
Implementation of a
Fast Artificial Neural Network

Library (fann)

Steffen Nissen
lukesky@diku.dk

October 31, 2003

Department of Computer Science
University of Copenhagen (DIKU)

Abstract

This report describes the implementation of a fast artificial neural network

library in ANSI C called fann. The library implements multilayer feedforward

networks with support for both fully connected and sparse connected net-

works. Fann offers support for execution in fixed point arithmetic to allow for

fast execution on systems with no floating point processor. To overcome the

problems of integer overflow, the library calculates a position of the decimal

point after training and guarantees that integer overflow can not occur with

this decimal point.

The library is designed to be fast, versatile and easy to use. Several bench-

marks have been executed to test the performance of the library. The results

show that the fann library is significantly faster than other libraries on systems

without a floating point processor, while the performance was comparable to

other highly optimized libraries on systems with a floating point processor.

Keywords: ANN, artificial neural network, performance engineering, fixed

point arithmetic, ANSI C.

Preface

This report is written by Steffen Nissen as a graduate project on DIKU1. Associate
Professor Klaus Hansen is connected to the project as supervisor.

The source code for this project can be found on the internet address:
http://softman.dk/˜lukesky/fann/. Furthermore the source code is also located in
appendix B. The library will be released under the LGPL licence [FSF, 1999] accom-
panied by this report. It will be released as a SourceForge.net project [OSDN, 2003]
on the internet address: http://SourceForge.net/projects/fann/, shortly after the
completion of this report.

A CD-ROM accompanies this report, when delivered as a graduate project. The
root of the CD-ROM consist of this report as a PDF file, a small README file
and a directory called fann. This directory contains the entire CVS structure used
while creating this library and report, I will now describe the important directories
in this CVS:

doc Contains all the material used in the report, including some of the articles
used for writing this report.

libraries Contains the ANN libraries and programs, which was used for the bench-
marks.

src Contains the source for the fann library and the files generated during the
benchmarks.

src/test Contains the test and benchmark programs.

src/datasets Contains the datasets used for the quality benchmarks.

1DIKU: Datalogisk Institut Københavns Universitet, Department of Computer Science Univer-
sity of Copenhagen

ii

CONTENTS CONTENTS

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Requirements For the Library . 1
1.3 The Structure of This Report . 2

2 Neural Network Theory 3
2.1 Neural Networks . 3
2.2 Artificial Neural Networks . 4

2.2.1 The Artificial Neuron . 4
2.2.2 The Artificial Neural Network 5
2.2.3 Running Time of Executing an ANN 6

2.3 Training an ANN . 7
2.3.1 The Backpropagation Algorithm 8
2.3.2 Running Time of Backpropagation 9

3 Analysis 10
3.1 Usage Analysis . 10
3.2 Fixed Point Analysis . 10
3.3 Performance Analysis . 11

3.3.1 Algorithmic Optimization . 11
3.3.2 Architectural Optimization 12
3.3.3 Cache Optimization . 12
3.3.4 Common Subexpression Elimination 13
3.3.5 In-lining of Code . 13
3.3.6 Specializations for Fully Connected ANNs 13
3.3.7 Loop Unrolling . 13
3.3.8 Table Lookup . 14

4 Design and Implementation 15
4.1 API Design . 15
4.2 Architectural Design . 15

4.2.1 Connection Centered Architecture 15
4.2.2 Neuron Centered Architecture 16

4.3 Algorithmic Design . 18
4.3.1 The Density Algorithm . 18
4.3.2 The Activation Functions . 19

4.4 Fixed Point Design . 19
4.4.1 The Position of the Decimal Point 20

4.5 Code Design . 21

5 User’s Guide 23
5.1 Installation and Test . 23
5.2 Getting Started . 23

5.2.1 The Training . 23
5.2.2 The Execution . 24

5.3 Advanced Usage . 25
5.3.1 Adjusting Parameters . 25
5.3.2 Network Design . 26
5.3.3 Understanding the Error-value 26
5.3.4 Training and Testing . 27
5.3.5 Avoid Over-fitting . 28
5.3.6 Adjusting Parameters During Training 28

5.4 Fixed Point Usage . 28
5.4.1 Training a Fixed Point ANN 28

iii

CONTENTS CONTENTS

5.4.2 Running a Fixed Point ANN 29
5.4.3 Precision of a Fixed Point ANN 29

6 Benchmarks 30
6.1 The Libraries . 30

6.1.1 Jet’s Neural Library (jneural) 30
6.1.2 Lightweight Neural Network (lwnn) 31

6.2 Quality Benchmark . 31
6.2.1 Benchmark Setup . 31
6.2.2 The Benchmarks . 32
6.2.3 Quality Benchmark Conclusion 36

6.3 Performance Benchmark . 38
6.3.1 The Benchmark on the AMD Athlon 38
6.3.2 The Benchmark on the iPAQ 41

6.4 Benchmark Conclusion . 42

7 Conclusion 44
7.1 Future Work . 45

References 46

A Output from runs 48
A.1 Output from make runtest . 48

B Source Code 49
B.1 The library . 49

B.1.1 fann.h . 49
B.1.2 fann data.h . 52
B.1.3 floatfann.h . 54
B.1.4 doublefann.h . 54
B.1.5 fixedfann.h . 54
B.1.6 fann internal.h . 55
B.1.7 fann.c . 56
B.1.8 fann internal.c . 69

B.2 Test programs . 74
B.2.1 xor train.c . 74
B.2.2 xor test.c . 75
B.2.3 steepness train.c . 76

B.3 Benchmark programs . 78
B.3.1 quality.cc . 78
B.3.2 quality fixed.c . 83
B.3.3 performance.cc . 84
B.3.4 benchmark.sh . 87

iv

1 INTRODUCTION

1 Introduction

This report focuses on the process of implementing a fast artificial neural network
library. Many performance enhancement techniques will be used and documented,
to allow the library to be as fast as possible.

The report is written in English to be able to reach a broader audience. It
is my hope that people interested in implementing an application in the field of
artificial intelligence and computerized learning, will be able to read this report as
an introduction to programming with an artificial neural network library. And that
people who have already written an application using neural networks, can use this
report as a guide on how to increase the performance of their application using the
fann library.

1.1 Motivation

In [Nissen et al., 2002] I participated in building and programming of an auto-
nomous robot, based on an Compaq iPAQ with a camera attached to it. In
[Nissen et al., 2003] I participated in rebuilding this robot and adding artificial neu-
ral networks (ANN) for use in the image processing. Unfortunately the ANN library
that we used [Heller, 2002] was too slow and the image processing on the iPAQ was
not efficient enough.

The iPAQ does not have a floating point processor and for this reason we had
written a lot of the image processing using fixed point arithmetic. From this expe-
rience I have learned that rewriting code to fixed point arithmetic, makes a huge
difference on the performance of programs running on the iPAQ.

This experience gave me the idea, that it might be useful to develop a fast ANN
library with support for fixed point arithmetic. I did however not think that writing
another project based on the robot would be a good idea, so I started speculating
on what I wanted to do for my master thesis.

For my master thesis I would like to make an autonomous agent, which learns
from experience. To allow the agent to operate in a virtual environment, I have
chosen the field of computer games. The agent should be able to function as a virtual
player in a computer game and learn while doing so. Many different games could
be used for this purpose, but I am leaning towards Quake III Arena [IDS, 2000],
because it already has artificial agents called game bots [van Waveren, 2001]. Part
of the code for these bots are public domain and it should be possible to write a
new game bot on the basis of this code.

One way of building a learning game bot is to use reinforcement learning algo-
rithms [Kaelbling et al., 1996]. Reinforcement learning can benefit from having an
ANN core, which makes it useful to have a fast ANN library that can be modified
for use as a reinforcement learning core. Quake III Arena is written in ANSI C and
for this reason the ANN library used as the reinforcement learning core should also
be written in ANSI C.

This research lead back to the need for a fast ANN library. So I decided to
implement a fast ANN library which could be not only be used by me, but also by
other developers.

1.2 Requirements For the Library

The primary aim of this project, is to implement a fast ANN library. However, a
fast library is an ambiguous term and although it is the primary aim, it is not the
only aim. Therefore the aim will be discussed and specified further.

The primary aim is for the library to be fast at executing the ANN, while training
the ANN is not as time critical. The execution of the library should be fast on both

1

1.3 The Structure of This Report 1 INTRODUCTION

systems which has a floating point processor and on systems which does not have
a floating point processor.

Although I have some real needs for this library, there really is no point in
developing a library which is not used by other developers. For this reason the
library should be easy to use, versatile, well documented and portable.

Since the library should be used in Quake III Arena, it should be written in
ANSI C. This also supports the requirement for portability, since ANSI C libraries
can be used from a wide variety of programming languages and operating systems.

1.3 The Structure of This Report

This report have two main purposes:

• A report documenting the analysis, design and implementation of a library,
where speed is of importance and benchmarking the library to document the
performance and to discover, which optimizations have significant influence
on performance.

• A complete user’s guide to the fann library, making it possible for people with
no prior knowledge of ANNs to read this report and start using the library
and making it possible for people with extensive knowledge of ANNs to read
parts of this report and discover, how they could benefit from using the fann
library.

The report is divided into five main sections:

Neural Network Theory Describes the neural network theory needed in order
to understand the rest of the report.

Analysis Analyzes what the library should be able to do and which methods should
be used in order to reach this goal.

Design and Implementation Lowlevel API, architectural and algorithmic de-
sign.

User’s Guide A guide to using the library. This guide is partly written for people
wanting to use the library and partly written to document the versatility and
userfriendliness of the library.

Benchmarks Documentation of the quality and performance of the library.

2

2 NEURAL NETWORK THEORY

2 Neural Network Theory

This section will briefly explain the theory of neural networks (hereafter known as
NN) and artificial neural networks (hereafter known as ANN). For a more in depth
explanation of these concepts please consult the literature; [Hassoun, 1995] has good
coverage of most concepts of ANN and [Hertz et al., 1991] describes the mathemat-
ics of ANN very thoroughly, while [Anderson, 1995] has a more psychological and
physiological approach to NN and ANN. For the pragmatic I could recommend
[Tettamanzi and Tomassini, 2001], which has a short and easily understandable in-
troduction to NN and ANN.

2.1 Neural Networks

The human brain is a highly complicated machine capable of solving very complex
problems. Although we have a good understanding of some of the basic operations
that drive the brain, we are still far from understanding everything there is to know
about the brain.

In order to understand ANN, you will need to have a basic knowledge of how
the internals of the brain work. The brain is part of the central nervous system and
consists of a very large NN. The NN is actually quite complicated, but I will only
include the details needed to understand ANN, in order to simplify the explanation.

axon
dendrites nucleus

to other neurons
synaptic connections

Figure 1: Simplified neuron.

The NN is a network consisting of connected neurons. The center of the neuron
is called the nucleus. The nucleus is connected to other nucleuses by means of the
dendrites and the axon. This connection is called a synaptic connection.

The neuron can fire electric pulses through its synaptic connections, which is
received at the dendrites of other neurons. Figure 1 shows how a simplified neuron
looks like.

When a neuron receives enough electric pulses through its dendrites, it activates
and fires a pulse through its axon, which is then received by other neurons. In this
way information can propagate through the NN. The synaptic connections change
throughout the lifetime of a neuron and the amount of incoming pulses needed to
activate a neuron (the threshold) also change. This behavior allows the NN to learn.

The human brain consists of around 1011 neurons which are highly intercon-
nected with around 1015 connections [Tettamanzi and Tomassini, 2001]. These neu-
rons activates in parallel as an effect to internal and external sources. The brain is
connected to the rest of the nervous system, which allows it to receive information
by means of the five senses and also allows it to control the muscles.

3

2.2 Artificial Neural Networks 2 NEURAL NETWORK THEORY

2.2 Artificial Neural Networks

It is not possible (at the moment) to make an artificial brain, but it is possible to
make simplified artificial neurons and artificial neural networks. These ANNs can
be made in many different ways and can try to mimic the brain in many different
ways.

ANNs are not intelligent, but they are good for recognizing patterns and making
simple rules for complex problems. They also have excellent training capabilities
which is why they are often used in artificial intelligence research.

ANNs are good at generalizing from a set of training data. E.g. this means
an ANN given data about a set of animals connected to a fact telling if they are
mammals or not, is able to predict whether an animal outside the original set is a
mammal from its data. This is a very desirable feature of ANNs, because you do
not need to know the characteristics defining a mammal, the ANN will find out by
itself.

2.2.1 The Artificial Neuron

A single artificial neuron can be implemented in many different ways. The general
mathematic definition is as showed in equation 2.1.

y(x) = g

(

n
∑

i=0

wixi

)

(2.1)

x is a neuron with n input dendrites (x0 . . . xn) and one output axon y(x)
and where (w0 . . . wn) are weights determining how much the inputs should be
weighted.

g is an activation function that weights how powerful the output (if any) should
be from the neuron, based on the sum of the input. If the artificial neuron should
mimic a real neuron, the activation function g should be a simple threshold func-
tion returning 0 or 1. This is however, not the way artificial neurons are usually
implemented. For many different reasons it is smarter to have a smooth (preferably
differentiable) activation function. The output from the activation function is ei-
ther between 0 and 1, or between -1 and 1, depending on which activation function
is used. This is not entirely true, since e.g. the identity function, which is also
sometimes used as activation function, does not have these limitations, but most
other activation functions uses these limitations. The inputs and the weights are
not restricted in the same way and can in principle be between −∞ and +∞, but
they are very often small values centered around zero. The artificial neuron is also
illustrated in figure 2.

nx

1x

0x

y
.
.
.
.
.
.

w

w
0

1

wn

g

Figure 2: An artificial neuron.

In the figure of the real neuron (figure 1), the weights are not illustrated, but
they are implicitly given by the number of pulses a neuron sends out, the strength
of the pulses and how closely connected the neurons are.

4

2.2 Artificial Neural Networks 2 NEURAL NETWORK THEORY

As mentioned earlier there are many different activation functions, some of the
most commonly used are threshold (2.2), sigmoid (2.3) and hyperbolic tangent (2.4).

g(x) =

{

1 if x + t > 0
0 if x + t ≤ 0

(2.2)

g(x) =
1

1 + e−2s(x+t)
(2.3)

g(x) = tanh(s(x + t)) = sinh(s(x+t))
cosh(s(x+t))

= es(x+t)− e−s(x+t)

es(x+t)+ e−s(x+t) = e2(s(x+t))−1
e2(s(x+t))+1

(2.4)

Where t is the value that pushes the center of the activation function away
from zero and s is a steepness parameter. Sigmoid and hyperbolic tangent are both
smooth differentiable functions, with very similar graphs, the only major difference
is that hyperbolic tangent has output that ranges from -1 to 1 and sigmoid has
output that ranges from 0 to 1. A graph of a sigmoid function is given in figure 3,
to illustrate how the activation function look like.

−10 −5 0 5 10

1

0

0.5

Figure 3: A graph of a sigmoid function with s = 0.5 and t = 0.

The t parameter in an artificial neuron can be seen as the amount of incoming
pulses needed to activate a real neuron. This parameter, together with the weights,
are the parameters adjusted when the neuron learns.

2.2.2 The Artificial Neural Network

The ANN library I have chosen to implement is a multilayer feedforward ANN,
which is the most common kind of ANN. In a multilayer feedforward ANN, the
neurons are ordered in layers, starting with an input layer and ending with an
output layer. Between these two layers are a number of hidden layers. Connections
in these kinds of network only go forward from one layer to the next. Many other
kinds of ANNs exists, but I will not explain them further here. [Hassoun, 1995]
describes several of these other kinds of ANNs.

Multilayer feedforward ANNs have two different phases: A training phase (some-
times also referred to as the learning phase) and an execution phase. In the training
phase the ANN is trained to return a specific output when given a specific input,
this is done by continuous training on a set of training data. In the execution phase
the ANN returns outputs on the basis of inputs.

The way the execution of a feedforward ANN functions are the following: An
input is presented to the input layer, the input is propagated through all the layers
(using equation 2.1) until it reaches the output layer, where the output is returned.
In a feedforward ANN an input can easily be propagated through the network
and evaluated to an output. It is more difficult to compute a clear output from
a network where connections are allowed in all directions (like in the brain), since

5

2.2 Artificial Neural Networks 2 NEURAL NETWORK THEORY

this will create loops. There are ways of dealing with these loops in recurrent
networks, ([Hassoun, 1995] p. 271) describes how recurrent networks can be used
to code time dependencies, but feedforward networks are usually a better choice for
problems that are not time dependent.

Input layer Hidden layer Output layer

Figure 4: A fully connected multilayer feedforward network with one hidden layer.

Figure 4 shows a multilayer feedforward ANN where all the neurons in each layer
are connected to all the neurons in the next layer. This is called a fully connected
network and although ANNs do not need to be fully connected, they often are.

Two different kinds of parameters can be adjusted during the training of an
ANN, the weights and the t value in the activation functions. This is impractical
and it would be easier if only one of the parameters should be adjusted. To cope
with this problem a bias neuron is invented. The bias neuron lies in one layer, is
connected to all the neurons in the next layer, but none in the previous layer and
it always emits 1. Since the bias neuron emits 1 the weights, connected to the bias
neuron, are added directly to the combined sum of the other weights (equation 2.1),
just like the t value in the activation functions. A modified equation for the neuron,
where the weight for the bias neuron is represented as wn+1, is shown in equation 2.5.

y(x) = g

(

wn+1

n
∑

i=0

wixi

)

(2.5)

Adding the bias neuron allows us to remove the t value from the activation
function, only leaving the weights to be adjusted, when the ANN is being trained.
A modified version of the sigmoid function is shown in equation 2.6.

g(x) =
1

1 + e−2sx
(2.6)

We cannot remove the t value without adding a bias neuron, since this would
result in a zero output from the sum function if all inputs where zero, regardless
of the values of the weights. Some ANN libraries do however remove the t value
without adding bias neurons, counting on the subsequent layers to get the right
results. An ANN with added bias neurons is shown in figure 5.

2.2.3 Running Time of Executing an ANN

When executing an ANN, equation 2.5 needs to be calculated for each neuron which
is not an input or bias neuron. This means that we have to do one multiplication and
one addition for each connection (including the connections from the bias neurons),
besides that we also need to make one call to the activation function for each neuron
that is not an input or bias neuron. This gives the following running time:

6

2.3 Training an ANN 2 NEURAL NETWORK THEORY

Input layer Hidden layer Output layer

Bias Bias

Figure 5: A fully connected multilayer feedforward network with one hidden layer
and bias neurons.

T = cA + (n− ni)G (2.7)

Where c is the number of connections, n is the total number of neurons, ni is
the number of input and bias neurons, A is the cost of multiplying the weight with
the input and adding it to the sum, G is the cost of the activation function and T

is the total cost.
If the ANN is fully connected, l is the number of layers and nl is the number of

neurons in each layer (not counting the bias neuron), this equation can be rewritten
to:

T = (l − 1)(n2
l + nl)A + (l − 1)nlG (2.8)

This equation shows that the total cost is dominated by A in a fully connected
ANN. This means that if we want to optimize the execution of a fully connected
ANN, we need to optimize A and retrieval of the information needed to compute
A.

2.3 Training an ANN

When training an ANN with a set of input and output data, we wish to adjust the
weights in the ANN, to make the ANN give the same outputs as seen in the training
data. On the other hand, we do not want to make the ANN too specific, making
it give precise results for the training data, but incorrect results for all other data.
When this happens, we say that the ANN has been over-fitted.

The training process can be seen as an optimization problem, where we wish
to minimize the mean square error of the entire set of training data (for further
information on the mean square error see section 5.3.3). This problem can be solved
in many different ways, ranging from standard optimization heuristics like simulated
annealing, through more special optimization techniques like genetic algorithms to
specialized gradient descent algorithms like backpropagation.

The most used algorithm is the backpropagation algorithm (see section 2.3.1),
but this algorithm has some limitations concerning, the extent of adjustment to the
weights in each iteration. This problem has been solved in more advanced algo-
rithms like RPROP [Riedmiller and Braun, 1993] and quickprop [Fahlman, 1988],
but I will not elaborate further on these algorithms.

7

2.3 Training an ANN 2 NEURAL NETWORK THEORY

2.3.1 The Backpropagation Algorithm

The backpropagation algorithm works in much the same way as the name suggests:
After propagating an input through the network, the error is calculated and the
error is propagated back through the network while the weights are adjusted in
order to make the error smaller. When I explain this algorithm, I will only explain
it for fully connected ANNs, but the theory is the same for sparse connected ANNs.

Although we want to minimize the mean square error for all the training data,
the most efficient way of doing this with the backpropagation algorithm, is to train
on data sequentially one input at a time, instead of training on the combined data.
However, this means that the order the data is given in is of importance, but it also
provides a very efficient way of avoiding getting stuck in a local minima.

I will now explain the backpropagation algorithm, in sufficient details to allow
an implementation from this explanation:

First the input is propagated through the ANN to the output. After this the
error ek on a single output neuron k can be calculated as:

ek = dk − yk (2.9)

Where yk is the calculated output and dk is the desired output of neuron k.
This error value is used to calculate a δk value, which is again used for adjusting
the weights. The δk value is calculated by:

δk = ek g′(yk) (2.10)

Where g′ is the derived activation function. The need for calculating the derived
activation function was why I expressed the need for a differentiable activation
function in section 2.2.1.

