3.8 Behaviors
	18.3.9 Indexing and Slicing
	18.3.10 Indexing in assignments
	18.3.11 Operations that produce a scalar result
	18.3.12 Assignment to elements and slices

	18.4 MaskedArray Attributes
	18.5 MaskedArray Functions
	18.5.1 Unary functions
	18.5.2 Binary functions
	18.5.3 Comparison operators
	18.5.4 Logical operators
	18.5.5 Special array operators
	18.5.6 Controlling the size of the string representations

	18.6 Helper classes
	18.6.1 The constant masked
	18.6.2 The constant maskedprotect unhbox voidb@x kern .06emvbox {hrule width.55em}printprotect unhbox voidb@x kern .06emvbox {hrule width.55em}option

	18.7 Examples of Using numarray.ma
	18.7.1 Data with a given value representing missing data
	18.7.2 Filling in the missing data
	18.7.3 Numerical operations
	18.7.4 Seeing the mask
	18.7.5 Filling it your way
	18.7.6 Ignoring extreme values
	18.7.7 Averaging an entire multidimensional array

	19 Mlab
	19.1 Matlab(tm) compatible functions

	20 Random Numbers
	20.1 General functions
	20.2 Special random number distributions
	20.2.1 Random floating point number distributions
	20.2.2 Random integer number distributions

	20.3 Examples

	21 Multi-dimensional image processing
	21.1 Introduction
	21.2 Properties shared by all functions
	21.3 Filter functions
	21.3.1 Correlation and convolution
	21.3.2 Smoothing filters
	21.3.3 Filters based on order statistics
	21.3.4 Derivatives
	21.3.5 Generic filter functions

	21.4 Fourier domain filters
	21.5 Interpolation functions
	21.5.1 Spline pre-filters
	21.5.2 Interpolation functions

	21.6 Binary morphology
	21.7 Grey-scale morphology
	21.8 Distance transforms
	21.9 Segmentation and labeling
	21.10 Object measurements
	21.11 Extending ndprotect unhbox voidb@x kern .06emvbox {hrule width.55em}image in C
	21.11.1 C callback functions
	21.11.2 Functions that support C callback functions

	22 Memory Mapping
	22.1 Introduction
	22.2 Opening a Memmap
	22.3 Slicing a Memmap
	22.4 Creating an array from a MemmapSlice
	22.5 Resizing a MemmapSlice
	22.6 Forcing file updates and closing the Memmap
	22.7 numarray.memmap functions
	22.8 Memmap methods
	22.9 MemmapSlice methods

	A Glossary
	Index