When the δk value is calculated, we can calculate the δj values for preceding
layers. The δj values of the previous layer is calculated from the δk values of this
layer. By the following equation:

δj = η g′(yj)

K
∑

k=0

δkwjk (2.11)

Where K is the number of neurons in this layer and η is the learning rate
parameter, which determines how much the weight should be adjusted. The more
advanced gradient descent algorithms does not use a learning rate, but a set of more
advanced parameters that makes a more qualified guess to how much the weight
should be adjusted.

Using these δ values, the ∆w values that the weights should be adjusted by, can
be calculated by:

∆wjk = δj yk (2.12)

The ∆wjk value is used to adjust the weight wjk , by wjk = wjk + ∆wjk and
the backpropagation algorithm moves on to the next input and adjusts the weights
according to the output. This process goes on until a certain stop criteria is reached.
The stop criteria is typically determined by measuring the mean square error of the
training data while training with the data, when this mean square error reaches a
certain limit, the training is stopped. More advanced stopping criteria involving
both training and testing data are also used.

In this section I have briefly discussed the mathematics of the backpropagation
algorithm, but since this report is mainly concerned with the implementation of
ANN algorithms, I have left out details unnecessary for implementing the algorithm.
I will refer to [Hassoun, 1995] and [Hertz et al., 1991] for more detailed explanation
of the theory behind and the mathematics of this algorithm.

8

2.3 Training an ANN 2 NEURAL NETWORK THEORY

2.3.2 Running Time of Backpropagation

The backpropagation algorithm starts by executing the network, involving the
amount of work described in section 2.2.3 in addition to the actual backpropagation.

If the ANN is fully connected, the running time of algorithms on the ANN is
dominated by the operations executed for each connection (as with execution of an
ANN in section 2.2.3).

The backpropagation is dominated by the calculation of the δj and the ad-
justment of wjk , since these are the only calculations that are executed for each
connection. The calculations executed for each connection when calculating δj is
one multiplication and one addition. When adjusting wjk it is also one multiplica-
tion and one addition. This means that the total running time is dominated by two
multiplications and two additions (three if you also count the addition and mul-
tiplication used in the forward propagation) per connection. This is only a small
amount of work for each connection, which gives a clue to how important it is, for
the data needed in these operations to be easily accessible.

9

3 ANALYSIS

3 Analysis

In this section I will analyze the requirements of the library and the methods needed
to meet these requirements. A major requirement is the demand for speed and for
this reason I will analyze numerous methods for optimizing speed.

3.1 Usage Analysis

The fann library is not intended to be used by me alone, it is intended to be used
by many people. For the library to be a success in this area, it should be fast, easy
to use and versatile enough to allow for it to be used in many different situations. A
common mistake in software design is to keep adding more and more functionality
without thinking about user friendliness. This added functionality can make the
system difficult to comprehend for a user, which is why I will try to hide the inner
architecture for the user and only expose functions needed by the user. ANNs have
the appealing feature, that if implemented correctly they can be used by people,
who have only very little understanding of the theory behind them.

I have already mentioned, that the kind of network I will implement is a feed-
forward network and that it should be fast. What I have not mentioned is which
functionalities I would like to implement in the library and which I would not like
to implement.

The library should be easy to use and easy to train. For this reason, I would
like to be able to train a network directly from training data stored in a file (with
one function call). I would also like to be able to save and load all information
about an ANN to and from a file. The most basic ANN operations should be very
easy to use. The basic operations are: creating a network with reasonable defaults,
training a network and executing a network.

I would like to make the library easy to alter in the future, which is why it
should be possible to make sparse connected ANNs. I would also like to implement
at least one of the possible activation functions, but still allowing more to be added
later.

It should be possible to alter all the parameters mentioned in the theory (sec-
tion 2) at runtime. The parameters are: learning rate, activation function, the
steepness value of the activation function and the values of the initial weights.

It should not be possible to hand design a network topology, but it should be
possible to create a network and decide how many layers there should be, how many
neurons there should be in each of these layers and how dense the network should
be. I will get back to the density in section 4.3, but generally what I want, is to
be able to create a network and say that e.g. only half of the possible connections
should be connected.

Some ANN packages have GUIs for viewing information about an ANN, but I
do not think that it is the primary goal of an ANN library and for this reason I
do not want to implement this. Due to the flexible nature of the library that I will
implement (a network can be saved to and loaded from a file), it would be possible
to make a stand-alone program that could implement these kinds of features.

3.2 Fixed Point Analysis

As mentioned in section 1.1, the ANN should be able to run with fixed point num-
bers. This however raises a lot of questions and not all of them have easy answers.

The first big question is how much of the functionality implemented in the
floating point library should also be implemented in the fixed point library. The
obvious answer to this question would be all of the functionality, this however raises
a new question: What should be done when overflow occurs?

10

3.3 Performance Analysis 3 ANALYSIS

The hardware integer overflow exception is usually masked by the operating
system or the compiler2. This implies that the only real alternatives are to check
for overflow on each calculation or not to check for overflow at all. To check for
overflow on each calculation would be too costly and would void the whole idea of
using fixed point arithmetic for greater speed. On the other hand not to check at
all would create overflow and unpredictable results in consequence.

This is an annoying problem, especially because you have no real control over the
values of the weights. Usually in fixed point arithmetic you either give a guarantee,
that there will never be integer overflow or you make a simple check, that can
see if an overflow has occurred during a series of calculations. I can not find any
simple check, that can guarantee that there has not been an overflow for a series of
operations, but what I can do, is to guarantee that an overflow will never occur.

In order to make a guarantee that an overflow will never occur, I will have to
reevaluate the amount of functionality which should be implemented in the fixed
point library. Since fixed point arithmetic is mostly geared towards portable com-
puters, it is safe to assume that there will be a standard PC available for training
the ANN. This means that the training part of the ANN does not need to be imple-
mented in fixed point. Another observation is that after the ANN is fully trained,
the ANN never changes and it is therefore possible to make one check, after the
training has finished, that will guarantee that an overflow will never occur.

These observations about the problem of fixed point arithmetic, give rise to sev-
eral different implementation strategies. In section 4.4 I will choose an appropriate
strategy and prove that there can be no overflow using this strategy.

3.3 Performance Analysis

The primary aim of the library is to be as fast as possible during training and
execution of the ANN. To reach this aim, I will consider several kinds of optimiza-
tion techniques. The techniques are partly inspired by the performance engineering
course at DIKU and the rules defined in [Bentley, 1982] and partly by general com-
mon sense. The optimization techniques that I will consider are the following:

• Algorithmic optimization

• Architectural optimization

• Cache optimization

• Common subexpression elimination

• In-lining of code

• Specializations for fully connected ANNs

• Loop unrolling

• Table lookup

The cache optimizations are the most efficient, as can be seen in the benchmarks
(section 6).

3.3.1 Algorithmic Optimization

When optimizing a piece of software, you will often find the most efficient improve-
ments, in the algorithms used for the software. If you could change the running
time of a piece of software, from Θ(n2) to Θ(n) then this optimization would almost
certainly be better than all other optimizations you could think of.

2In gcc it is possible to get signals when a overflow occurs with -ftrapv, but unfortunately
some optimized pointer arithmetic in gcc makes integer overflow and breaks this functionality (see
http://gcc.gnu.org/bugzilla/show bug.cgi?id=1823).

11

3.3 Performance Analysis 3 ANALYSIS

The backpropagation algorithm will have to visit all connections, this cannot
be changed and it is therefore not possible to change the running time of the back-
propagation algorithm. However, as described in section 2.3, other more advanced
algorithms exists which could get better results than the backpropagation algo-
rithm. These algorithms do not execute faster than the backpropagation algorithm,
but they adjust the weights more precise, making them reach a result faster.

I have chosen to implement the backpropagation algorithm, because it is simple
and effective enough in most cases. This decision means that I have knowingly not
implemented an important optimization for the training algorithm, which implies
that there is not much use in spending too much time on the other optimization
strategies, because a highly tuned backpropagation algorithm will still be slower
than an untuned RPROP algorithm. In spite of that, a basic level of optimization
is still a desirable feature in the implementation of the backpropagation algorithm.

In conclusion; not much is done about the algorithms (although something could
be done about the training), which means that the running time is still Θ(n), where
n is the number of connections. However, there is still room for optimization of the
overhead involved in executing the actual calculations.

3.3.2 Architectural Optimization

There are many ways of building the architecture (data structures) for a neural
network. The object oriented approach would be to make everything an object and
there are actually good abstract concepts like neurons, synapses etc. which would
make for a great class hierarchy. In Jet’s Neural Library [Heller, 2002] such an
approach has been chosen, with all the advantages and disadvantages of this choice.
There are several major disadvantage of this approach:

• Data itself are not located closely together and cache performance is very bad.

• Algorithms like executing the network has code located in several different
classes, which makes the code hard to optimize and adds an overhead on
several key functions.

• It is difficult to make tight inner loops.

These are obviously problems that could be fixed, while still using the object
oriented approach, but the object oriented approach makes it difficult to do so.

A good architecture for a neural network should not take up too much space and
should not include too deep a level of objects. On the other hand some level of object
abstraction is highly desired. Perhaps a three level hierarchy would be acceptable,
with the outer level consisting of the entire ANN, the next level consisting of the
individual layers and the last level consisting of the single neurons and connections.

A good architecture will also allow for easy access to information like total
number of neurons etc.

3.3.3 Cache Optimization

If a good data architecture is in place much of the work for the cache optimization
is already done. But some work still needs to be done in improving the architecture
and making sure that the algorithms themselves are cache aware.

The architecture should assure that data could be accessed sequentially for good
cache performance. A good example of this is the weights, which should be accessed
sequentially when executing the network. For this reasons the weights should be
aligned in memory in one long array, which could be accessed sequentially.

The algorithms themselves should obviously use this optimized architecture and
access the data sequentially. The algorithms should also assure that all the code,

12

3.3 Performance Analysis 3 ANALYSIS

that they execute, are located at the same place to utilize the code cache to an
optimum.

3.3.4 Common Subexpression Elimination

Many expressions are calculated several times in standard neural network algo-
rithms. Although a compiler can do common subexpression elimination, it is often
a good idea to calculate expressions only once and store them in local variables. A
person can often do a better job at this, because a person can predict side effects
and aliasing3, which the compiler can not predict.

This is especially a good idea for the stop criteria of a loop, because this calcu-
lation is made in each run of the loop. If some of this calculation could be made
only once, this would make for a good performance increase. Also variables from
the ANN which is used in central loops could be prefetched to a local variable to
avoid overhead of fetching the variable from memory each time.

The central algorithms should be hand optimized to evaluate all common subex-
pressions at an early state, while the not so central algorithms should let the com-
piler take care of this optimization.

3.3.5 In-lining of Code

All code which is evaluated more than once in either execution or training of the
ANN, should be in-lined in the algorithm. This will avoid unnecessary overhead for
function calls and allow the compiler to do optimizations across the function call.

The in-lining can be done by either writing the code directly in the algorithm,
by using in-line functions or macros.

3.3.6 Specializations for Fully Connected ANNs

In fully connected ANNs we already know the connections between two layers. If
we assure that the weights for fully connected ANNs are always located at the same
place, we can implement algorithms which benefit from this information. This
information can be used to access the weight independently of the information
stored about connections.

Such an optimization benefits the performance in two ways: First of all, we
can completely eliminate the need for using the memory, which store information
about connections. Secondly, we can access the weights in one step less (one pointer
reference instead of two).

3.3.7 Loop Unrolling

Unrolling loops can often be done more efficient by hand than by a compiler. This
is partly because the compiler has to deal with aliasing, where a programmer can
see that aliasing will not happen and make faster code.

A short example of this is:

a[0] = b[0];

a[0] += b[1];

a[0] += b[2];

Which could be rewritten by a programmer to the following (if the programmer
was sure that a and b did not share data):

3C and C++ automaticly thinks that data reached from two different pointers could be the
same. This makes for safe but slow code (FORTRAN assumes the opposite, which makes for fast
unsafe code).

13

3.3 Performance Analysis 3 ANALYSIS

a[0] = b[0] + b[1] + b[2];

The compiler can not do this, because it can not be sure that b[1] and b[2] are
not sharing the same memory as a[0] and is therefore altered by a[0] = b[0];.

3.3.8 Table Lookup

As seen in figure 3, the activation functions are often very close to zero for small
values and close to one for large values. This leaves a relatively small span where
the output is not zero or one. This span can be represented as a lookup table, with
a reasonable resolution. It is hard to tell whether this lookup table will be faster
than actually calculating the activation function, but it is worth a try.

14

4 DESIGN AND IMPLEMENTATION

4 Design and Implementation

In section 3 I have analyzed what the library should be able to do and which methods
should be used to reach this objective. In this section I will use these considerations
to give concrete suggestions as to how the design and programming of the library
should be constructed. I will also describe how I have implemented some of these
suggestions and why I have not implemented others. If nothing else is stated, all
suggestions from both analysis and design have been implemented.

4.1 API Design

Much of the API have already been sketched in the “Usage Analysis” (section 3.1),
so I will only give a few more details in this section and leave the actual description
of the API to the “User’s Guide” (section 5).

Since the library should be written in ANSI C, the API needs to be a function
based API, but there can still be an object oriented thought behind the API.

I will use an ANN structure, which can be allocated by a constructor and deal-
located by a destructor. This structure should be given as the first argument to all
functions which operates on the ANN, to mimic an object oriented approach.

The ANN should have three different methods of storing the internal weights:
float, double and int. Where float and double are standard floating point
representations and int is the fixed point representation. In order to give the
compiler the best possible opportunity to optimize the code, this distinction should
be made at compile-time. This will produce several different libraries and require
that the person using the library should include a header file which is specific to
the method chosen. Although there is this distinction between which header file
is include, it should still be easy to write code which could compile with all three
header files. For this purpose I have invented a fann type, which is defined in the
three header files as float, double and int respectively.

It should be possible to save the network in standard floating point representa-
tion and in fixed point representation (more on this in section 4.4).

Furthermore there should be a structure which could hold training data. This
structure should like the net itself be loadable from a file. The structure of the file
should be fairly simple, making it easy to export a file in this format from another
program.

I will leave the rest of the API details to section 5 “User’s Guide”.

4.2 Architectural Design

In section 3.3.2 “Architectural Optimization” I have outlined how I will create the
general architectural design. In this section I will specify more precisely how the
design should be.

The data structures should be structured in three levels: A level containing the
whole ANN, a level containing the layers and a level containing the neurons and
connections.

With this three level structure, I will suggest two different implementations.
The first is centered around the connections and the second is centered around the
neurons.

4.2.1 Connection Centered Architecture

In a structure where the connections are the central structure, the three levels would
look like this:

1. fann The ANN with references to the connection layers.

15

4.2 Architectural Design 4 DESIGN AND IMPLEMENTATION

2. fann connection layer The connection layers with references to the connec-
tions.

3. fann connection The connections with a weight and two pointers to the two
connected neurons.

Where the connection layers represent all the connections between two layers
and the neurons themselves are only basic fann type’s. The main advantage of
this structure is that one simple loop can run through all the connections between
two layers. If these connections are allocated in one long array, the array can be pro-
cessed completely sequentially. The neurons themselves are only basic fann type’s
and since there are far less neurons than there are connections they do not take up
that much space. This architecture is shown on figure 6.

of connections
The first layer The first connection

in the first layer
The entire ANN

Level 1 Level 2 Level 3

of connections
The last layer

in the last layer

The last connection
in the last layer

The last connection
in the first layer

fann_connection_layer

fann_connection_layer

fann fann_connection

fann_connection

fann_connection

fann_connection

The first connection

Figure 6: The three levels for the connection centered architecture. At level 3, the
fann connection structures consists of a weight and a pointer to each of the two
connected neurons.

This was the first architecture which I implemented, but after testing it against
Lightweight Neural Network version 0.3 [van Rossum, 2003], I noticed that this
library was more than twice as fast as mine.

The question is now, why was the connection centered architecture not as fast
as it should have been? I think the main reasons was that the connections, which
is the most represented structure in ANNs, was implemented by a struct with two
pointers and a weight. This took up more space than needed which meant poor
cache performance. It also meant that the inner loop should constantly dereference
pointers, which the compiler had no idea where would end up, although they where
actually accessing the neurons in a sequential order.

4.2.2 Neuron Centered Architecture

After an inspection of the architecture used in the Lightweight Neural Network and
evaluation of what went wrong in the connection centered architecture, I designed
the neuron centered architecture, where the three levels looks like this:

1. fann The ANN with references to the layers.

2. fann layer The layers with references to the neurons.

16

4.2 Architectural Design 4 DESIGN AND IMPLEMENTATION

3. fann neuron The neurons with references to the connected neurons in the
previous layer and the weights for the connections.

In this architecture the fann structure has a pointer to the first layer and a pointer
to the last layer4. Furthermore, it contains all the parameters of the network, like
learning rate etc. The individual layers consists of a pointer to the first neuron in
the layer and a pointer to the last neuron in the layer. This architecture is shown
on figure 7.

The first layer
in the first layer

The entire ANN

Level 1 Level 2 Level 3

The last layer
in the last layer

in the last layer

in the first layer

fann_layer

fann fann_layer fann_neuron

fann_neuron

fann_neuron

fann_neuron

The first neuron

The first neuron

The last neuron

The last neuron

Figure 7: The three levels for the neuron centered architecture. At level 3, the
fann neuron structures consists of a neuron value, a value for the number of neurons
from the previous layer, connected to the neuron and two pointers. The first pointer
points at the first weight for the incoming connections and the second pointer points
to the first incoming connection (see figure 8).

Figure 8 illustrates how the architecture is connected at the third level. The
neurons, the weights and the connections are allocated in three long arrays. A
single neuron N consists of a neuron value, two pointers and a value for the number
of neurons connected to N in the previous layer. The first pointer points at the
position in the weight array, which contain the first weight for the connections to N .
Likewise the second pointer points to the first connection to N in the connection
array. A connection is simply a pointer to a neuron, in the previous layer, which is
connected to N .

This architecture is more cache friendly, than the connection centered architec-
ture. When calculating the input to a neuron, the weights, the connections and
the input neurons are all processed sequentially. The value of the neuron itself is
allocated in a local variable, which makes for much faster access. Furthermore,
the weights and the connections are all processed completely sequentially, through-
out the whole algorithm. When the ANN is fully connected, the array with the
connected neurons is obsolete and the algorithms can use this to increase speed.

4Actually this is a past the end pointer, which points to the layer one position past the last
layer. But it is easier to think of it as a pointer to the last layer.

17

4.3 Algorithmic Design 4 DESIGN AND IMPLEMENTATION

Input layer
with 1 neuron

Hidden layer
with 2 neurons

Output layer
with 1 neuron

Index to the array where the
neurons / weights / connections
are allocated.

Pointer

Connection

Weight

Neuron

0

1

2

3 3

2

1

0

5

6

4

5

6

3

1

0

2

3

4

6

54

Figure 8: Architecture of the fann library at the third level, illustrated by an ANN
with 1 input neuron, two neurons in a hidden layer and one output neuron. Bias
neurons are also illustrated, including a bias neuron in the output layer which is
not used, but still included to make algorithms more simple. Three things should
be noticed on this figure, the first is that all pointers go backwards which is more
optimal when executing the ANN. The second is that all neurons, weights and
connections have a number inside of them which shows their position in the array
that they are allocated in, the arrays are implicit shown by colored boxes. The
third is that only pointers to the first connection and weight connected to a neuron
is required, because the neuron knows how many incoming connections it has.

4.3 Algorithmic Design

The algorithm for executing the network and the backpropagation algorithm is
described in section 2.2.2 and 2.3.1 and the optimizations needed in these algorithms
are described in section 3.3.

These algorithms are however not the only algorithms needed in this library.

4.3.1 The Density Algorithm

In section 3.1 I expressed the wish for a density parameter in the constructor. The
reason for adding this parameter, is to allow it to be like a cheap version of the
optimal brain damage algorithm [LeCun et al., 1990]. In large ANNs, many of the
rules that are generated only utilize a few connections. Optimal brain damage
try to remove unused connections. I will provide the opportunity to remove some
connections in advance and then try to see if the network could be trained to give
good results. There is no guarantee that this will give a better ANN, but it will
give the users of the library another parameter to tweak in order to get better
performance.

The algorithm, which creates an ANN with a certain density D, has a number
of requirements which it must comply to:

1. The number of neurons should be the same as stated by the parameters to
the constructor.

2. The bias neurons should still be fully connected, since they represent the t

value in the activation functions. These connections should not be counted
when calculating the density.

3. All neurons should be connected to at least one neuron in the previous layer
and one neuron in the next layer.

4. The same connection must not occur twice.

5. The connections should be as random as possible.

6. The density in each layer should be as close to D as possible.

18

4.4 Fixed Point Design 4 DESIGN AND IMPLEMENTATION

The algorithm that I have constructed to do this is illustrated in algorithm 1.
Because some connections should always be in place, the actual connection rate
may be different than the connection rate parameter given.

Algorithm 1 Algorithm for generating connections with a given density D in an
ANN. Bias neurons is not represented in this algorithm in order to make it more
simple.

Require: 0 ≤ D ≤ 1
{First find out how many input connections each neuron should have}
for all li, lo where li is a layer with lo as the next layer do

numin ← the number of neurons in li
numout ← the number of neurons in lo
nummin ← max(numin, numout)
nummax ← numin ∗ numout

numcon ← max(D ∗ nummax, nummin)
Spread numcon equally among the neurons in lo

end for

{Then make the actual connections}
for all li, lo where li is a layer with lo as the next layer do
{Connections from all neurons in li}
for all ni where ni is a neuron in li do

no ← a random neuron in lo with room for more connections
Make a connection between ni and no

end for

{The rest of the connections}
for all no where no is a neuron in lo do

while There is still room for connections in no do
ni ← a random neuron in li which is not already connected to no

Make a connection between ni and no

end while
end for

end for

4.3.2 The Activation Functions

I section 3.3.8 I suggested that a lookup table would probably be faster than calcu-
lating the actual activation functions. I have chosen not to implement this solution,
but it would probably be a good idea to try it in the future.

This optimization has not been implemented because the activation function is
only calculated once for each neuron and not once for each connection. The cost
of the activation function becomes insignificant compared to the cost of the sum
function, if fully connected ANNs become large enough.

The activation functions, that I have chosen to implement is the threshold func-
tion and the sigmoid function.

4.4 Fixed Point Design

In section 3.2 I explained, that after fully training an ANN you can make one
check, that will guarantee, that there will be no integer overflow. In this section I
will suggest several ways that this could be implemented and describe how I have
implemented one of these suggestions.

19

4.4 Fixed Point Design 4 DESIGN AND IMPLEMENTATION

The general idea behind all of these suggestions, is the fact that you can calculate
the maximum value that you will ever get as input to the activation function. This
is done, by assuming that the input on each connection into a neuron is the worst
possible and then calculating how high a value you could get.

Since all inputs internally in the network is an output from another activation
function, you will always know which value is the worst possible value. The inputs
on the other hand are not controlled in any way. In order to ensure that an integer
overflow will never occur, you will have to put constraints on the inputs. There are
several different kinds of constraints you could put on the inputs, but I think that
it would be beneficial to put the same constraints on the inputs as on the outputs,
implying that the input should be between zero and one. Actually this constraint
can be relaxed to allow inputs between minus one and one.

I now have full control of all the variables and I will have to choose an imple-
mentation method for ensuring that integer overflow will not occur. There are two
questions here which needs to be answered. The first is how should the decimal
point be handled? But I will come to this in section 4.4.1.

The second is when and how the check be should made? An obvious choice
would be to let the fixed point library make the check, as this library needs the
fixed point functionality. However, this presents a problem because the fixed point
library is often run on some kind of portable or embedded device. The floating
point library, on the other hand, is often run on a standard workstation. This fact
suggests that it would be useful to let the floating point library do all the hard work
and simply let the fixed point library read a configuration file saved by the floating
point library.

These choices make for a model, where the floating point library trains the
ANN, then checks for the possibility of integer overflow and saves the ANN in a
fixed point version. The fixed point library then reads this configuration file and
can begin executing inputs.

4.4.1 The Position of the Decimal Point

The position of the decimal point is the number of bits you will use for the fractional
part of the fixed point number. The position of the decimal point also determines
how many bits that can be used by the integer part of the fixed point number.

There are two ways of determining the position of the decimal point. The first
way, is to set the decimal point at compile time. The second is to set the decimal
point when saving the ANN from the floating point library.

There are several advantages of setting the decimal point at compile time:

• Easy to implement

• The precision is known in advance

• The scope of the inputs and outputs are known when writing the software
using the fixed point library

• The compiler can optimize on basis of the decimal point

There are however also several advantages of setting the decimal point when
saving the ANN to a fixed point configuration file:

• The precision will be as high as possible

• Less ANNs will fail the check that ensures that an overflow will not occur

Although there are less advantages in the last solution, it is the most general
and scalable solution, therefore I will choose to set the decimal point when saving
the ANN. The big question is now, where should the decimal point be? And how

20

4.5 Code Design 4 DESIGN AND IMPLEMENTATION

can you be absolutely sure that an integer overflow will not occur when the decimal
point is there?

Before calculating where the decimal point should be, I will define what happens
with the number of used bits under certain conditions: When multiplying two
integer numbers, you will need the same number of bits to represent the result,
as was needed to represent both of the multipliers. E.g. if you multiply two 8
bit numbers, you will get a 16 bit number [Pendleton, 1993]. Furthermore, when
adding or subtracting two signed integers you will need as many bits as used in the
largest of the two numbers plus one. When doing a fixed point division, you will
need to shift the numerator left by as many bits as the decimal point. When doing
a decimal point multiplication, you first do a standard integer multiplication and
then shift right by as many bits as the decimal point.

Several operations has the possibility of generating integer overflow, when look-
ing at what happens when executing an ANN with equation 2.5.

If t is the number of bits needed for the fractional part of the fixed point number,
we can calculate how many bits are needed for each of these operations. To help
in these calculations, i will define the y = bits(x) function, were y is the number of
bits used to represent the integer part of x.

When calculating wixi we do a fixed point multiplication with a weight and a
number between zero and one. The number of bits needed in this calculation is
calculated in equation 4.1.

t + bits(wi) + t + bits(xi) =
t + bits(wi) + t + 0 =
2t + bits(wi)

(4.1)

When calculating the activation function in fixed point numbers, it is calculated
as a stepwise linear function. In this function the dominating calculation is a multi-
plication between a fixed point number between zero and one and the input to the
activation function. From the input to the activation function another fixed point
number is subtracted before the multiplication. The number of bits needed in this
calculation is calculated in equation 4.2.

2t + bits

(

wn+1

n
∑

i=0

wixi

)

+ 1 (4.2)

Since the highest possible output of the sum function is higher than the highest
possible weight, this operation is the dominating operation. This implies, that if I
can prove that an overflow will not occur in this operation, I can guarantee that an
overflow will never occur.

When saving the ANN in the fixed point format, I can calculate the number
of bits used for the integer part of the largest possible value that the activation
function can be given as a parameter. This value is named m in equation 4.3,
which calculates the position of the decimal point f for a n bit signed integer
(remembering that one bit is needed for the sign).

f =
n− 2−m

2
(4.3)

4.5 Code Design

Section 3.3 describes the optimization techniques used when implementing the li-
brary. This section will not elaborate on this, but rather explain which techniques
is used in the low-level code design, in order to make the library easy to use and
maintain.

21

4.5 Code Design 4 DESIGN AND IMPLEMENTATION

The library is written in ANSI C which puts some limitations on a programmer
like me, who normally codes in C++. However, this is not an excuse for writing
ugly code, although allocating all variables at the beginning of a function will never
be pretty.

I have tried to use comprehensible variable and function names, I have also tried
only using standard C functions, in order to make the library as portable as possible.
I have made sure that I did not create any global variables and that all global
functions or macros was named in a way, so that they would not easily interfere
with other libraries (by adding the name fann). Furthermore, I have defined some
macros which are defined differently in the fixed point version and in the floating
point version. These macros help writing comprehensible code without too many
#ifdef’s.

22

5 USER’S GUIDE

5 User’s Guide

In this section I will describe how the intended use of this library is. For most
usage the “Getting Started” section 5.2 should be sufficient, but for users with
more advanced needs I will also recommend the “Advanced Usage” section 5.3.

The “Fixed Point Usage” section 5.4 is only intended for users with need of
running the ANN on a computer with no floating point processor like e.g. an iPAQ.

5.1 Installation and Test

The library is developed on a Linux PC using the gcc compiler, but it should also
be possible to compile the library on other platforms. Since the library is written
as a part of this report, my main concern have not been to create an easy to use
install method, but I plan to create one in the future.

In order to compile and test the library, go to the src directory and type make

runtest. This will compile the library and run a couple of tests. An example
output from this run is shown in appendix A.1. The output is quite verbose, but
everything should work fine if the “Test failed” string is not shown in any of the
last five lines.
If the test succeeds, the following libraries should be ready for use:

• libfloatfann.a The standard floating point library.

• libdebugfloatfann.a The standard floating point library, with debug out-
put.

• libdoublefann.a The floating point library with double precision floats.

• libdebugdoublefann.aThe floating point library with double precision floats
and debug output.

• libfixedfann.a The fixed point library.

• libdebugfixedfann.a The fixed point library with debug output.

These libraries can either be used directly from this directory, or installed in
other directories like e.g. /usr/lib/.

5.2 Getting Started

An ANN is normally run in two different modes, a training mode and an execution
mode. Although it is possible to do this in the same program, I will recommend
doing it in two different programs.

There are several reasons to why it is usually a good idea to write the training
and execution in two different programs, but the most obvious is the fact that a
typical ANN system is only trained once, while it is executed many times.

5.2.1 The Training

Figure 9 shows a simple program which trains an ANN with a data set and then
saves the ANN to a file. The data is for the binary function XOR and is shown in
figure 10, but it could have been data representing all kinds of problems.

Four functions are used in this program and often these are the only four func-
tions you will need, when you train an ANN. I will now explain how each of these
functions work.

fann create Creates the ANN with a connection rate (1 for a fully connected
network), a learning rate (0.7 is a reasonable default) and a parameter telling
how many layers the network should consist of (including the input and output
layer). After this parameter follows one parameter for each layer (starting with
the input layer) telling how many neurons should be in each layer.

23

5.2 Getting Started 5 USER’S GUIDE

#include "floatfann.h"

int main()
{

const float connection_rate = 1;

const float learning_rate = 0.7;
const unsigned int num_layers = 3;

const unsigned int num_input = 2;
const unsigned int num_neurons_hidden = 4;
const unsigned int num_output = 1;

const float desired_error = 0.0001;
const unsigned int max_epochs = 500000;

const unsigned int epochs_between_reports = 1000;

struct fann *ann = fann_create(connection_rate,
learning_rate, num_layers,
num_input, num_neurons_hidden, num_output);

fann_train_on_file(ann, "xor.data", max_epochs,

epochs_between_reports, desired_error);

fann_save(ann, "xor_float.net");

fann_destroy(ann);

return 0;

}

Figure 9: Simple program for training an ANN on the data in xor.data and saving
the network in xor float.net.

4 2 1
0 0
0

0 1
1

1 0
1
1 1

0

Figure 10: The file xor.data, used to train the xor function. The first line consists
of three numbers: The first is the number of training pairs in the file, the second is
the number of inputs and the third is the number of outputs. The rest of the file is
the actual training data, consisting of one line with inputs, one with outputs etc.

fann train on file Trains the ANN for a maximum of max epochs epochs5, or
until the mean square error is lower than desired error. A status line is
written every epochs between reports epoch.

fann save Saves the ANN to a file.

fann destroy Destroys the ANN and deallocates the memory it uses.

The configuration file saved by fann save contains all information needed in
order to recreate the network. For more specific information about how it is stored
please look in the source code.

5.2.2 The Execution

Figure 11 shows a simple program which executes a single input on the ANN, the
output from this program can be seen in figure 12. The program introduces two
new functions which was not used in the training procedure and it also introduces
the fann type type. I will now explain the two functions and the type:

fann create from file Creates the network from a configuration file, which have
earlier been saved by the training program in figure 9.

5During one epoch each of the training pairs are trained for one iteration.

24

5.3 Advanced Usage 5 USER’S GUIDE

#include <stdio.h>
#include "floatfann.h"

int main()
{

fann_type *calc_out;
fann_type input[2];

struct fann *ann = fann_create_from_file("xor_float.net");

input[0] = 0;
input[1] = 1;

calc_out = fann_run(ann, input);

printf("xor test (%f,%f) -> %f\n",
input[0], input[1], calc_out[0]);

fann_destroy(ann);
return 0;

}

Figure 11: Creates an ANN from the file xor float.net and runs one array of
inputs through the ANN.

xor test (0.000000,1.000000) -> 0.990685

Figure 12: The output from the program seen in figure 11.

fann run Executes the input on the ANN and returns the output from the ANN.

fann type Is the type used internally by the fann library. This type is float when
including floatfann.h, double when including doublefann.h and int when
including fixedfann.h. For further info on fixedfann.h, see section 5.4.

These six functions and one type described in these two sections, are all you will
need to use the fann library. However, if you would like to exploit the full potential
of the fann library, I suggest you read the “Advanced Usage” section and preferably
the rest of this report.

5.3 Advanced Usage

In this section I will describe some of the low-level functions and how they can be
used to obtain more control of the fann library. For a full list of functions, please see
fann.h (appendix B.1.1), which has an explanation of all the fann library functions.
Also feel free to take a look at the rest of the source code.

I will describe four different procedures, which can help to get more power out
of the fann library: “Adjusting Parameters”, “Network Design”, “Understanding
the Error-value” and “Training and Testing”.

5.3.1 Adjusting Parameters

Several different parameters exists in an ANN, these parameters are given defaults
in the fann library, but they can be adjusted at runtime. There is no sense in
adjusting most of these parameters after the training, since it would invalidate the
training, but it does make sense to adjust some of the parameters during training,
as I will describe in section 5.3.4. Generally speaking, these are parameters that
should be adjusted before training.

The learning rate, as described in equation 2.11, is one of the most impor-
tant parameters, but unfortunately it is also a parameter which is hard to find
a reasonable default for. I have several times ended up using 0.7, but it is a
good idea to test several different learning rates when training a network. The

25

5.3 Advanced Usage 5 USER’S GUIDE

learning rate can be set when creating the network, but it can also be set by the
fann set learning rate(struct fann *ann, float learning rate) function.

The initial weights are random values between -0.1 and 0.1, if other weights are
preferred, the weights can be altered by the void fann randomize weights(struct

fann *ann, fann type min weight, fann type max weight) function.
The standard activation function is the sigmoid activation function, but it is

also possible to use the threshold activation function. I hope to add more activation
functions in the future, but for now these will do. The two activation functions are
defined as FANN SIGMOID and FANN THRESHOLD and are chosen by the two functions:

• void fann set activation function hidden(struct fann *ann,

unsigned int activation function)

• void fann set activation function output(struct fann *ann,

unsigned int activation function)

These two functions set the activation function for the hidden layers and for the
output layer. Likewise the steepness parameter used in the sigmoid function can be
adjusted by these two functions:

• void fann set activation hidden steepness(struct fann *ann,

fann type steepness)

• void fann set activation output steepness(struct fann *ann,

fann type steepness)

I have chosen to distinguish between the hidden layers and the output layer,
to allow more flexibility. This is especially a good idea for users wanting discrete
output from the network, since they can set the activation function for the output
to threshold. Please note, that it is not possible to train a network when using the
threshold activation function, due to the fact, that it is not differentiable. For more
information about activation functions please see section 2.2.1.

5.3.2 Network Design

When creating a network it is necessary to define how many layers, neurons and
connections it should have. If the network become too large, the ANN will have
difficulties learning and when it does learn it will tend to over-fit resulting in poor
generalization. If the network becomes too small, it will not be able to represent
the rules needed to learn the problem and it will never gain a sufficiently low error
rate.

The number of hidden layers is also important. Generally speaking, if the prob-
lem is simple it is often enough to have one or two hidden layers, but as the problems
get more complex, so does the need for more layers.

One way of getting a large network which is not too complex, is to adjust the
connection rate parameter given to fann create. If this parameter is 0.5, the
constructed network will have the same amount of neurons, but only half as many
connections. It is difficult to say which problems this approach is useful for, but
if you have a problem which can be solved by a fully connected network, then it
would be a good idea to see if it still works after removing half the connections.

5.3.3 Understanding the Error-value

The mean square error value is calculated while the ANN is being trained. Some
functions are implemented, to use and manipulate this error value. The float

fann get error(struct fann *ann) function returns the error value and the void
fann reset error(struct fann *ann) resets the error value. I will now explain

26

5.3 Advanced Usage 5 USER’S GUIDE

how the mean square error value is calculated, to give an idea of the value’s ability
to reveal the quality of the training.

If d is the desired output of an output neuron and y is the actual output of the
neuron, the square error is (d − y)2. If two output neurons exists, then the mean
square error for these two neurons is the average of the two square errors.

When training with the fann train on file function, an error value is printed.
This error value is the mean square error for all the training data. Meaning that it
is the average of all the square errors in each of the training pairs.

5.3.4 Training and Testing

Normally it will be sufficient to use the fann train on file training function,
but some times you want to have more control and you will have to write a custom
training loop. This could be because you would like another stop criteria, or because
you would like to adjust some of the parameters during training. Another stop
criteria than the value of the combined mean square error could be that each of the
training pairs should have a mean square error lower than a given value.

struct fann_train_data *data = fann_read_train_from_file(filename);
for(i = 1; i <= max_epochs; i++){

fann_reset_error(ann);
for(j = 0; j != data->num_data; j++){

fann_train(ann, data->input[j], data->output[j]);
}
if(fann_get_error(ann) < desired_error){

break;
}

}
fann_reset_error(ann);
fann_destroy_train(data);

Figure 13: The internals of the fann train on file function, without writing the
status line.

The internals of the fann train on file function is shown in a simplified form
in figure 13. This piece of code introduces the void fann train(struct fann

*ann, fann type *input, fann type *desired output) function, which trains
the ANN for one iteration with one pair of inputs and outputs and also updates
the mean square error. The fann train data structure is also introduced, this
structure is a container for the training data in the file described in figure 10. The
structure can be used to train the ANN, but it can also be used to test the ANN
with data which it has not been trained with.

struct fann_train_data *data = fann_read_train_from_file(filename);

fann_reset_error(ann);
for(i = 0; i != data->num_data; i++){

fann_test(ann, data->input[i], data->output[i]);

}
printf("Mean Square Error: %f\n", fann_get_error(ann));

fann_destroy_train(data);

Figure 14: Test all of the data in a file and calculates the mean square error.

Figure 14 shows how the mean square error for a test file can be calculated. This
piece of code introduces another useful function: fann type *fann test(struct

fann *ann, fann type *input, fann type *desired output). This function
takes an input array and a desired output array as the parameters and returns the
calculated output. It also updates the mean square error.

27

5.4 Fixed Point Usage 5 USER’S GUIDE

5.3.5 Avoid Over-fitting

With the knowledge of how to train and test an ANN, a new approach to training
can be introduced. If too much training is applied to a set of data, the ANN will
eventually over-fit, meaning that it will be fitted precisely to this set of training
data and thereby loosing generalization. It is often a good idea to test, how good
an ANN performs on data that it has not seen before. Testing with data not seen
before, can be done while training, to see how much training is required in order
to perform well without over-fitting. The testing can either be done by hand, or
an automatic test can be applied, which stops the training when the mean square
error of the test data is not improving anymore.

5.3.6 Adjusting Parameters During Training

If a very low mean square error is required it can sometimes be a good idea to
gradually decrease the learning rate during training, in order to make the adjusting
of weights more subtle. If more precision is required, it might also be a good idea
to use double precision floats instead of standard floats.

The threshold activation function is faster than the sigmoid function, but since
it is not possible to train with this function, I will suggest another approach:

While training the ANN you could slightly increase the steepness parameter of
the sigmoid function. This would make the sigmoid function more steep and make
it look more like the threshold function. After this training session you could set
the activation function to the threshold function and the ANN would work with
this activation function. This approach will not work on all kinds of problems, but
I have successfully tested it on the XOR function. The source code for this can be
seen in appendix B.2.3

5.4 Fixed Point Usage

It is possible to run the ANN with fixed point numbers (internally represented as
integers). This option is only intended for use on computers with no floating point
processor, like e.g. the iPAQ, but a minor performance enhancement can also be
seen on most modern computers (see section 6 “Benchmarks” for further info of the
performance of this library). With this in mind, I will now describe how you should
use the fixed point version of the fann library. If you do not know, how fixed point
numbers work, please read section 3.2 and section 4.4.

5.4.1 Training a Fixed Point ANN

The ANN cannot be trained in fixed point, which is why the training part is basically
the same as for floating point numbers. The only difference is that you should save
the ANN as fixed point. This is done by the int fann save to fixed(struct

fann *ann, const char *configuration file) function. This function saves a
fixed point version of the ANN, but it also does some analysis, in order to find out
where the decimal point should be. The result of this analysis is returned from the
function.

The decimal point returned from the function is an indicator of, how many bits
is used for the fractional part of the fixed point numbers. If this number is negative,
there will most likely be integer overflow when running the library with fixed point
numbers and this should be avoided. Furthermore, if the decimal point is too low
(e.g. lower than 5), it is probably not a good idea to use the fixed point version.

Please note, that the inputs to networks that should be used in fixed point
should be between -1 and 1.

28

5.4 Fixed Point Usage 5 USER’S GUIDE

An example of a program written to support training in both fixed point and
floating point numbers is given in appendix B.2.1 xor train.c.

5.4.2 Running a Fixed Point ANN

Running a fixed point ANN is done much like running an ordinary ANN. The differ-
ence is that the inputs and outputs should be in fixed point representation. Further-
more the inputs should be restricted to be between −multiplier and +multiplier

to avoid integer overflow, where the multiplier is the value returned from unsigned

int fann get multiplier(struct fann *ann). This multiplier is the value that
a floating point number should be multiplied with, in order to be a fixed point
number, likewise the output of the ANN should be divided by this multiplier in
order to be between zero and one.

To help using fixed point numbers, another function is provided. unsigned int

fann get decimal point(struct fann *ann) which returns the decimal point.
The decimal point is the position dividing the integer and fractional part of the
fixed point number and is useful for doing operations on the fixed point inputs and
outputs.

For an example of a program written to support both fixed point and floating
point numbers please see xor test.c in appendix B.2.2.

5.4.3 Precision of a Fixed Point ANN

The fixed point ANN is not as precise as a floating point ANN, furthermore it
approximates the sigmoid function by a stepwise linear function. Therefore, it
is always a good idea to test the fixed point ANN after loading it from a file.
This can be done by calculating the mean square error as described in figure 14.
There is, however, one problem with this approach: The training data stored in
the file is in floating point format. Therefore, it is possible to save this data in
a fixed point format from within the floating point program. This is done by
the function void fann save train to fixed(struct fann train data* data,

char *filename, unsigned int decimal point). Please note that this function
takes the decimal point as an argument, meaning that the decimal point should be
calculated first by the fann save to fixed function.

29

6 BENCHMARKS

6 Benchmarks

In this section I will run several benchmarks on different ANN libraries in order
to find out how well the libraries performs. In addition to this I will test the
performance of different versions of the fann library. The benchmarks are divided
in two parts:

Quality Benchmark This benchmark tests how good the libraries are at training
different ANNs. The benchmark measures the mean square error over time.

Performance Benchmark This benchmark tests the performance of the libraries.
The performance is tested on different sizes of ANNs in order to check how
well the libraries scale. The performance is measured as execution-time per
connection.

The reason for this division is the fact that it will not do any good to have a
fast library, if it is not good at training.

The libraries will be tested both for quality and for performance. Part of this
test will be on a hand-held Compaq iPAQ H3600 with a 206 MHz Intel StrongARM
processor, which excels in the fact that it does not have a floating point processor
and only has a 8 KB cache consisting of 256 cache lines of 32 bytes. The rest of the
benchmarks will be run on a workstation AMD Athlon XP 1600+ machine (actually
only 1400 MHz) with a 256 KB L2 cache and a 128 KB L1 cache. Both machines
use the Linux operating system.

6.1 The Libraries

Besides the fann library, I will benchmark Jet’s Neural Library [Heller, 2002] (here-
after known as jneural) and Lightweight Neural Network [van Rossum, 2003] (here-
after known as lwnn). I have made sure that all three libraries have been compiled
with the same compiler and the same compile-options.

I have downloaded several other ANN libraries, but most of them had some
problem making them difficult to use. Either they where not libraries, but pro-
grams [Anguita, 1993], [Zell, 2003], they could not compile [Software, 2002], or the
documentation was so inadequate that is was not possible to implement the features
needed in the benchmark [Darrington, 2003].

Even though I will only benchmark two libraries besides the fann library, I still
think that they give a good coverage of the different libraries which are available. I
will now briefly discuss the pros and cons of these two libraries.

6.1.1 Jet’s Neural Library (jneural)

The jneural library [Heller, 2002] is a C++ library which is pretty straightforward
to use. It supports several different network architectures and several different
activation functions, but no possibility of changing the steepness. It uses bias
neurons and supports the standard backpropagation algorithm. Besides this, only
a few helper functions are implemented. E.g. it is possible to save the weights of an
ANN to a file, but not possible to save the structure. The library is accompanied
by a reference manual and a few easy to understand examples.

Part of the jneural library is an architecture designed to load training data from
a file. This feature is a big help when training an ANN and should be a feature
included in all ANN libraries.

The library internally implements an ANN as a lot of linked objects, which make
for very poor cache performance. In its original form jneural used double precision

30

6.2 Quality Benchmark 6 BENCHMARKS

floats, but I have altered it to use single precision floats, in order to compare it to
the other libraries. The library used in the benchmarks is version 1.05 from 2002.

I have used this library on several occasions, most recent in [Nissen et al., 2003],
where the library was trained on a normal PC and executed on an iPAQ.

6.1.2 Lightweight Neural Network (lwnn)

The lwnn [van Rossum, 2003] library is a C library written with the purpose of
being lightweight and easy to use. It only supports multilayer feedforward networks
and only one activation function (sigmoid with no possibility of setting the steep-
ness). A slightly modified backpropagation algorithm with a momentum parameter
is implemented. The library supports a wide array of helper functions for using,
saving and loading the ANN, but there is no support for loading training data from
a file. A short and simple reference manual accompanies the library along with
some large examples.

The library is in active development and has gone from version 0.3 to version 0.6
while I have implemented the fann library. Version 0.6 is used in the benchmarks.

The library has a good compact architecture and is highly optimized. E.g. the
sigmoid activation function is implemented as a lookup table.

6.2 Quality Benchmark

In this section I will measure the quality of an ANN implementation, as how low
mean square error values it can produce during a fixed period of training. It is
always hard to test the quality of an ANN implementation. How well a library
performs on a given problem is a combination of a number of factors, including the
initial weights, the training algorithm, the activation function and the parameters
for this function. Especially the initial weights are tricky because they are set at
random. For this reason two training sessions with the same data can give different
results.

Another problem is finding good datasets. ANN libraries perform different on
different datasets, meaning that just because one library is better at one problem
does not mean that it is better at another problem. For this reason quality bench-
marks should be run on several different datasets. The datasets themselves should
include both training and testing sets, to allow checks for over-fitting.

It is possible to make artificial datasets, but they very seldom reflect the kind
of problems ANNs are faced with when they are used. For this reason many differ-
ent databases with real ANN problems have been created, [Blake and Merz, 1998]
being the largest. I have looked at several different sources of datasets, before I de-
cided to chose the datasets delivered by Proben1 [Prechelt, 1994]. Proben1 delivers
12 different datasets, divided in two different categories, classification and approx-
imation. These problems have been benchmarked with several different training
methods and suggestions for network sizes have been given. I chose the Proben1
datasets because the problems are very differentiated and well documented.

6.2.1 Benchmark Setup

I will benchmark the three libraries with a selection of datasets from the Proben1
datasets. I will select the sets on the basis, that they should be representative of the
problems in Proben1. Unfortunately some of the problems in Proben1 have serious
over-fitting problems. I will only include a few of these because often the library
which is best at fitting, is also best at over-fitting. This is most often not a problem
with the library itself, but a problem which should be corrected by stopping the
training before too much over-fitting occurs. For the network sizes I will use the

31

6.2 Quality Benchmark 6 BENCHMARKS

sized suggested in [Prechelt, 1994] and for the learning rate I will use 0.7 for all the
libraries. The characteristics of the data sets are shown in figure 15, but for further
information on the datasets please consult [Prechelt, 1994].

Dataset name Type Dataset size Inputs Neurons in hidden Outputs
building a 4208 14 16 3
card c 690 51 32 2
gene c 3175 120 4 + 2 3
mushroom c 8124 125 32 2
soybean c 683 82 16 + 8 19
thyroid c 7200 21 16 + 8 3

Figure 15: The datasets, where the type is either a (approximation) or c (classifica-
tion) and 16 + 8 in “Neurons in hidden” indicates that there are two hidden layers
with 16 neurons in the first and 8 in the second.

The Proben1 datasets are separated with 50% for training, 25% for validation
and 25% for testing. I will however not do validation while training and have for
this reason decided to use both the validation and test sets for testing.

I will do the quality benchmarks by training ANNs with training sets for a fixed
period of 200 seconds. During this period I will regularly stop the time in order to
write information about the mean square error for the training data and the testing
data to a file. Preferably once every second but since I will only stop training
between two epochs, this can not always be accomplished. To calculate the mean
square error I will use the same function on all the different libraries, to make sure
that differences in this calculation does not affect the result.

I will use this data to create graphs which plot the mean square error as a
function of the time. I will create one graph for each of the datasets. On these
graphs I will plot the training and testing error for the jneural library, the lwnn
library, the fann library with single precision floats and the fann library where
connection rate is set to 0.756. I will only plot data for one training session with
each library, but I will run other smaller training sessions to ensure that the selected
session is representative.

The mean square error of the training and testing data, executed on the fixed
point version of the fann library will also be included on these graphs. This however
needs a little bit of explanation: Every time I stop the time to print the mean square
error for the fann library, I will also save the ANN to a fixed point configuration file.
After the training has finished I will read each of these configuration files, with the
fixed point library and calculate the mean square error for the training and testing
data. This info will then be plotted on the graph.

I will sum up all of the benchmarks in figure 22, to give a quick overview of how
well the libraries performed. The programs used for benchmarking the quality of
the libraries is included in appendix B.3.1 and B.3.2.

6.2.2 The Benchmarks

Figure 16 to 21 show the benchmark graphs the different problems. Some of the
graphs are shown on logarithmic scales to make it easier to see the differences
between the libraries. Some of the plots do not start and end at the same time.
This is because I have only allowed for testing of the networks between epochs and
since some of the training sets where quite large (especially mushroom), the first
epoch could take several seconds.

6The actual connection rate may be different, because some connections should always be in
place.

32

6.2 Quality Benchmark 6 BENCHMARKS

 0.0055

 0.006

 0.0065

 0.007

 0.0075

 0.008

 0.0085

 0.009

 0.0095

 0.01

 0.0105

 0.011

 1 10 100 1000

M
ea

n
sq

ua
re

 e
rr

or

Seconds of training

building

fann train
fann (0.75) train

fann (fix) train
lwnn train

jneural train
fann test

fann (0.75) test
fann (fix) test

lwnn test
jneural test

Figure 16: Graph showing the mean square error as a function of the time for the
building problem. The mean square error drops in a stepwise manor, which is a
typical behavior of training an ANN on difficult but solve-able problems.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 1 10 100 1000

M
ea

n
sq

ua
re

 e
rr

or

Seconds of training

card

fann train
fann (0.75) train

fann (fix) test
lwnn train

jneural train
fann test

fann (0.75) test
fann (fix) train

lwnn test
jneural test

Figure 17: Graph showing the mean square error as a function of the time for the
card problem. The libraries have difficulties training on this problem and hence the
mean square error for the test data is high.

33

6.2 Quality Benchmark 6 BENCHMARKS

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 1 10 100 1000

M
ea

n
sq

ua
re

 e
rr

or

Seconds of training

gene

fann train
fann (0.75) train

fann (fix) train
lwnn train

jneural train
fann test

fann (0.75) test
fann (fix) test

lwnn test
jneural test

Figure 18: Graph showing the mean square error as a function of the time for the
gene problem. It seems that the problem is difficult to train on and that there are
some spikes in the optimization landscape.

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 1 10 100 1000

M
ea

n
sq

ua
re

 e
rr

or

Seconds of training

mushroom

fann train
fann (0.75) train

fann (fix) train
lwnn train

jneural train
fann test

fann (0.75) test
fann (fix) test

lwnn test
jneural test

Figure 19: Graph showing the mean square error as a function of the time for the
mushroom problem. Very easy problem to learn which generates straight lines on
logarithmic scales.

34

6.2 Quality Benchmark 6 BENCHMARKS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1 10 100 1000

M
ea

n
sq

ua
re

 e
rr

or

Seconds of training

soybean

fann train
fann (0.75) train

fann (fix) train
lwnn train

jneural train
fann test

fann (0.75) test
fann (fix) test

lwnn test
jneural test

Figure 20: Graph showing the mean square error as a function of the time for the
soybean problem. The training quickly converges to a standstill, with no more
improvement.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 20 40 60 80 100 120 140 160 180 200 220

M
ea

n
sq

ua
re

 e
rr

or

Seconds of training

thyroid

fann train
fann (0.75) train

fann (fix) train
lwnn train

jneural train
fann test

fann (0.75) test
fann (fix) test

lwnn test
jneural test

Figure 21: Graph showing the mean square error as a function of the time for the
thyroid problem. A very spiked plot which is difficult to train on, but it seems that
progress is made anyway.

35

6.2 Quality Benchmark 6 BENCHMARKS

It is expected that the test data performs worse than the training data, which is
why the plot for the test data will be located higher than the plot for the training
data. With this in mind, I have chosen to plot both test and training data in the
same color to make the graphs easier to look at. I will now briefly discuss the results
of the individual benchmarks.

Figure 16 - building This is a good problem, where training benefits both the
mean square error of the training data and of the testing data. It seems that testing
past the 200 seconds would be able to further decrease the mean square error.

Figure 17 - card This problem seems to over-fit easily. The problem has one
input with the value 1.00112 in its training data. This violates the fixed point
version of the library, since it only supports input between zero and one. It does,
however, not seem to give rise to any problems.

It is worth noticing the fact that the fixed point version is slightly better than
the floating point version. This behavior was repeated multiple times, but I can
not find a reasonable explanation to why this behavior can be repeated. Some of
the other benchmarks also show this behavior.

Figure 18 - gene This is the most difficult problem to solve, and it does not seem
ideal for solving with ANNs. The jneural and the lwnn libraries seem to perform
considerable worse on this problem than the fann library. I do not know why this
problem is easier to solve for the fann library, but the behavior was repeatable.
Perhaps the low number of neurons in the layers made it difficult to learn for the
lwnn library, which does not use bias neurons. A clear spike is visible on the lwnn
graph, which might suggest that the training is trying to get out of a local minima.

Figure 19 - mushroom This problem is very easy to solve for all the libraries.
It seems like there exists a single rule which the libraries try to figure out and the
more they train, the closer they come to the pure form of this rule. I would guess
that this rule could be expressed in a simpler way than with an ANN.

Figure 20 - soybean The libraries quickly converge to a stand still and it seems
that more training will not help this problem.

Figure 21 - thyroid This is a very tricky problem, which produces very spiked
graphs. When comparing the spikes on the training data and the testing data for
a library, there is a visible connection between how low the mean square errors
are. This suggests that more training would in fact help, although it is difficult to
determine when the training should stop.

The spiked look of the graphs suggests that perhaps gradient descent train-
ing methods are not the best way of training ANNs with this problem. Another
optimization method like e.g. simulated annealing would probably do a better job.

6.2.3 Quality Benchmark Conclusion

Figure 22 shows a summary table of all the different runs and although there is not
an obvious winner, there is an obvious looser. The jneural library is clearly slower
than the other libraries and does not manage to reach as low a mean square error
as the other libraries.

The lwnn library seems to be the second worst library, but much of this is due to
the fact that it did a very poor job on the gene problem. When looking at the other
problems it does a fairly good job (especially on the card problem). The library

36

6.2 Quality Benchmark 6 BENCHMARKS

Dataset lwnn jneural fann fann (0.75) fann (fix)
building (train) 0.00593 0.00622 0.00579 0.00645 0.00634
building (test) 0.00773 0.00774 0.00786 0.00759 0.00828
card (train) 0.01185 0.03042 0.03624 0.03315 0.03628
card (test) 0.17171 0.18019 0.18839 0.18951 0.18761
gene (train) 0.22597 0.28381 0.07019 0.07057 0.07110
gene (test) 0.47122 0.46384 0.31386 0.29976 0.30720
mushroom (train) 1.13e-06 2.83e-05 2.86e-07 4.96e-07 2.96e-07
mushroom (test) 1.73e-06 4.39e-05 5.73e-07 9.18e-07 1.53e-06
soybean (train) 0.02927 6.16e-05 1.12e-05 0.01171 1.86e-05
soybean (test) 0.14692 0.14781 0.15114 0.15043 0.14500
thyroid (train) 0.01162 0.04124 0.01357 0.01857 0.01502
thyroid (test) 0.05013 0.07341 0.05347 0.04603 0.05313
Mean error train 0.04744 0.06030 0.02097 0.02341 0.02146
Mean error test 0.14129 0.14551 0.11912 0.11555 0.11687
Mean error total 0.09437 0.10290 0.07004 0.06948 0.06917
Total epochs 44995 9900 76591 67421 -

Figure 22: Summary of the quality benchmarks, showing the mean square error
after the full training time. The library with the best mean square error is marked
with green and the one with the worst is marked with red. Furthermore the total
number of epochs for each library is shown.

is a little bit slower at learning than the fann library (44995 epochs compared to
76591), which explains why it does not get as low a mean square error for some of
the easier problems like mushroom and building.

This leaves the three versions of the fann library: The standard fann library
has the lowest mean square error for the training data, the fann library with a
connection rate of 0.75 has the lowest mean square error for the testing data and
the fixed point fann library has the lowest total mean square error.

The standard fann library does a really good job on most of the problems. It is
also the library which manages to train for the most epochs. It only has one set of
data, where it finishes last and this is the test data for the soybean problem. But
the difference between the libraries on this set of data is so small that it really does
not matter.

The fann library with a connection rate of 0.75, is a bit better at generalizing
than the standard fann library, but there is no clear tendency. Surprisingly it does
not manage to train for as many epochs as the standard fann library, but it is
probably due to the fact that the standard fann library uses optimizations for fully
connected networks.

To my big surprise, the overall winner was the fixed point version of the fann
library. I will however say that it must be a coincidence that it is better than
the standard fann library because the fixed point library uses the weights stored
from the floating point library. It is however not a coincidence that the fixed point
fann library is just as good as the floating point fann library. When looking at the
datafiles saved by the floating point library, it is possible to see which positions of
the decimal point that are used. Throughout all of the benchmarks the decimal
point has been in the bit position range 10 - 13, these bit positions give plenty of
accuracy to execute an ANN.

From these observations I can conclude that the fixed point implementation has
proven that it can perform just as good as a floating point library. Though it is
not possible to conclude that it will always perform this well. Some problems may
give rise to very high weights, which will give a lower accuracy for the fixed point

37

6.3 Performance Benchmark 6 BENCHMARKS

library.
The final conclusion must be that both the lwnn library and the fann library

does a good job on these problems. I suspect that with tweaking of parameters
these two libraries will perform well on most ANN problems.

6.3 Performance Benchmark

In this section I will run two benchmarks with the lwnn library, the jneural library
and several configurations of the fann library. Both benchmarks will measure the
nanoseconds used per connection when executing different sizes of ANNs on the
library.

The first benchmark will be run on the AMD Athlon machine and the second
benchmark will be run on the iPAQ.

The configurations of the fann library which I will use are the normal fann
library with the sigmoid activation function, the fann library with the threshold
activation function (hereafter known as fann (thres)), the fixed point fann library
(hereafter known as fann (fix)) and a version of the fann library which does not
use the performance enhancements for fully connected networks (hereafter known
as fann (noopt)). The reasons for choosing these configurations are:

fann (thres) This library measures how much the sigmoid activation function
slows down the ANN.

fann (fix) Measures the performance enhancements produced by the fixed point
optimizations.

fann (noopt) Measures the performance enhancements produced by the optimiza-
tions for fully connected networks. This can be used to see how small the con-
nection rate should be before the ANN would be faster than a fully connected
ANN.

I will measure the performance for several different sizes of ANNs. These dif-
ferent sized ANNs will consist of four layers with the same amount of neurons in
each. The amount of neurons in the layers will be doubled for each run starting
with only one neuron. With these four layers, the total amount of connections in
an ANN without bias neurons (only lwnn) will be 3n2, where n is the amount of
neurons in the layers. For an ANN with bias neurons (jneural and fann) the total
amount of connections will be 3(n2 + n).

For each network size, the network will be executed consecutive for 20 seconds.
After this time the number of nanoseconds used for each connection will be calcu-
lated. The two benchmarks will produce one graph each, furthermore I will include
tables showing the performance of layer sizes which are of particular interest. The
program used for benchmarking the performance in the libraries is included in ap-
pendix B.3.3.

6.3.1 The Benchmark on the AMD Athlon

Figure 23 shows the benchmark for the libraries on the AMD Athlon machine.
Before describing which library is the fastest, I will describe the shapes of the plots.
All of the plots have a characteristic S shape, which start high then goes low before
going high again. The reason why the plots start high is that, for small network
sizes, the per neuron overhead is rather high compared to the time used on the
connections. As ANNs become larger, the inner loops will run for more iterations,
thus making the overhead smaller. If good cache optimization is applied, the ANN
will run very smooth and all the CPU time will be used for actually calculating the

38

6.3 Performance Benchmark 6 BENCHMARKS

 1

 10

 100

 1000

 1 10 100 1000 10000

N
an

os
ec

on
ds

 p
er

 c
on

ne
ct

io
n

Number of neurons in the four layers

Performance

fann
fann (thres)

fann (fix)
fann (noopt)

lwnn
jneural

Figure 23: Graph showing the number of nanoseconds used per connection as a
function of the network size, on an AMD Athlon machine.

sum function. At some point the ANNs become so large, that they can no longer
fit in the cache, which on the AMD Athlon is 256 KB. When this happens, the
performance declines and the plots go up again. The fann and lwnn library both
hit the cache boundary between layer sizes of 128 and 256. This is the optimal
place, since the amount of space needed to represent the weights in an ANN with
layer sizes of 128 and 256 is approximately 190 KB and 770 KB (when using four
bytes for each weight). The fann (noopt) configuration of the fann library hits the
cache boundary before, because it needs to access memory containing information
about the connections. Where the jneural library has no optimizations for cache
and therefore hits the cache boundary a lot sooner.

A brief look at the graphs shows that the jneural library has the lowest per-
formance and that the fann (thres) configuration performs best. The fann (noopt)
configuration performs slightly worse than the three remaining libraries (lwnn, fann
and fann (fix)), but between these libraries performance varies for different network
sizes.

I have chosen three different layer sizes, which I will study in detail to see how
fast the individual libraries are. For each of these sizes I have made a table showing
how fast the libraries are.

Figure 24 shows a table for the performances of ANNs with 8 neurons in each
layer. This is the layer size where the jneural library performs best. Unfortunately it
still uses more than three times as much time as the rest of the libraries. The fann
(noopt) configurations is only slightly slower than the fann configuration, which
comes from the fact, that there is still plenty of free cache. The lwnn library is
faster than the fann library, which is probably due to the fact that it uses a pre-
calculated table for calculating the sigmoid function. Using a table for the sigmoid
function greatly reduces the per neuron overhead and gives the lwnn library a per-
formance increase on the small ANNs. The fixed point library performs quite well
for these smaller problems and proves that the fixed point library can also increase

39

6.3 Performance Benchmark 6 BENCHMARKS

Library Nanoseconds per neuron Times better than jneural
fann 22.675 3.151
fann (thres) 6.827 10.465
fann (fix) 9.766 7.316
fann (noopt) 23.487 3.048
lwnn 11.962 5.972
jneural 71.440 1.000

Figure 24: The results with fully connected networks consisting of four layers with
8 neurons in each, on an AMD Athlon machine (this is the network size which gives
the highest performance for the jneural library).

the performance on computers with floating point processors. This is probably be-
cause the stepwise linear activation function is faster than the sigmoid activation
function. The fann (thres) configuration is the fastest configuration and it is more
than three times as fast as the normal fann library, which suggests that the sigmoid
function uses two third of the fann library’s time. This observation clearly suggests,
that creating a fast sigmoid implementation is a good way of optimizing an ANN
library.

Library Nanoseconds per neuron Times faster than jneural
fann 3.0972 164.388
fann (thres) 2.1340 238.583
fann (fix) 4.344 117.194
fann (noopt) 12.175 41.818
lwnn 4.007 127.074
jneural 509.138 1.000

Figure 25: The results with fully connected networks consisting of four layers with
128 neurons in each, on an AMD Athlon machine (this is the network size which
gives the highest performance for the lwnn and fann libraries).

Figure 25 shows how well the libraries performs with 128 neurons in each of
the four layers. This is an indication of how the libraries perform at a stage where
the jneural and fann (noopt) libraries have already reached the cache boundary,
but the others have not. At this point the fann (thres) library is 238.583 times
faster than the jneural library and the fann library is 164.388 times faster than
the jneural library. This is a clear indication of the benefit which can be reached
through performance engineering.

Another interesting observation is that the standard fann library is faster than
the fann (fix) and lwnn libraries. I think this is due to the fact that both of these
libraries use variables which are stored in memory for calculating their sigmoid
functions. These variables will most likely have been erased from the cache at the
point where the sigmoid function should be calculated, hence resulting in a cache
miss. On the AMD Athlon a cache miss takes longer time than calculating the
sigmoid function, which in effect makes the fann library faster than the two other
libraries.

With a layer size of 512 neurons (figure 26), all of the libraries have reached
the cache boundary. The jneural library is also close to the limit for how many
connections it can handle without being killed by the system. I did not really
investigate further into why it was killed by the system, but it probably took up
too many resources. At this point the fann library is 64.867 times faster than the
jneural library, which is not as much as before it reached the cache boundary, but
it is still a huge performance increase.

40

6.3 Performance Benchmark 6 BENCHMARKS

Library Nanoseconds per neuron Times faster than jneural
fann 8.065 64.867
fann (thres) 7.890 66.310
fann (fix) 9.390 55.715
fann (noopt) 11.735 44.584
lwnn 8.662 60.400
jneural 523.175 1.000

Figure 26: The results with fully connected networks consisting of four layers with
512 neurons in each, on an AMD Athlon machine (this is the largest network size
which could be executed by the jneural library).

With this large layer size, there is very little penalty of calculating the sigmoid
function and the fann (thres) library is only slightly faster than the normal fann
library. The lwnn library, which uses a table lookup for the sigmoid function, is
now slower than the fann library and so is the fann (fix) library. The fann (noopt)
library is still slower, but the difference is no longer as severe.

6.3.2 The Benchmark on the iPAQ

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000

N
an

os
ec

on
ds

 p
er

 c
on

ne
ct

io
n

Number of neurons in the four layers

Performance iPAQ

fann
fann (thres)

fann (fix)
fann (noopt)

lwnn
jneural

Figure 27: Graph showing the number of nanoseconds used per connection as a
function of the network size, on an iPAQ.

Figure 27 shows the performance graph of the benchmarks run on the iPAQ.
The first thing which is noticed, is the fact that the plots do not have an S shape.
This is because there is only a small amount of cache on the iPAQ and that this
cache is not suited for storing large arrays. Much of the cache is probably occupied
by the operating system. The bottleneck on the iPAQ is the CPU running at 206
MHz and without a floating point unit. This makes the sigmoid function very hard
to calculate and if we look at results for the smaller networks on the graph the plots
are divided in three groups.

41

6.4 Benchmark Conclusion 6 BENCHMARKS

Library Nanoseconds per neuron Times faster than jneural
fann 39843.236 1.008
fann (thres) 9626.957 4.171
fann (fix) 867.798 46.272
fann (noopt) 40716.392 0.986
lwnn 9768.376 4.112
jneural 40154.518 1.000

Figure 28: The results with fully connected networks consisting of four layers with
8 neurons in each, on an iPAQ.

Figure 28 clearly shows the three groups that the plots are divided into. The
first group consists of the fann, fann (noopt) and the jneural library. These three
libraries all need to calculate the real sigmoid function. The second group consists
of the fann (thres) and lwnn libraries which does not need to calculate the real
sigmoid function and therefore is faster. The last group consists of the fann (fix)
library, which is much faster than the other libraries because it uses fixed point
numbers.

Library Nanoseconds per neuron Times faster than jneural
fann 10,858.245 1.207
fann (thres) 8,272.628 1.585
fann (fix) 188.134 69.677
fann (noopt) 11,178.446 1.173
lwnn 7,851.955 1.669
jneural 13,108.617 1.000

Figure 29: The results with fully connected networks consisting of four layers with
128 neurons in each, on an iPAQ (this is the largest network size which could be
executed by the jneural library).

At a layer size of 128 (figure 29) the per neuron overhead is not as important and
neither is the time it takes to calculate the sigmoid function. What is important,
is how much the library uses floating point calculations. The fann (fix) library
uses no floating point calculations when executing the library and hence receives a
huge performance benefit. The fann (fix) library is almost 70 times faster than the
jneural library and more than 40 times faster than the lwnn library, which really is
a noticeable performance increase.

A surprising thing, which is visible on these figures, is how close the plot for
the standard fann library is to the plot for the jneural library. This means that
all the optimizations made to the fann library has very little influence on how fast
it performs on the iPAQ. Had I not made the fixed point optimizations, then this
would truly have been a depressing benchmark.

6.4 Benchmark Conclusion

The jneural library was clearly worse than the other libraries on almost all points of
the benchmark tests. The fixed point implementation of the fann library proved its
use by being both accurate and very fast on the iPAQ. A point worth noticing is seen
when comparing figure 25 with figure 29. These two figures show how the libraries
perform on fully connected ANNs with four layers and 128 neurons in each, but on
different machines. On the iPAQ the fann (fix) library uses 188.134 nanoseconds
per connection, while the jneural library uses 509.138 nanoseconds per connection
on the AMD Athlon. This shows that the fixed point fann library is 2.7 times faster

42

6.4 Benchmark Conclusion 6 BENCHMARKS

on a 206 MHz hand-held iPAQ, than the jneural library is on a 1400 MHz AMD
Athlon workstation.

It is difficult to tell which library is the fastest and most accurate, when compar-
ing the standard fann library and the lwnn library. The lwnn library is faster at the
smaller problems due to a highly optimized sigmoid function, while the standard
fann library is faster at the larger problems due to optimized inner loops and cache
performance. These benchmarks makes it easier to choose a library, when you know
which kind of problem you should solve.

Many different optimizations where made in the fann and lwnn libraries, but
when observing differences between figure 23 and figure 27, three optimizations
appear to be most efficient.

Cache optimization This optimization is only effective on the AMD Athlon ma-
chine and gives the fann and lwnn libraries a huge advantage on this machine.

Fixed point optimization This optimization is only effective on the iPAQ and
gives the fixed point fann library a huge advantage on this machine.

Fast sigmoid This optimization is effective on both machines and gives the lwnn
and fixed point fann library a minor advantage.

A lot can be learned from these benchmarks. I will now discuss some of these
learnings and suggest ways of improving the fann library on the basis of these
learnings:

The sigmoid function takes a long time to calculate and optimizations on the
time used for this function should be implemented in the fann library.

Sparse connected ANNs have serious performance problems in the fann library.
For this reason they should be used with care, but still it seems like smaller sized
ANNs could receive extra performance by decreasing the number of connections.

Cache performance is very important for the execution time of ANN libraries,
perhaps further improvements could be received by looking even closer at the mem-
ory accessed by the fann library.

43

7 CONCLUSION

7 Conclusion

When I decided to develop the fann library, I had two reasons for developing it, the
first reason was that I wanted to have a fast ANN library which could be used on
our robot [Nissen et al., 2003]. The second reason was that I wanted to have full
control of a fast ANN library, which could be used in my master thesis. As the
project grew, a third reason became more and more evident, I wanted to make a
library which would be used by other developers.

These three reasons for developing the fann library had different requirements.
If the library should be used on the robot, it should be fast on systems with no
floating point processor. If the library should be used in my master thesis, it should
be fast on standard workstation machines and it should be very versatile to allow
for new functionality to be implemented. If the library should be used by others, it
should be both fast, versatile and easy to use.

I knew that it would not be easy to develop a fixed point version of the library,
but I also knew that it could be done. During the development of the library several
different methods of avoiding integer overflow was suggested (see section 4.4), but I
think the method I finally chose was the most elegant. The fixed point fann library
was a huge success in all the benchmarks, it was accurate in the quality benchmarks
and it was more than 40 times faster than all the other libraries in the performance
benchmark on the iPAQ.

The aim for the floating point library, was to be very fast while still allowing
both fully and sparse connected ANNs to function. This proved a bigger challenge
than first expected and my first implementation did not meet the demands (see
section 4.2). The second implementation did however, meet the demands although
it is only faster than the lwnn library in some situations. This shows, that although
the library is fast, there is still room for improvement.

If the fann library should be used by other developers, speed is not the only
requirement. Just as important requirements are, that the library should be easy
to use and install, well documented and versatile. The fann library is clearly easy
to use, as shown in figure 9 and figure 11. It is also versatile as shown in section 5.3,
but what about, easy to install and well documented? No polished install system
accompanies the library, hence installation is not easy, still it should not be too
difficult to install the library. The user’s guide documents how the library should
be used, but it does not include a complete reference manual. Appendix B.1.1
fann.h can function as a reference manual, but it is not an ideal solution. In
conclusion, the library could easily be used by other developers, but some work still
needs to be done in order to make it appealing to a broad audience.

It is sometimes argued that performance engineering is not a real computer
science, because new algorithms are not created. I do however not share this opinion
and will now give a short example to illustrate the importance of performance
engineering. On the AMD Athlon the jneural library uses 509.138 nanoseconds per
connection in a fully connected ANN with four layers and 128 neurons in each, on
the iPAQ the fixed point fann library uses 188.134 nanoseconds per connection on
a similar ANN. This is 2.7 times faster than the jneural library and although it is
probably possible to buy a computer, which will execute the jneural library just
as fast as the fixed point library on the iPAQ, then it would not be possible to fit
this computer into your pocket. This clearly illustrates that sometimes performance
engineering is the only choice.

I am most satisfied with the result of this project, the requirements for the
library where met and the performance of the library exceeded my expectations. It
has been a fun challenge to develop the fann library and I look forward to releasing
it on SourceForge.net.

44

7.1 Future Work 7 CONCLUSION

7.1 Future Work

After the library has been released on SourceForge.net, a few changes will be made
to make installation of the library easier, but numerous other additions could be
made to the library. In this section I will discuss some of these additions.

Many different algorithms can be used for training ANNs, it would be nice to
be able to choose from some of these algorithms in the fann library. As a first
addition it would be nice have a better gradient descent algorithm like e.g. quick-
prop [Fahlman, 1988] or RPROP [Riedmiller and Braun, 1993], but later it would
be nice to apply more general purpose optimization techniques like e.g. simulated
annealing (perhaps this algorithm would do a better job on the thyroid problem).

At this point only two activation functions exists in the fann library (sigmoid
and threshold). More activation functions could easily be added, like e.g. the
hyperbolic tangent. This activation function has an output in the range of -1 to 1,
while the other two activation functions has an output in the range of 0 to 1. Tests
have shown that coding binary input as -1 and 1 is better than coding it as 0 and 1
[Sarle, 2002], which in effect would also make an ANN work better if the activation
function used for the hidden layers gave an output in the range of -1 to 1. Since
the sigmoid function can be altered to give an output in the range of -1 to 1, by the
following equation: y(x) = 2 × sigmoid(x) − 1, the range of the output from the
activation functions could be a separate parameter, which is not determined by the
type of activation function.

The cost of calculating the activation functions could be optimized. This could
either be done by using the stepwise linear activation function as used in the fixed
point library, or by using a table lookup as in the lwnn library.

It seems like fully connected ANNs are usually faster than sparse connected
ANNs, it would however still be a good idea to add an optimal brain damage
algorithm [LeCun et al., 1990] which could remove unused connections.

If the fann library should be used in developing a learning game bot for Quake
III Arena, a reinforcement learning framework should be developed. This frame-
work could either be a part of the fann library, or it could be a separate library
which depend on the fann library for ANN support. I think developing the rein-
forcement learning framework as an independent library would be a good idea, to
avoid confusion of what the primary objectives of the fann library are.

All of these additions add new functionality to the library, but other additions,
which do not add functionality but rather improve the existing functionality, could
also be proposed. Some of these additions could be:

• Add a C++ wrapper to allow a more object oriented approach, to using the
library.

• Rewrite the inner loop the execution function in assembler (perhaps with use
of the MMX instruction set), for extra performance.

• Add the possibility of more precision to the fixed point library, by allowing
the users to chose the long int type as internal representation.

• The layer sizes are given as parameters to the fann create function, in effect
making the number of layers a parameter which should be known at compile
time. It would be nice to add another create function which do not have these
limitations.

Hopefully many of these additions will be implemented, I will try to implement
some of them before I start my master thesis. During my master thesis I will
probably implement some of the remaining additions and I will most likely also
implement additions not mentioned here.

45

REFERENCES REFERENCES

References

[Anderson, 1995] Anderson, J. A. (1995). An Introduction to Neural Networks. The
MIT Press.

[Anguita, 1993] Anguita, D. (1993). Matrix back propagation v1.1.

[Bentley, 1982] Bentley, J. L. (1982). Writing Efficient Programs. Prentice-Hall.

[Blake and Merz, 1998] Blake, C. and Merz, C. (1998). UCI repository of machine
learning databases.
http://www.ics.uci.edu/∼mlearn/MLRepository.html.

[Darrington, 2003] Darrington, J. (2003). Libann.
http://www.nongnu.org/libann/index.html.

[Fahlman, 1988] Fahlman, S. E. (1988). Faster-learning variations on back-
propagation: An emperical study.

[FSF, 1999] FSF, F. S. F. (1999). Gnu lesser general public license.
http://www.fsf.org/copyleft/lesser.html.

[Hassoun, 1995] Hassoun, M. H. (1995). Fundamentals of Artificial Neural Net-

works. The MIT Press.

[Heller, 2002] Heller, J. (2002). Jet’s neural library.
http://www.voltar.org/jneural/jneural doc/.

[Hertz et al., 1991] Hertz, J., Krogh, A., and Palmer, R. G. (1991). Introduction to

The Theory of Neural Computing. Addison-Wesley Publishing Company.

[IDS, 2000] IDS, I. S. (2000). Quake III arena.
http://www.idsoftware.com/games/quake/quake3-arena/.

[Kaelbling et al., 1996] Kaelbling, L. P., Littman, M. L., and Moore, A. P. (1996).
Reinforcement learning: A survey. Journal of Artificial Intelligence Research,
4:237–285.

[LeCun et al., 1990] LeCun, Y., Denker, J., Solla, S., Howard, R. E., and Jackel,
L. D. (1990). Optimal brain damage. In Touretzky, D. S., editor, Advances in

Neural Information Processing Systems II, San Mateo, CA. Morgan Kauffman.

[Nissen et al., 2003] Nissen, S., Damkjær, J., Hansson, J., Larsen, S., and Jensen,
S. (2003). Real-time image processing of an ipaq based robot with fuzzy logic
(fuzzy).
http://www.hamster.dk/˜purple/robot/fuzzy/weblog/.

[Nissen et al., 2002] Nissen, S., Larsen, S., and Jensen, S. (2002). Real-time image
processing of an iPAQ based robot (iBOT).
http://www.hamster.dk/˜purple/robot/iBOT/report.pdf.

[OSDN, 2003] OSDN, O. S. D. N. (2003). Sourceforge.net.
http://sourceforge.net/.

[Pendleton, 1993] Pendleton, R. C. (1993). Doing it fast.
http://www.gameprogrammer.com/4-fixed.html.

[Prechelt, 1994] Prechelt, L. (1994). Proben1 – a set of neural network benchmark
problems and benchmarking rules.

46

REFERENCES REFERENCES

[Riedmiller and Braun, 1993] Riedmiller, M. and Braun, H. (1993). A direct adap-
tive method for faster backpropagation learning: The RPROP algorithm. In
Proc. of the IEEE Intl. Conf. on Neural Networks, pages 586–591, San Francisco,
CA.

[Sarle, 2002] Sarle, W. S. (2002). Neural network faq.
ftp://ftp.sas.com/pub/neural/FAQ2.html#A binary.

[Software, 2002] Software, W. (2002). Ann++.
http://savannah.nongnu.org/projects/annpp/.

[Tettamanzi and Tomassini, 2001] Tettamanzi, A. and Tomassini, M. (2001). Soft

Computing. Springer-Verlag.

[van Rossum, 2003] van Rossum, P. (2003). Lightweight neural network.
http://lwneuralnet.sourceforge.net/.

[van Waveren, 2001] van Waveren, J. P. (2001). The quake III arena bot.
http://www.kbs.twi.tudelft.nl/Publications/MSc/2001-VanWaveren-MSc.html.

[Zell, 2003] Zell, A. (2003). Stuttgart neural network simulator.
http://www-ra.informatik.uni-tuebingen.de/SNNS/.

47

A OUTPUT FROM RUNS

A Output from runs

A.1 Output from make runtest

Training network
. / t e s t / x o r t r a i n f l o a t
Creating network .
c r ea t ing network with l ea rn ing ra t e 0 . 700000 and connect ion ra t e 1 .000000
input

l aye r : 3 neurons , 1 b i a s
l aye r : 5 neurons , 1 b i a s
l aye r : 2 neurons , 1 b i a s

output
Training network .
Max epochs 500000 . Des i red e r r o r : 0 . 0001000000
Epochs 1 . Current e r r o r : 0 . 2835713029
Epochs 1000 . Current e r r o r : 0 . 0326964930
Epochs 2000 . Current e r r o r : 0 . 0014186953
Epochs 3000 . Current e r r o r : 0 . 0006593352
Epochs 4000 . Current e r r o r : 0 . 0004221874
Epochs 5000 . Current e r r o r : 0 . 0003083595
Epochs 6000 . Current e r r o r : 0 . 0002419698
Epochs 7000 . Current e r r o r : 0 . 0001986573
Epochs 8000 . Current e r r o r : 0 . 0001682522
Epochs 9000 . Current e r r o r : 0 . 0001457587
Epochs 10000 . Current e r r o r : 0 . 0001284765
Epochs 11000 . Current e r r o r : 0 . 0001147857
Epochs 12000 . Current e r r o r : 0 . 0001036724
Epochs 12379 . Current e r r o r : 0 . 0000999907
Test ing network .
XOR t e s t (0 .000000 ,0 .000000) − > 0 .007620 , should be 0 . 000000 , d i f f e r e n c e =0.007620
XOR t e s t (0 .000000 ,1 .000000) − > 0 .990256 , should be 1 . 000000 , d i f f e r e n c e =0.009744
XOR t e s t (1 .000000 ,0 .000000) − > 0 .990946 , should be 1 . 000000 , d i f f e r e n c e =0.009054
XOR t e s t (1 .000000 ,1 .000000) − > 0 .012838 , should be 0 . 000000 , d i f f e r e n c e =0.012838
Saving network .
c a l c u l a t e d f i x p o i n t =12 , f i x p o i n t =12 , b i t s u s ed fo r max=5
Cleaning up .
Test ing network with f l o a t s
. / t e s t / x o r t e s t f l o a t
Creating network .
c r ea t ing network with l ea rn ing ra t e 0 .700000
input

l aye r : 3 neurons , 1 b i a s
l aye r : 5 neurons , 1 b i a s
l aye r : 2 neurons , 1 b i a s

output
Test ing network .
XOR t e s t (0 .000000 , 0 .000000) − > 0 .007620 , should be 0 . 000000 , d i f f e r e n c e =0.007620
XOR t e s t (0 .000000 , 1 .000000) − > 0 .990256 , should be 1 . 000000 , d i f f e r e n c e =0.009744
XOR t e s t (1 .000000 , 0 .000000) − > 0 .990946 , should be 1 . 000000 , d i f f e r e n c e =0.009054
XOR t e s t (1 .000000 , 1 .000000) − > 0 .012838 , should be 0 . 000000 , d i f f e r e n c e =0.012838
Cleaning up .
Test ing network with f i x ed po in t s
. / t e s t / x o r t e s t f i x e d
Creating network .
c r ea t ing network with l ea rn ing ra t e 0 .700000
input

l aye r : 3 neurons , 1 b i a s
l aye r : 5 neurons , 1 b i a s
l aye r : 2 neurons , 1 b i a s

output
Test ing network .
XOR t e s t (0 , 0) − > 85 , should be 0 , d i f f e r e n c e =0.020752
XOR t e s t (0 , 4096) − > 3985 , should be 4096 , d i f f e r e n c e =0.027100
XOR t e s t (4096 , 0) − > 3991 , should be 4096 , d i f f e r e n c e =0.025635
XOR t e s t (4096 , 4096) − > 122 , should be 0 , d i f f e r e n c e =0.029785
Cleaning up .

48

B SOURCE CODE

B Source Code

B.1 The library

B.1.1 fann.h

/∗ This file defines the user interface to the fann library.
It is included from fixedfann.h, floatfann.h and doublefann.h and should
NOT be included directly.

∗/

#include ”fann data.h”
#include ”fann internal.h”

#ifdef cplusplus
extern "C" {
#endif

/∗ —– Initialisation and configuration —– ∗/

/∗ Constructs a backpropagation neural network, from an connection rate,
a learning rate, the number of layers and the number of neurons in each
of the layers.

The connection rate controls how many connections there will be in the
network. If the connection rate is set to 1, the network will be fully
connected, but if it is set to 0.5 only half of the connections will be set.

There will be a bias neuron in each layer (except the output layer),
and this bias neuron will be connected to all neurons in the next layer.
When running the network, the bias nodes always emits 1

∗/
struct fann ∗ fann create(float connection rate, float learning rate,

/∗ the number of layers, including the input and output layer ∗/
unsigned int num layers,
/∗ the number of neurons in each of the layers, starting with

the input layer and ending with the output layer ∗/
. . .);

/∗ Constructs a backpropagation neural network from a configuration file.
∗/

struct fann ∗ fann create from file(const char ∗configuration file);

/∗ Destructs the entire network.
Be sure to call this function after finished using the network.

∗/
void fann destroy(struct fann ∗ann);

/∗ Save the entire network to a configuration file.
∗/

void fann save(struct fann ∗ann, const char ∗configuration file);

/∗ Saves the entire network to a configuration file.
But it is saved in fixed point format no matter which
format it is currently in.

This is usefull for training a network in floating points,
and then later executing it in fixed point.

The function returns the bit position of the fix point, which
can be used to find out how accurate the fixed point network will be.
A high value indicates high precision, and a low value indicates low
precision.

A negative value indicates very low precision, and a very
strong possibility for overflow.
(the actual fix point will be set to 0, since a negative
fix point does not make sence).

Generally, a fix point lower than 6 is bad, and should be avoided.
The best way to avoid this, is to have less connections to each neuron,
or just less neurons in each layer.

The fixed point use of this network is only intended for use on machines that
have no floating point processor, like an iPAQ. On normal computers the floating
point version is actually faster.

∗/
int fann save to fixed(struct fann ∗ann, const char ∗configuration file);

49

B.1 The library B SOURCE CODE

/∗ —– Some stuff to set options on the network on the fly. —– ∗/

/∗ Set the learning rate.
∗/

void fann set learning rate(struct fann ∗ann, float learning rate);

/∗ The possible activation functions.
Threshold can not be used, when training the network.

∗/
#define FANN SIGMOID 1
#define FANN THRESHOLD 2

/∗ Set the activation function for the hidden layers (default SIGMOID).
∗/

void fann set activation function hidden(struct fann ∗ann, unsigned int activation function);

/∗ Set the activation function for the output layer (default SIGMOID).
∗/

void fann set activation function output(struct fann ∗ann, unsigned int activation function);

/∗ Set the steepness of the sigmoid function used in the hidden layers.
Only usefull if sigmoid function is used in the hidden layers (default 0.5).

∗/
void fann set activation hidden steepness(struct fann ∗ann, fann type steepness);

/∗ Set the steepness of the sigmoid function used in the output layer.
Only usefull if sigmoid function is used in the output layer (default 0.5).

∗/
void fann set activation output steepness(struct fann ∗ann, fann type steepness);

/∗ —– Some stuff to read network options from the network. —– ∗/

/∗ Get the learning rate.
∗/

float fann get learning rate(struct fann ∗ann);

/∗ Get the number of input neurons.
∗/

unsigned int fann get num input(struct fann ∗ann);

/∗ Get the number of output neurons.
∗/

unsigned int fann get num output(struct fann ∗ann);

/∗ Get the activation function used in the hidden layers.
∗/

unsigned int fann get activation function hidden(struct fann ∗ann);

/∗ Get the activation function used in the output layer.
∗/

unsigned int fann get activation function output(struct fann ∗ann);

/∗ Get the steepness parameter for the sigmoid function used in the hidden layers.
∗/

fann type fann get activation hidden steepness(struct fann ∗ann);

/∗ Get the steepness parameter for the sigmoid function used in the output layer.
∗/

fann type fann get activation output steepness(struct fann ∗ann);

/∗ Get the total number of neurons in the entire network.
∗/

unsigned int fann get total neurons(struct fann ∗ann);

/∗ Get the total number of connections in the entire network.
∗/

unsigned int fann get total connections(struct fann ∗ann);

/∗ Randomize weights (from the beginning the weights are random between -0.1 and 0.1)
∗/

void fann randomize weights(struct fann ∗ann, fann type min weight, fann type max weight);

/∗ —– Training —– ∗/

#ifndef FIXEDFANN
/∗ Train one iteration with a set of inputs, and a set of desired outputs.
∗/

void fann train(struct fann ∗ann, fann type ∗input, fann type ∗desired output);
#endif

50

B.1 The library B SOURCE CODE

/∗ Test with a set of inputs, and a set of desired outputs.
This operation updates the mean square error, but does not
change the network in any way.

∗/
fann type ∗fann test(struct fann ∗ann, fann type ∗input, fann type ∗desired output);

/∗ Reads a file that stores training data, in the format:
num train data num input num output\n
inputdata seperated by space\n
outputdata seperated by space\n

.

.

.

inputdata seperated by space\n
outputdata seperated by space\n

∗/
struct fann train data∗ fann read train from file(char ∗filename);

/∗ Destructs the training data
Be sure to call this function after finished using the training data.

∗/
void fann destroy train(struct fann train data∗ train data);

#ifndef FIXEDFANN
/∗ Trains on an entire dataset, for a maximum of max epochs

epochs or until mean square error is lower than desired error.
Reports about the progress is given every
epochs between reports epochs.
If epochs between reports is zero, no reports are given.

∗/
void fann train on data(struct fann ∗ann, struct fann train data ∗data, unsigned int max epochs,
unsigned int epochs between reports, float desired error);

/∗ Does the same as train on data, but reads the data directly from a file.
∗/

void fann train on file(struct fann ∗ann, char ∗filename, unsigned int max epochs, unsigned int

epochs between reports, float desired error);
#endif

/∗ Save the training structure to a file.
∗/

void fann save train(struct fann train data∗ data, char ∗filename);

/∗ Saves the training structure to a fixed point data file.
∗ (Very usefull for testing the quality of a fixed point network).
∗/

void fann save train to fixed(struct fann train data∗ data, char ∗filename, unsigned int

decimal point);

/∗ Reads the mean square error from the network.
∗/

float fann get error(struct fann ∗ann);

/∗ Resets the mean square error from the network.
∗/

void fann reset error(struct fann ∗ann);

/∗ —– Running —– ∗/

/∗ Runs a input through the network, and returns the output.
∗/

fann type∗ fann run(struct fann ∗ann, fann type ∗input);

#ifdef FIXEDFANN

/∗ returns the position of the decimal point.
∗/

unsigned int fann get decimal point(struct fann ∗ann);

/∗ returns the multiplier that fix point data is multiplied with.
∗/

unsigned int fann get multiplier(struct fann ∗ann);
#endif

#ifdef cplusplus
}
#endif

51

B.1 The library B SOURCE CODE

B.1.2 fann data.h

#ifndef fann data h
#define fann data h

/∗ —– Data structures —–
∗ No data within these structures should be altered directly by the user.
∗/

struct fann neuron
{

fann type ∗weights;
struct fann neuron ∗∗connected neurons;
unsigned int num connections;
fann type value;

} attribute ((packed));

/∗ A single layer in the neural network.
∗/

struct fann layer
{

/∗ A pointer to the first neuron in the layer
∗ When allocated, all the neurons in all the layers are actually
∗ in one long array, this is because we wan’t to easily clear all
∗ the neurons at once.
∗/

struct fann neuron ∗first neuron;

/∗ A pointer to the neuron past the last neuron in the layer ∗/
/∗ the number of neurons is last neuron - first neuron ∗/
struct fann neuron ∗last neuron;

};

/∗ The fast artificial neural network(fann) structure
∗/

struct fann
{

/∗ the learning rate of the network ∗/
float learning rate;

/∗ the connection rate of the network
∗ between 0 and 1, 1 meaning fully connected
∗/

float connection rate;

/∗ pointer to the first layer (input layer) in an array af all the layers,
∗ including the input and outputlayers
∗/

struct fann layer ∗first layer;

/∗ pointer to the layer past the last layer in an array af all the layers,
∗ including the input and outputlayers
∗/

struct fann layer ∗last layer;

/∗ Total number of neurons.
∗ very usefull, because the actual neurons are allocated in one long array
∗/

unsigned int total neurons;

/∗ Number of input neurons (not calculating bias) ∗/
unsigned int num input;

/∗ Number of output neurons (not calculating bias) ∗/
unsigned int num output;

/∗ Used to contain the error deltas used during training
∗ Is allocated during first training session,
∗ which means that if we do not train, it is never allocated.
∗/

fann type ∗train deltas;

/∗ Used to choose which activation function to use

Sometimes it can be smart, to set the activation function for the hidden neurons
to THRESHOLD and the activation function for the output neurons to SIGMOID,
in this way you get a very fast network, that is still cabable of
producing real valued output.

∗/
unsigned int activation function hidden, activation function output;

52

B.1 The library B SOURCE CODE

/∗ Parameters for the activation function ∗/
fann type activation hidden steepness;
fann type activation output steepness;

#ifdef FIXEDFANN
/∗ the decimal point, used for shifting the fix point

in fixed point integer operatons.
∗/
unsigned int decimal point;

/∗ the multiplier, used for multiplying the fix point
in fixed point integer operatons.
Only used in special cases, since the decimal point is much faster.

∗/
unsigned int multiplier;

/∗ When in fixed point, the sigmoid function is calculated as a stepwise linear
function. In the activa-

tion results array, the result is saved, and in the two values arrays,
the values that gives the results are saved.

∗/
fann type activation results[6];
fann type activation hidden values[6];
fann type activation output values[6];

#endif

/∗ Total number of connections.
∗ very usefull, because the actual connections
∗ are allocated in one long array
∗/

unsigned int total connections;

/∗ used to store outputs in ∗/
fann type ∗output;

/∗ the number of data used to calculate the error.
∗/

unsigned int num errors;

/∗ the total error value.
the real mean square error is error value/num errors

∗/
float error value;

};

/∗ Structure used to store data, for use with training. ∗/
struct fann train data
{

unsigned int num data;
unsigned int num input;
unsigned int num output;
fann type ∗∗input;
fann type ∗∗output;

};

#endif

53

B.1 The library B SOURCE CODE

B.1.3 floatfann.h

#ifndef floatfann h
#define floatfann h

typedef float fann type;
#define FLOATFANN
#define FANNPRINTF "%.20e"

#define FANNSCANF "%f"

#include ”fann.h”

#endif

B.1.4 doublefann.h

#ifndef doublefann h
#define doublefann h

typedef double fann type;
#define DOUBLEFANN
#define FANNPRINTF "%.20e"

#define FANNSCANF "%le"

#include ”fann.h”

#endif

B.1.5 fixedfann.h

#ifndef fixedfann h
#define fixedfann h

typedef int fann type;
#define FIXEDFANN
#define FANNPRINTF "%d"

#define FANNSCANF "%d"

#include ”fann.h”

#endif

54

B.1 The library B SOURCE CODE

B.1.6 fann internal.h

#ifndef fann internal h
#define fann internal h
/∗ internal include file, not to be included directly
∗/

#include <math.h>
#include ”fann data.h”

#define FANN FIX VERSION "FANN FIX 0.1"
#define FANN FLO VERSION "FANN FLO 0.1"

#ifdef FIXEDFANN
#define FANN VERSION FANN FIX VERSION
#else
#define FANN VERSION FANN FLO VERSION
#endif

struct fann ∗ fann allocate structure(float learning rate, unsigned int num layers);
void fann allocate neurons(struct fann ∗ann);

void fann allocate connections(struct fann ∗ann);

int fann save internal(struct fann ∗ann, const char ∗configuration file, unsigned int save as fixed);
void fann save train internal(struct fann train data∗ data, char ∗filename, unsigned int

save as fixed, unsigned int decimal point);

int fann compare connections(const void∗ c1, const void∗ c2);
void fann seed rand();

/∗ called fann max, in order to not interferre with predefined versions of max ∗/
#define fann max(x, y) (((x) > (y)) ? (x) : (y))
#define fann min(x, y) (((x) < (y)) ? (x) : (y))

#define fann rand(min value, max value)
(((double)(min value))+(((double)(max value)-((double)(min value)))∗rand()/(RAND MAX+1.0)))

#define fann abs(value) (((value) > 0) ? (value) : -(value))

#ifdef FIXEDFANN

#define fann mult(x,y) ((x∗y) � decimal point)
#define fann div(x,y) (((x) � decimal point)/y)
#define fann random weight() (fann type)(fann rand(-multiplier/10,multiplier/10))
/∗ sigmoid calculated with use of floats, only as reference ∗/
#define fann sigmoid(steepness, value) ((fann type)(0.5+((1.0/(1.0 + exp(-2.0 ∗
((float)steepness/multiplier) ∗ ((float)value/multiplier))))∗multiplier)))
/∗ sigmoid as a stepwise linear function ∗/
#define fann linear(v1, r1, v2, r2, value) ((((r2-r1) ∗ (value-v1))/(v2-v1)) + r1)
#define fann sigmoid stepwise(v1, v2, v3, v4, v5, v6, r1, r2, r3, r4, r5, r6, value, multiplier) (value < v5
? (value < v3 ? (value < v2 ? (value < v1 ? 0 : fann linear(v1, r1, v2, r2, value)) : fann linear(v2, r2,
v3, r3, value)) : (value < v4 ? fann linear(v3, r3, v4, r4, value) : fann linear(v4, r4, v5, r5, value))) :
(value < v6 ? fann linear(v5, r5, v6, r6, value) : multiplier))
#else

#define fann mult(x,y) (x∗y)
#define fann div(x,y) (x/y)
#define fann random weight() (fann rand(-0.1,0.1))
#define fann sigmoid(steepness, value) (1.0/(1.0 + exp(-2.0 ∗ steepness ∗ value)))
#define fann sigmoid derive(steepness, value) (2.0 ∗ steepness ∗ value ∗ (1.0 - value))

#endif

#endif

55

B.1 The library B SOURCE CODE

B.1.7 fann.c

#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <string.h>

/∗ create a neural network.
∗/

struct fann ∗ fann create(float connection rate, float learning rate,
unsigned int num layers, /∗ the number of layers, including the input and output layer ∗/
. . .)

/∗ the number of neurons in each of the layers, starting with the input layer and ending with the output layer ∗/
{

va list layer sizes;
struct fann layer ∗layer it, ∗last layer, ∗prev layer;
struct fann ∗ann;
struct fann neuron ∗neuron it, ∗last neuron, ∗random neuron, ∗bias neuron;
unsigned int prev layer size, i, j;
unsigned int num neurons in, num neurons out;
unsigned int min connections, max connections, num connections;
unsigned int connections per neuron, allocated connections;
unsigned int random number, found connection;

#ifdef FIXEDFANN
unsigned int decimal point;
unsigned int multiplier;

#endif

if(connection rate > 1){
connection rate = 1;

}

/∗ seed random ∗/
fann seed rand();

/∗ allocate the general structure ∗/
ann = fann allocate structure(learning rate, num layers);
ann→connection rate = connection rate;

#ifdef FIXEDFANN
decimal point = ann→decimal point;
multiplier = ann→multiplier;

#endif

/∗ determine how many neurons there should be in each layer ∗/
va start(layer sizes, num layers);
for(layer it = ann→first layer; layer it 6= ann→last layer; layer it++){

/∗ we do not allocate room here, but we make sure that
last neuron - first neuron is the number of neurons ∗/

layer it→first neuron = NULL;
layer it→last neuron = layer it→first neuron + va arg(layer sizes, unsigned int) +1;

/∗ +1 for bias ∗/

ann→total neurons += layer it→last neuron - layer it→first neuron;
}
va end(layer sizes);

ann→num output = (ann→last layer-1)→last neuron - (ann→last layer-1)→first neuron -1;
ann→num input = ann→first layer→last neuron - ann→first layer→first neuron -1;

/∗ allocate room for the actual neurons ∗/
fann allocate neurons(ann);

#ifdef DEBUG
printf("creating network with learning rate %f and connection rate %f\n", learning rate,

connection rate);
printf("input\n");
printf(" layer : %d neurons, 1 bias\n", ann→first layer→last neuron -

ann→first layer→first neuron - 1);
#endif

num neurons in = ann→num input;
for(layer it = ann→first layer+1; layer it 6= ann→last layer; layer it++){

num neurons out = layer it→last neuron - layer it→first neuron - 1;
/∗ if all neurons in each layer should be connected to at least one neuron

in the previous layer, and one neuron in the next layer.
and the bias node should be connected to the all neurons in the next layer.
Then this is the minimum amount of neurons ∗/

min connections = fann max(num neurons in, num neurons out) + num neurons out;
max connections = num neurons in ∗ num neurons out; /∗ not calculating bias ∗/

56

B.1 The library B SOURCE CODE

num connections = fann max(min connections,
(unsigned int)(0.5+(connection rate ∗ max connections)) + num neurons out);

ann→total connections += num connections;

connections per neuron = num connections/num neurons out;
allocated connections = 0;
/∗ Now split out the connections on the different neurons ∗/
for(i = 0; i 6= num neurons out; i++){

layer it→first neuron[i].num connections = connections per neuron;
allocated connections += connections per neuron;

if(allocated connections < (num connections∗(i+1))/num neurons out){
layer it→first neuron[i].num connections++;
allocated connections++;

}
}

/∗ used in the next run of the loop ∗/
num neurons in = num neurons out;

}

fann allocate connections(ann);

if(connection rate == 1){
prev layer size = ann→num input+1;
prev layer = ann→first layer;
last layer = ann→last layer;
for(layer it = ann→first layer+1; layer it 6= last layer; layer it++){

last neuron = layer it→last neuron-1;
for(neuron it = layer it→first neuron; neuron it 6= last neuron; neuron it++){

for(i = 0; i 6= prev layer size; i++){
neuron it→weights[i] = fann random weight();
/∗ these connections are still initialized for fully connected networks, to allow

operations to work, that are not optimized for fully connected networks.
∗/
neuron it→connected neurons[i] = prev layer→first neuron+i;

}

}
prev layer size = layer it→last neuron - layer it→first neuron;
prev layer = layer it;

#ifdef DEBUG
printf(" layer : %d neurons, 1 bias\n", prev layer size-1);

#endif
}

}else{
/∗ make connections for a network, that are not fully connected ∗/

/∗ generally, what we do is first to connect all the input
neurons to a output neuron, respecting the number of
available input neurons for each output neuron. Then
we go through all the output neurons, and connect the
rest of the connections to input neurons, that they are
not allready connected to.

∗/

/∗ first clear all the connections, because we want to
be able to see which connections are allready connected ∗/

memset((ann→first layer+1)→first neuron→connected neurons, 0, ann→total connections ∗
sizeof(struct fann neuron∗));

for(layer it = ann→first layer+1;
layer it 6= ann→last layer; layer it++){

num neurons out = layer it→last neuron - layer it→first neuron - 1;
num neurons in = (layer it-1)→last neuron - (layer it-1)→first neuron - 1;

/∗ first connect the bias neuron ∗/
bias neuron = (layer it-1)→last neuron-1;
last neuron = layer it→last neuron-1;
for(neuron it = layer it→first neuron;

neuron it 6= last neuron; neuron it++){

neuron it→connected neurons[0] = bias neuron;
neuron it→weights[0] = fann random weight();

}

/∗ then connect all neurons in the input layer ∗/
last neuron = (layer it-1)→last neuron - 1;

57

B.1 The library B SOURCE CODE

for(neuron it = (layer it-1)→first neuron;
neuron it 6= last neuron; neuron it++){

/∗ random neuron in the output layer that has space
for more connections ∗/

do {
random number = (int) (0.5+fann rand(0, num neurons out-1));
random neuron = layer it→first neuron + random number;
/∗ checks the last space in the connections array for room ∗/

}while(random neuron→connected neurons[random neuron→num connections-1]);

/∗ find an empty space in the connection array and connect ∗/
for(i = 0; i < random neuron→num connections; i++){

if(random neuron→connected neurons[i] == NULL){
random neuron→connected neurons[i] = neuron it;
random neuron→weights[i] = fann random weight();
break;

}
}

}

/∗ then connect the rest of the unconnected neurons ∗/
last neuron = layer it→last neuron - 1;
for(neuron it = layer it→first neuron;

neuron it 6= last neuron; neuron it++){
/∗ find empty space in the connection array and connect ∗/
for(i = 0; i < neuron it→num connections; i++){

/∗ continue if allready connected ∗/
if(neuron it→connected neurons[i] 6= NULL) continue;

do {
found connection = 0;
random number = (int) (0.5+fann rand(0, num neurons in-1));
random neuron = (layer it-1)→first neuron + random number;

/∗ check to see if this connection is allready there ∗/
for(j = 0; j < i; j++){

if(random neuron == neuron it→connected neurons[j]){
found connection = 1;
break;

}
}

}while(found connection);

/∗ we have found a neuron that is not allready
connected to us, connect it ∗/

neuron it→connected neurons[i] = random neuron;
neuron it→weights[i] = fann random weight();

}
}

#ifdef DEBUG
printf(" layer : %d neurons, 1 bias\n", num neurons out);

#endif
}

/∗ TODO it would be nice to have the randomly created connections sorted
for smoother memory access.

∗/
}

#ifdef DEBUG
printf("output\n");

#endif

return ann;
}

/∗ Create a network from a configuration file.
∗/

struct fann ∗ fann create from file(const char ∗configuration file)
{

unsigned int num layers, layer size, activation function hidden, activation function output,
input neuron, i;
#ifdef FIXEDFANN

unsigned int decimal point, multiplier;
#endif

fann type activation hidden steepness, activation output steepness;

58

B.1 The library B SOURCE CODE

float learning rate, connection rate;
struct fann neuron ∗first neuron, ∗neuron it, ∗last neuron, ∗∗connected neurons;
fann type ∗weights;
struct fann layer ∗layer it;
struct fann ∗ann;

char ∗read version;
FILE ∗conf = fopen(configuration file, "r");

if(!conf){
printf("Unable to open configuration file \"%s\" for reading.\n", configuration file);
return NULL;

}

read version = (char ∗)calloc(strlen(FANN VERSION"\n"), 1);
fread(read version, 1, strlen(FANN VERSION"\n"), conf); /∗ reads version ∗/

/∗ compares the version information ∗/
if(strncmp(read version, FANN VERSION"\n", strlen(FANN VERSION"\n")) 6= 0){

printf("Wrong version, aborting read of configuration file \"%s\".\n", configuration file);
return NULL;

}

#ifdef FIXEDFANN
if(fscanf(conf, "%u\n", &decimal point) 6= 1){

printf("Error reading info from configuration file \"%s\".\n", configuration file);
return NULL;

}
multiplier = 1 � decimal point;

#endif

if(fscanf(conf, "%u %f %f %u %u "FANNSCANF" "FANNSCANF"\n", &num layers,
&learning rate, &connection rate, &activation function hidden, &activation function output,
&activation hidden steepness, &activation output steepness) 6= 7){

printf("Error reading info from configuration file \"%s\".\n", configuration file);
return NULL;

}

ann = fann allocate structure(learning rate, num layers);
#ifdef FIXEDFANN

ann→decimal point = decimal point;
ann→multiplier = multiplier;
ann→activation function hidden = activation function hidden;
ann→activation function output = activation function output;
ann→activation hidden steepness = activation hidden steepness;
ann→activation output steepness = activation output steepness;
ann→connection rate = connection rate;

/∗ Calculate the parameters for the stepwise linear sigmoid function fixed point.
Using a rewritten sigmoid function.
results 0.005, 0.05, 0.25, 0.75, 0.95, 0.995

∗/
ann→activation results[0] = (fann type)(multiplier/200.0+0.5);
ann→activation results[1] = (fann type)(multiplier/20.0+0.5);
ann→activation results[2] = (fann type)(multiplier/4.0+0.5);
ann→activation results[3] = multiplier - (fann type)(multiplier/4.0+0.5);
ann→activation results[4] = multiplier - (fann type)(multiplier/20.0+0.5);
ann→activation results[5] = multiplier - (fann type)(multiplier/200.0+0.5);

fann set activation hidden steepness(ann, activation hidden steepness);
fann set activation output steepness(ann, activation output steepness);

#endif

#ifdef DEBUG
printf("creating network with learning rate %f\n", learning rate);
printf("input\n");

#endif

/∗ determine how many neurons there should be in each layer ∗/
for(layer it = ann→first layer; layer it 6= ann→last layer; layer it++){

if(fscanf(conf, "%u ", &layer size) 6= 1){
printf("Error reading neuron info from configuration file \"%s\".\n",

configuration file);
return ann;

}
/∗ we do not allocate room here, but we make sure that

last neuron - first neuron is the number of neurons ∗/
layer it→first neuron = NULL;
layer it→last neuron = layer it→first neuron + layer size;
ann→total neurons += layer size;

59

B.1 The library B SOURCE CODE

#ifdef DEBUG
printf(" layer : %d neurons, 1 bias\n", layer size);

#endif
}

ann→num input = ann→first layer→last neuron - ann→first layer→first neuron;
ann→num output = ((ann→last layer-1)→last neuron - (ann→last layer-1)→first neuron) - 1;

/∗ allocate room for the actual neurons ∗/
fann allocate neurons(ann);

last neuron = (ann→last layer-1)→last neuron;
for(neuron it = ann→first layer→first neuron;

neuron it 6= last neuron; neuron it++){
if(fscanf(conf, "%u ", &neuron it→num connections) 6= 1){

printf("Error reading neuron info from configuration file \"%s\".\n",
configuration file);

return ann;
}
ann→total connections += neuron it→num connections;

}

fann allocate connections(ann);

connected neurons = (ann→first layer+1)→first neuron→connected neurons;
weights = (ann→first layer+1)→first neuron→weights;
first neuron = ann→first layer→first neuron;

for(i = 0; i < ann→total connections; i++){
if(fscanf(conf, "(%u "FANNSCANF") ", &input neuron, &weights[i]) 6= 2){

printf("Error reading connections from configuration file \"%s\".\n",
configuration file);

return ann;
}
connected neurons[i] = first neuron+input neuron;

}

#ifdef DEBUG
printf("output\n");

#endif

fclose(conf);
return ann;

}

/∗ deallocate the network.
∗/

void fann destroy(struct fann ∗ann)
{

free((ann→first layer+1)→first neuron→weights);
free((ann→first layer+1)→first neuron→connected neurons);
free(ann→first layer→first neuron);
free(ann→first layer);
free(ann→output);
if(ann→train deltas 6= NULL) free(ann→train deltas);
free(ann);

}

/∗ Save the network.
∗/

void fann save(struct fann ∗ann, const char ∗configuration file)
{

fann save internal(ann, configuration file, 0);
}

/∗ Save the network as fixed point data.
∗/

int fann save to fixed(struct fann ∗ann, const char ∗configuration file)
{

return fann save internal(ann, configuration file, 1);
}

void fann set learning rate(struct fann ∗ann, float learning rate)
{

ann→learning rate = learning rate;
}

void fann set activation function hidden(struct fann ∗ann, unsigned int activation function)
{

ann→activation function hidden = activation function;

60

B.1 The library B SOURCE CODE

}

void fann set activation function output(struct fann ∗ann, unsigned int activation function)
{

ann→activation function output = activation function;
}

void fann set activation hidden steepness(struct fann ∗ann, fann type steepness)
{
#ifdef FIXEDFANN

int i;
#endif

ann→activation hidden steepness = steepness;
#ifdef FIXEDFANN

for(i = 0; i < 6; i++){
ann→activation hidden values[i] =

(fann type)((((log(ann→multiplier/(float)ann→activation results[i] -1)∗(float)ann→multiplier) /
-2.0)∗(float)ann→multiplier) / steepness);

}
#endif

}

void fann set activation output steepness(struct fann ∗ann, fann type steepness)
{
#ifdef FIXEDFANN

int i;
#endif

ann→activation hidden steepness = steepness;
#ifdef FIXEDFANN

for(i = 0; i < 6; i++){
ann→activation output values[i] =

(fann type)((((log(ann→multiplier/(float)ann→activation results[i] -1)∗(float)ann→multiplier) /
-2.0)∗(float)ann→multiplier) / steepness);

}
#endif

}

float fann get learning rate(struct fann ∗ann)
{

return ann→learning rate;
}

unsigned int fann get num input(struct fann ∗ann)
{

return ann→num input;
}

unsigned int fann get num output(struct fann ∗ann)
{

return ann→num output;
}

unsigned int fann get activation function hidden(struct fann ∗ann)
{

return ann→activation function hidden;
}

unsigned int fann get activation function output(struct fann ∗ann)
{

return ann→activation function output;
}

fann type fann get activation hidden steepness(struct fann ∗ann)
{

return ann→activation hidden steepness;
}

fann type fann get activation output steepness(struct fann ∗ann)
{

return ann→activation output steepness;
}

unsigned int fann get total neurons(struct fann ∗ann)
{

/∗ -1, because there is always an unused bias neuron in the last layer ∗/
return ann→total neurons - 1;

}

unsigned int fann get total connections(struct fann ∗ann)
{

61

B.1 The library B SOURCE CODE

return ann→total connections;
}

void fann randomize weights(struct fann ∗ann, fann type min weight, fann type max weight)
{

fann type ∗last weight;
fann type ∗weights = (ann→first layer+1)→first neuron→weights;
last weight = weights + ann→total connections;
for(;weights 6= last weight; weights++){

∗weights = (fann type)(fann rand(min weight, max weight));
}

}

#ifndef FIXEDFANN
/∗ Trains the network with the backpropagation algorithm.
∗/

void fann train(struct fann ∗ann, fann type ∗input, fann type ∗desired output)
{

struct fann neuron ∗neuron it, ∗last neuron, ∗neurons;
fann type neuron value, ∗delta it, ∗delta begin, tmp delta;
struct fann layer ∗layer it;
unsigned int i, shift prev layer;

/∗ store some variabels local for fast access ∗/
const float learning rate = ann→learning rate;
const fann type activation output steepness = ann→activation output steepness;
const fann type activation hidden steepness = ann→activation hidden steepness;
const struct fann neuron ∗first neuron = ann→first layer→first neuron;

const struct fann neuron ∗last layer begin = (ann→last layer-1)→first neuron;
const struct fann neuron ∗last layer end = last layer begin + ann→num output;
struct fann layer ∗first layer = ann→first layer;
struct fann layer ∗last layer = ann→last layer;

fann run(ann, input);
/∗ if no room allocated for the delta variabels, allocate it now ∗/
if(ann→train deltas == NULL){

ann→train deltas = (fann type ∗)calloc(ann→total neurons, sizeof(fann type));
}
delta begin = ann→train deltas;

/∗ clear the delta variabels ∗/
memset(delta begin, 0, (ann→total neurons) ∗ sizeof(fann type));

#ifdef DEBUGTRAIN
printf("calculate deltas\n");

#endif

/∗ calculate the error and place it in the output layer ∗/
delta it = delta begin + (last layer begin - first neuron);
for(; last layer begin 6= last layer end; last layer begin++){

neuron value = last layer begin→value;
/∗ TODO add switch the minute there are other activation functions ∗/
∗delta it = fann sigmoid derive(activation output steepness, neuron value) ∗ (∗desired output

- neuron value);

ann→error value += (∗desired output - neuron value) ∗ (∗desired output - neuron value);

#ifdef DEBUGTRAIN
printf("delta[%d] = "FANNPRINTF"\n", (delta it - delta begin), ∗delta it);

#endif
desired output++;
delta it++;

}
ann→num errors++;

/∗ go through all the layers, from last to first. And propagate the error backwards ∗/
for(layer it = last layer-1; layer it 6= first layer; --layer it){

last neuron = layer it→last neuron;

/∗ for each connection in this layer, propagate the error backwards∗/
if(ann→connection rate == 1){ /∗ optimization for fully connected networks ∗/

shift prev layer = (layer it-1)→first neuron - first neuron;
for(neuron it = layer it→first neuron;

neuron it 6= last neuron; neuron it++){
tmp delta = ∗(delta begin + (neuron it - first neuron));
for(i = 0; i < neuron it→num connections; i++){

∗(delta begin + i + shift prev layer) += tmp delta ∗ neuron it→weights[i];
}

}

62

B.1 The library B SOURCE CODE

}else{
for(neuron it = layer it→first neuron;

neuron it 6= last neuron; neuron it++){
tmp delta = ∗(delta begin + (neuron it - first neuron));
for(i = 0; i < neuron it→num connections; i++){

∗(delta begin + (neuron it→connected neurons[i] - first neuron)) +=
tmp delta ∗ neuron it→weights[i];

}
}

}

/∗ then calculate the actual errors in the previous layer ∗/
delta it = delta begin + ((layer it-1)→first neuron - first neuron);
last neuron = (layer it-1)→last neuron;
for(neuron it = (layer it-1)→first neuron;

neuron it 6= last neuron; neuron it++){
neuron value = neuron it→value;
/∗ TODO add switch the minute there are other activation functions ∗/
∗delta it ∗ = fann sigmoid derive(activation hidden steepness, neuron value) ∗

learning rate;

#ifdef DEBUGTRAIN
printf("delta[%d] = "FANNPRINTF"\n", delta it - delta begin, ∗delta it);

#endif
delta it++;

}
}

#ifdef DEBUGTRAIN
printf("\nupdate weights\n");

#endif

for(layer it = (first layer+1); layer it 6= last layer; layer it++){
#ifdef DEBUGTRAIN

printf("layer[%d]\n", layer it - first layer);
#endif

last neuron = layer it→last neuron;
if(ann→connection rate == 1){ /∗ optimization for fully connected networks ∗/

neurons = (layer it-1)→first neuron;
for(neuron it = layer it→first neuron;

neuron it 6= last neuron; neuron it++){
tmp delta = ∗(delta begin + (neuron it - first neuron));
for(i = 0; i < neuron it→num connections; i++){

neuron it→weights[i] += tmp delta ∗ neurons[i].value;
}

}
}else{

for(neuron it = layer it→first neuron;
neuron it 6= last neuron; neuron it++){
tmp delta = ∗(delta begin + (neuron it - first neuron));
for(i = 0; i < neuron it→num connections; i++){

neuron it→weights[i] += tmp delta ∗ neuron it→connected neurons[i]→value;
}

}
}

}
}
#endif

/∗ Tests the network.
∗/

fann type ∗fann test(struct fann ∗ann, fann type ∗input, fann type ∗desired output)
{

fann type neuron value;
fann type ∗output begin = fann run(ann, input);
fann type ∗output it;
const fann type ∗output end = output begin + ann→num output;

/∗ calculate the error ∗/
for(output it = output begin;

output it 6= output end; output it++){
neuron value = ∗output it;

#ifdef FIXEDFANN
ann→error value += ((∗desired output - neuron value)/(float)ann→multiplier) ∗

((∗desired output - neuron value)/(float)ann→multiplier);
#else

ann→error value += (∗desired output - neuron value) ∗ (∗desired output - neuron value);
#endif

63

B.1 The library B SOURCE CODE

desired output++;
}
ann→num errors++;

return output begin;
}

/∗ Reads training data from a file.
∗/

struct fann train data∗ fann read train from file(char ∗filename)
{

unsigned int num input, num output, num data, i, j;
unsigned int line = 1;
struct fann train data∗ data;

FILE ∗file = fopen(filename, "r");

data = (struct fann train data ∗)malloc(sizeof(struct fann train data));

if(!file){
printf("Unable to open train data file \"%s\" for reading.\n", filename);
return NULL;

}

if(fscanf(file, "%u %u %u\n", &num data, &num input, &num output) 6= 3){
printf("Error reading info from train data file \"%s\", line: %d.\n", filename, line);
return NULL;

}
line++;

data→num data = num data;
data→num input = num input;
data→num output = num output;
data→input = (fann type ∗∗)calloc(num data, sizeof(fann type ∗));
data→output = (fann type ∗∗)calloc(num data, sizeof(fann type ∗));

for(i = 0; i 6= num data; i++){
data→input[i] = (fann type ∗)calloc(num input, sizeof(fann type));
for(j = 0; j 6= num input; j++){

if(fscanf(file, FANNSCANF" ", &data→input[i][j]) 6= 1){
printf("Error reading info from train data file \"%s\", line: %d.\n", filename,

line);
return NULL;

}
}
line++;

data→output[i] = (fann type ∗)calloc(num output, sizeof(fann type));
for(j = 0; j 6= num output; j++){

if(fscanf(file, FANNSCANF" ", &data→output[i][j]) 6= 1){
printf("Error reading info from train data file \"%s\", line: %d.\n", filename,

line);
return NULL;

}
}
line++;

}

return data;
}

/∗ Save training data to a file
∗/

void fann save train(struct fann train data∗ data, char ∗filename)
{

fann save train internal(data, filename, 0, 0);
}

/∗ Save training data to a file in fixed point algebra.
(Good for testing a network in fixed point)

∗/
void fann save train to fixed(struct fann train data∗ data, char ∗filename, unsigned int

decimal point)
{

fann save train internal(data, filename, 1, decimal point);
}

/∗ deallocate the train data structure.
∗/

void fann destroy train(struct fann train data ∗data)

64

B.1 The library B SOURCE CODE

{
unsigned int i;
for(i = 0; i 6= data→num data; i++){

free(data→input[i]);
free(data→output[i]);

}
free(data→input);
free(data→output);
free(data);

}

#ifndef FIXEDFANN
/∗ Train directly on the training data.
∗/

void fann train on data(struct fann ∗ann, struct fann train data ∗data, unsigned int max epochs,
unsigned int epochs between reports, float desired error)
{

float error;
unsigned int i, j;

if(epochs between reports){
printf("Max epochs %8d. Desired error: %.10f\n", max epochs, desired error);

}

for(i = 1; i ≤ max epochs; i++){
/∗ train ∗/
fann reset error(ann);

for(j = 0; j 6= data→num data; j++){
fann train(ann, data→input[j], data→output[j]);

}

error = fann get error(ann);

/∗ print current output ∗/
if(epochs between reports &&

(i % epochs between reports == 0
|| i == max epochs
|| i == 1
|| error < desired error)){

printf("Epochs %8d. Current error: %.10f\n", i, error);
}

if(error < desired error){
break;

}
}
fann reset error(ann);

}

/∗ Wrapper to make it easy to train directly on a training data file.
∗/

void fann train on file(struct fann ∗ann, char ∗filename, unsigned int max epochs, unsigned int

epochs between reports, float desired error)
{

struct fann train data ∗data = fann read train from file(filename);
fann train on data(ann, data, max epochs, epochs between reports, desired error);
fann destroy train(data);

}
#endif

/∗ get the mean square error.
∗/

float fann get error(struct fann ∗ann)
{

if(ann→num errors){
return ann→error value/(float)ann→num errors;

}else{
return 0;

}
}

/∗ reset the mean square error.
∗/

void fann reset error(struct fann ∗ann)
{

ann→num errors = 0;
ann→error value = 0;

}

65

B.1 The library B SOURCE CODE

#ifdef FIXEDFANN
/∗ returns the position of the fix point.
∗/

unsigned int fann get decimal point(struct fann ∗ann)
{

return ann→decimal point;
}

/∗ returns the multiplier that fix point data is multiplied with.
∗/

unsigned int fann get multiplier(struct fann ∗ann)
{

return ann→multiplier;
}

#endif

/∗ runs the network.
∗/

fann type∗ fann run(struct fann ∗ann, fann type ∗input)
{

struct fann neuron ∗neuron it, ∗last neuron, ∗neurons, ∗∗neuron pointers;
unsigned int activation function, i, num connections, num input, num output;
fann type neuron value, ∗weights, ∗output;
struct fann layer ∗layer it, ∗last layer;

/∗ store some variabels local for fast access ∗/
#ifndef FIXEDFANN

fann type steepness;
const fann type activation output steepness = ann→activation output steepness;
const fann type activation hidden steepness = ann→activation hidden steepness;

#endif

unsigned int activation function output = ann→activation function output;
unsigned int activation function hidden = ann→activation function hidden;
struct fann neuron ∗first neuron = ann→first layer→first neuron;

#ifdef FIXEDFANN
unsigned int multiplier = ann→multiplier;
unsigned int decimal point = ann→decimal point;

/∗ values used for the stepwise linear sigmoid function ∗/

/∗ the results ∗/
fann type r1 = ann→activation results[0];
fann type r2 = ann→activation results[1];
fann type r3 = ann→activation results[2];
fann type r4 = ann→activation results[3];
fann type r5 = ann→activation results[4];
fann type r6 = ann→activation results[5];

/∗ the hidden parameters ∗/
fann type h1 = ann→activation hidden values[0];
fann type h2 = ann→activation hidden values[1];
fann type h3 = ann→activation hidden values[2];
fann type h4 = ann→activation hidden values[3];
fann type h5 = ann→activation hidden values[4];
fann type h6 = ann→activation hidden values[5];

/∗ the output parameters ∗/
fann type o1 = ann→activation output values[0];
fann type o2 = ann→activation output values[1];
fann type o3 = ann→activation output values[2];
fann type o4 = ann→activation output values[3];
fann type o5 = ann→activation output values[4];
fann type o6 = ann→activation output values[5];

#endif

/∗ first set the input ∗/
num input = ann→num input;
for(i = 0; i 6= num input; i++){

#ifdef FIXEDFANN
if(fann abs(input[i]) > multiplier){

printf("Warning input number %d is out of range -%d - %d with value %d, integer
overflow may occur.\n", i, multiplier, multiplier, input[i]);

}
#endif

first neuron[i].value = input[i];
}

66

B.1 The library B SOURCE CODE

last layer = ann→last layer;
for(layer it = ann→first layer+1; layer it 6= last layer; layer it++){

#ifdef FIXEDFANN
((layer it-1)→last neuron-1)→value = multiplier;

#else

/∗ set the bias neuron ∗/
((layer it-1)→last neuron-1)→value = 1;

steepness = (layer it == last layer-1) ?
activation output steepness : activation hidden steepness;

#endif

activation function = (layer it == last layer-1) ?
activation function output : activation function hidden;

last neuron = layer it→last neuron-1;
for(neuron it = layer it→first neuron; neuron it 6= last neuron; neuron it++){

neuron value = 0;
num connections = neuron it→num connections;
weights = neuron it→weights;
if(ann→connection rate == 1){

neurons = (layer it-1)→first neuron;

i = num connections & 3; /∗ same as modulo 4 ∗/
switch(i) {

case 3:
neuron value += fann mult(weights[2], neurons[2].value);

case 2:
neuron value += fann mult(weights[1], neurons[1].value);

case 1:
neuron value += fann mult(weights[0], neurons[0].value);

case 0:
break;

}

for(;i 6= num connections; i += 4){
neuron value +=

fann mult(weights[i], neurons[i].value) +
fann mult(weights[i+1], neurons[i+1].value) +
fann mult(weights[i+2], neurons[i+2].value) +
fann mult(weights[i+3], neurons[i+3].value);

}
}else{

neuron pointers = neuron it→connected neurons;

i = num connections & 3; /∗ same as modulo 4 ∗/
switch(i) {

case 3:
neuron value += fann mult(weights[2], neuron pointers[2]→value);

case 2:
neuron value += fann mult(weights[1], neuron pointers[1]→value);

case 1:
neuron value += fann mult(weights[0], neuron pointers[0]→value);

case 0:
break;

}

for(;i 6= num connections; i += 4){
neuron value +=

fann mult(weights[i], neuron pointers[i]→value) +
fann mult(weights[i+1], neuron pointers[i+1]→value) +
fann mult(weights[i+2], neuron pointers[i+2]→value) +
fann mult(weights[i+3], neuron pointers[i+3]→value);

}
}

if(activation function == FANN SIGMOID){
#ifdef FIXEDFANN

if(layer it == last layer-1){
neuron it→value = fann sigmoid stepwise(o1, o2, o3, o4, o5, o6, r1, r2, r3, r4,

r5, r6, neuron value, multiplier);
}else{

neuron it→value = fann sigmoid stepwise(h1, h2, h3, h4, h5, h6, r1, r2, r3, r4,
r5, r6, neuron value, multiplier);

}
#else

neuron it→value = fann sigmoid(steepness, neuron value);
#endif

}else{

67

B.1 The library B SOURCE CODE

neuron it→value = (neuron value < 0) ? 0 : 1;
}

}
}

/∗ set the output ∗/
output = ann→output;
num output = ann→num output;
neurons = (ann→last layer-1)→first neuron;
for(i = 0; i 6= num output; i++){

output[i] = neurons[i].value;
}
return ann→output;

}

68

B.1 The library B SOURCE CODE

B.1.8 fann internal.c

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <sys/time.h>
#include <time.h>

#include ”fann internal.h”

/∗ Allocates the main structure and sets some default values.
∗/

struct fann ∗ fann allocate structure(float learning rate, unsigned int num layers)
{

struct fann ∗ann;

if(num layers < 2){
#ifdef DEBUG

printf("less than 2 layers - ABORTING.\n");
#endif

return NULL;
}

/∗ allocate and initialize the main network structure ∗/
ann = (struct fann ∗)malloc(sizeof(struct fann));
ann→learning rate = learning rate;
ann→total neurons = 0;
ann→total connections = 0;
ann→num input = 0;
ann→num output = 0;
ann→train deltas = NULL;
ann→num errors = 0;
ann→error value = 0;

#ifdef FIXEDFANN
/∗ these values are only boring defaults, and should really

never be used, since the real values are always loaded from a file. ∗/
ann→decimal point = 8;
ann→multiplier = 256;

#endif

ann→activation function hidden = FANN SIGMOID;
ann→activation function output = FANN SIGMOID;

#ifdef FIXEDFANN
ann→activation hidden steepness = ann→multiplier/2;
ann→activation output steepness = ann→multiplier/2;

#else
ann→activation hidden steepness = 0.5;
ann→activation output steepness = 0.5;

#endif

/∗ allocate room for the layers ∗/
ann→first layer = (struct fann layer ∗)calloc(num layers, sizeof(struct fann layer));
ann→last layer = ann→first layer + num layers;

return ann;
}

/∗ Allocates room for the neurons.
∗/

void fann allocate neurons(struct fann ∗ann)
{

struct fann layer ∗layer it;
struct fann neuron ∗neurons;
unsigned int num neurons so far = 0;
unsigned int num neurons = 0;

/∗ all the neurons is allocated in one long array ∗/
neurons = (struct fann neuron ∗)calloc(ann→total neurons, sizeof(struct fann neuron));

/∗ clear data, primarily to make the input neurons cleared ∗/
memset(neurons, 0, ann→total neurons ∗ sizeof(struct fann neuron));

for(layer it = ann→first layer; layer it 6= ann→last layer; layer it++){
num neurons = layer it→last neuron - layer it→first neuron;
layer it→first neuron = neurons+num neurons so far;
layer it→last neuron = layer it→first neuron+num neurons;
num neurons so far += num neurons;

}

69

B.1 The library B SOURCE CODE

ann→output = (fann type ∗)calloc(num neurons, sizeof(fann type));
}

/∗ Allocate room for the connections.
∗/

void fann allocate connections(struct fann ∗ann)
{

struct fann layer ∗layer it, ∗last layer;
struct fann neuron ∗neuron it, ∗last neuron;
fann type ∗weights;
struct fann neuron ∗∗connected neurons = NULL;
unsigned int connections so far = 0;

weights = (fann type ∗)calloc(ann→total connections, sizeof(fann type));

/∗ TODO make special cases for all places where the connections
is used, so that it is not needed for fully connected networks.

∗/
connected neurons = (struct fann neuron ∗∗) calloc(ann→total connections, sizeof(struct

fann neuron∗));

last layer = ann→last layer;
for(layer it = ann→first layer+1; layer it 6= ann→last layer; layer it++){

last neuron = layer it→last neuron-1;
for(neuron it = layer it→first neuron; neuron it 6= last neuron; neuron it++){

neuron it→weights = weights+connections so far;
neuron it→connected neurons = connected neurons+connections so far;
connections so far += neuron it→num connections;

}
}

if(connections so far 6= ann→total connections){
printf("ERROR connections so far=%d, total connections=%d\n", connections so far,

ann→total connections);
exit(0);

}
}

/∗ Used to save the network to a file.
∗/

int fann save internal(struct fann ∗ann, const char ∗configuration file, unsigned int save as fixed)
{

struct fann layer ∗layer it;
int calculated decimal point = 0;
struct fann neuron ∗neuron it, ∗first neuron;
fann type ∗weights;
struct fann neuron ∗∗connected neurons;
unsigned int i = 0;

#ifndef FIXEDFANN
/∗ variabels for use when saving floats as fixed point variabels ∗/
unsigned int decimal point = 0;
unsigned int fixed multiplier = 0;
fann type max possible value = 0;
unsigned int bits used for max = 0;
fann type current max value = 0;

#endif

FILE ∗conf = fopen(configuration file, "w+");
if(!conf){

printf("Unable to open configuration file \"%s\" for writing.\n", configuration file);
return -1;

}

#ifndef FIXEDFANN
if(save as fixed){

/∗ save the version information ∗/
fprintf(conf, FANN FIX VERSION"\n");

}else{
/∗ save the version information ∗/
fprintf(conf, FANN FLO VERSION"\n");

}
#else

/∗ save the version information ∗/
fprintf(conf, FANN FIX VERSION"\n");

#endif

#ifndef FIXEDFANN
if(save as fixed){

/∗ calculate the maximal possible shift value ∗/

70

B.1 The library B SOURCE CODE

for(layer it = ann→first layer+1; layer it 6= ann→last layer; layer it++){
for(neuron it = layer it→first neuron; neuron it 6= layer it→last neuron; neuron it++){

/∗ look at all connections to each neurons, and see how high a value we can get ∗/
current max value = 0;
for(i = 0; i 6= neuron it→num connections; i++){

current max value += fann abs(neuron it→weights[i]);
}

if(current max value > max possible value){
max possible value = current max value;

}
}

}

for(bits used for max = 0; max possible value ≥ 1; bits used for max++){
max possible value /= 2.0;

}

/∗ The maximum number of bits we shift the fix point, is the number
of bits in a integer, minus one for the sign, one for the minus
in stepwise sigmoid, and minus the bits used for the maximum.
This is devided by two, to allow multiplication of two fixed
point numbers.

∗/
calculated decimal point = (sizeof(int)∗8-2-bits used for max)/2;

if(calculated decimal point < 0){
decimal point = 0;

}else{
decimal point = calculated decimal point;

}

fixed multiplier = 1 � decimal point;

#ifdef DEBUG
printf("calculated decimal point=%d, decimal point=%u, bits used for max=%u\n",

calculated decimal point, decimal point, bits used for max);
#endif

/∗ save the decimal point on a seperate line ∗/
fprintf(conf, "%u\n", decimal point);

/∗ save the number layers ”num layers learning rate connection rate activa-
tion function hidden activation function output activation hidden steepness activa-
tion output steepness” ∗/

fprintf(conf, "%u %f %f %u %u %d %d\n", ann→last layer - ann→first layer, ann→learning rate,
ann→connection rate, ann→activation function hidden, ann→activation function output,
(int)(ann→activation hidden steepness ∗ fixed multiplier), (int)(ann→activation output steepness ∗
fixed multiplier));

}else{
/∗ save the number layers ”num layers learning rate connection rate activa-

tion function hidden activation function output activation hidden steepness activa-
tion output steepness” ∗/

fprintf(conf, "%u %f %f %u %u "FANNPRINTF" "FANNPRINTF"\n", ann→last layer -
ann→first layer, ann→learning rate, ann→connection rate, ann→activation function hidden,
ann→activation function output, ann→activation hidden steepness, ann→activation output steepness);

}
#else

/∗ save the decimal point on a seperate line ∗/
fprintf(conf, "%u\n", ann→decimal point);

/∗ save the number layers ”num layers learning rate connection rate activa-
tion function hidden activation function output activation hidden steepness activa-
tion output steepness” ∗/

fprintf(conf, "%u %f %f %u %u "FANNPRINTF" "FANNPRINTF"\n", ann→last layer -
ann→first layer, ann→learning rate, ann→connection rate, ann→activation function hidden,
ann→activation function output, ann→activation hidden steepness,
ann→activation output steepness);
#endif

for(layer it = ann→first layer; layer it 6= ann→last layer; layer it++){
/∗ the number of neurons in the layers (in the last layer, there is always one too many neurons, because of an unused bias) ∗/
fprintf(conf, "%u ", layer it→last neuron - layer it→first neuron);

}
fprintf(conf, "\n");

71

B.1 The library B SOURCE CODE

for(layer it = ann→first layer; layer it 6= ann→last layer; layer it++){
/∗ the number of connections to each neuron ∗/
for(neuron it = layer it→first neuron; neuron it 6= layer it→last neuron; neuron it++){

fprintf(conf, "%u ", neuron it→num connections);
}
fprintf(conf, "\n");

}

connected neurons = (ann→first layer+1)→first neuron→connected neurons;
weights = (ann→first layer+1)→first neuron→weights;
first neuron = ann→first layer→first neuron;

/∗ Now save all the connections.
We only need to save the source and the weight,
since the destination is given by the order.

The weight is not saved binary due to differences
in binary definition of floating point numbers.
Especially an iPAQ does not use the same binary
representation as an i386 machine.

∗/
for(i = 0; i < ann→total connections; i++){

#ifndef FIXEDFANN
if(save as fixed){

/∗ save the connection ”(source weight) ”∗/
fprintf(conf, "(%u %d) ",

connected neurons[i] - first neuron,
(int)floor((weights[i]∗fixed multiplier) + 0.5));

}else{
/∗ save the connection ”(source weight) ”∗/
fprintf(conf, "(%u "FANNPRINTF") ",

connected neurons[i] - first neuron, weights[i]);
}

#else
/∗ save the connection ”(source weight) ”∗/
fprintf(conf, "(%u "FANNPRINTF") ",

connected neurons[i] - first neuron, weights[i]);
#endif

}
fprintf(conf, "\n");

fclose(conf);

return calculated decimal point;
}

/∗ Save the train data structure.
∗/

void fann save train internal(struct fann train data∗ data, char ∗filename, unsigned int

save as fixed, unsigned int decimal point)
{

unsigned int num data = data→num data;
unsigned int num input = data→num input;
unsigned int num output = data→num output;
unsigned int i, j;

#ifndef FIXEDFANN
unsigned int multiplier = 1 � decimal point;

#endif

FILE ∗file = fopen(filename, "w");
if(!file){

printf("Unable to open train data file \"%s\" for writing.\n", filename);
return;

}

fprintf(file, "%u %u %u\n", data→num data, data→num input, data→num output);

for(i = 0; i < num data; i++){
for(j = 0; j < num input; j++){

#ifndef FIXEDFANN
if(save as fixed){

fprintf(file, "%d ", (int)(data→input[i][j]∗multiplier));
}else{

fprintf(file, FANNPRINTF" ", data→input[i][j]);
}

#else
fprintf(file, FANNPRINTF" ", data→input[i][j]);

#endif
}

72

B.1 The library B SOURCE CODE

fprintf(file, "\n");

for(j = 0; j < num output; j++){
#ifndef FIXEDFANN

if(save as fixed){
fprintf(file, "%d ", (int)(data→output[i][j]∗multiplier));

}else{
fprintf(file, FANNPRINTF" ", data→output[i][j]);

}
#else

fprintf(file, FANNPRINTF" ", data→output[i][j]);
#endif

}
fprintf(file, "\n");

}

fclose(file);
}

/∗ Seed the random function.
∗/

void fann seed rand()
{

FILE ∗fp = fopen("/dev/urandom", "r");
unsigned int foo;
struct timeval t;
if(!fp){

gettimeofday(&t, NULL);
foo = t.tv usec;

#ifdef DEBUG
printf("unable to open /dev/urandom\n");

#endif

}else{
fread(&foo, sizeof(foo), 1, fp);
fclose(fp);

}
srand(foo);

}

73

B.2 Test programs B SOURCE CODE

B.2 Test programs

B.2.1 xor train.c

#include <stdio.h>

/∗ In this file I do not need to include floatfann or doublefann,
because it is included in the makefile. Normaly you would need
to do a #include ”floatfann.h”.

∗/

int main()
{

fann type ∗calc out;
const float connection rate = 1;
const float learning rate = 0.7;
const unsigned int num input = 2;
const unsigned int num output = 1;
const unsigned int num layers = 3;
const unsigned int num neurons hidden = 4;
const float desired error = 0.0001;
const unsigned int max iterations = 500000;
const unsigned int iterations between reports = 1000;
struct fann ∗ann;
struct fann train data ∗data;

unsigned int i = 0;
unsigned int decimal point;

printf("Creating network.\n");

ann = fann create(connection rate, learning rate, num layers,
num input,
num neurons hidden,
num output);

printf("Training network.\n");

data = fann read train from file("xor.data");
fann train on data(ann, data, max iterations, iterations between reports, desired error);

printf("Testing network.\n");

for(i = 0; i < data→num data; i++){
calc out = fann run(ann, data→input[i]);
printf("XOR test (%f,%f) -> %f, should be %f, difference=%f\n",
data→input[i][0], data→input[i][1], ∗calc out, data→output[i][0], fann abs(∗calc out -

data→output[i][0]));
}

printf("Saving network.\n");

fann save(ann, "xor float.net");

decimal point = fann save to fixed(ann, "xor fixed.net");
fann save train to fixed(data, "xor fixed.data", decimal point);

printf("Cleaning up.\n");
fann destroy train(data);
fann destroy(ann);

return 0;
}

74

B.2 Test programs B SOURCE CODE

B.2.2 xor test.c

#include <time.h>
#include <sys/time.h>
#include <stdio.h>

/∗ In this file I do not need to include fixedfann, floatfann or doublefann,
because it is included in the makefile. Normaly you would need
to do a #include ”floatfann.h” or #include ”fixedfann.h”.

∗/

int main()
{

fann type ∗calc out;
unsigned int i;
int ret = 0;

struct fann ∗ann;
struct fann train data ∗data;

printf("Creating network.\n");

#ifdef FIXEDFANN
ann = fann create from file("xor fixed.net");

#else

ann = fann create from file("xor float.net");
#endif

if(!ann){
printf("Error creating ann --- ABORTING.\n");
return 0;

}

printf("Testing network.\n");

#ifdef FIXEDFANN
data = fann read train from file("xor fixed.data");

#else
data = fann read train from file("xor.data");

#endif

for(i = 0; i < data→num data; i++){
fann reset error(ann);
calc out = fann test(ann, data→input[i], data→output[i]);

#ifdef FIXEDFANN
printf("XOR test (%d, %d) -> %d, should be %d, difference=%f\n",
data→input[i][0], data→input[i][1], ∗calc out, data→output[i][0], (float)fann abs(∗calc out -

data→output[i][0])/fann get multiplier(ann));

if((float)fann abs(∗calc out - data→output[i][0])/fann get multiplier(ann) > 0.1){
printf("Test failed\n");
ret = -1;

}
#else

printf("XOR test (%f, %f) -> %f, should be %f, difference=%f\n",
data→input[i][0], data→input[i][1], ∗calc out, data→output[i][0], (float)fann abs(∗calc out -

data→output[i][0]));
#endif

}

printf("Cleaning up.\n");
fann destroy(ann);

return ret;
}

75

B.2 Test programs B SOURCE CODE

B.2.3 steepness train.c

/∗ In this file I do not need to include floatfann or doublefann,
because it is included in the makefile. Normaly you would need
to do a #include ”floatfann.h”.

∗/

#include <stdio.h>

void train on steepness file(struct fann ∗ann, char ∗filename,
unsigned int max epochs, unsigned int epochs between reports,
float desired error, float steepness start,
float steepness step, float steepness end)

{
float error;
unsigned int i, j;

struct fann train data ∗data = fann read train from file(filename);
if(epochs between reports){

printf("Max epochs %8d. Desired error: %.10f\n",
max epochs, desired error);

}

fann set activation hidden steepness(ann, steepness start);
fann set activation output steepness(ann, steepness start);
for(i = 1; i ≤ max epochs; i++){

/∗ train ∗/
fann reset error(ann);

for(j = 0; j 6= data→num data; j++){
fann train(ann, data→input[j], data→output[j]);

}

error = fann get error(ann);

/∗ print current output ∗/
if(epochs between reports &&

(i % epochs between reports == 0
|| i == max epochs
|| i == 1
|| error < desired error)){

printf("Epochs %8d. Current error: %.10f\n", i, error);
}

if(error < desired error){
steepness start += steepness step;
if(steepness start ≤ steepness end){

printf("Steepness: %f\n", steepness start);
fann set activation hidden steepness(ann, steepness start);
fann set activation output steepness(ann, steepness start);

}else{
break;

}
}

}
fann destroy train(data);

}

int main()
{

const float connection rate = 1;
const float learning rate = 0.7;
const unsigned int num input = 2;
const unsigned int num output = 1;
const unsigned int num layers = 3;
const unsigned int num neurons hidden = 4;
const float desired error = 0.0001;
const unsigned int max iterations = 500000;
const unsigned int iterations between reports = 1000;
unsigned int i;
fann type ∗calc out;

struct fann train data ∗data;

struct fann ∗ann = fann create(connection rate,
learning rate, num layers,
num input, num neurons hidden, num output);

data = fann read train from file("xor.data");

76

B.2 Test programs B SOURCE CODE

train on steepness file(ann, "xor.data", max iterations,
iterations between reports, desired error, 0.5, 0.1, 20.0);

fann set activation function hidden(ann, FANN THRESHOLD);
fann set activation function output(ann, FANN THRESHOLD);

for(i = 0; i 6= data→num data; i++){
calc out = fann run(ann, data→input[i]);
printf("XOR test (%f, %f) -> %f, should be %f, difference=%f\n",
data→input[i][0], data→input[i][1], ∗calc out, data→output[i][0],

(float)fann abs(∗calc out - data→output[i][0]));
}

fann save(ann, "xor float.net");

fann destroy(ann);
fann destroy train(data);

return 0;
}

77

B.3 Benchmark programs B SOURCE CODE

B.3 Benchmark programs

B.3.1 quality.cc

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include ”nets/backprop.h”
#include ”ctimer.h”
#include ”lwneuralnet.h”

unsigned int num errors = 0;
double error value = 0;

void clear error()
{

num errors = 0;
error value = 0;

}

void update error(fann type ∗output, fann type ∗desired output, unsigned int num output)
{

unsigned int i = 0;
/∗ calculate the error ∗/
for(i = 0; i < num output; i++){

error value += (desired output[i] - output[i]) ∗ (desired output[i] - output[i]);
}
num errors++;

}

double mean error()
{

return error value/(double)num errors;
}

void quality benchmark jneural(
struct fann train data ∗train data,
struct fann train data ∗test data,
FILE ∗train out, FILE ∗test out,
unsigned int num input, unsigned int num neurons hidden1,
unsigned int num neurons hidden2, unsigned int num output,
unsigned int seconds of training, unsigned int seconds between reports)

{
float train error, test error;
unsigned int i;
unsigned int epochs = 0;
double elapsed = 0;
double total elapsed = 0;
fann type ∗output;
struct backprop ∗ann;

if(num neurons hidden2){
ann = new backprop(0.7, num input, num output, 2, num neurons hidden1,

num neurons hidden2);
}else{

ann = new backprop(0.7, num input, num output, 1, num neurons hidden1);
}

calibrate timer();

while(total elapsed < (double)seconds of training){
/∗ train ∗/
elapsed = 0;
start timer();
while(elapsed < (double)seconds between reports){

for(i = 0; i 6= train data→num data; i++){
ann→set input(train data→input[i]);
ann→train on(train data→output[i]);

}

elapsed = time elapsed();
epochs++;

}
stop timer();
total elapsed += getSecs();

/∗ make report ∗/
clear error();

78

B.3 Benchmark programs B SOURCE CODE

for(i = 0; i 6= train data→num data; i++){
ann→set input(train data→input[i]);
output = ann→query output();
update error(output, train data→output[i], train data→num output);

}
train error = mean error();

clear error();
for(i = 0; i 6= test data→num data; i++){

ann→set input(test data→input[i]);
output = ann→query output();
update error(output, test data→output[i], test data→num output);

}
test error = mean error();

fprintf(train out, "%f %.20e %d\n", total elapsed, train error, epochs);
fprintf(test out, "%f %.20e %d\n", total elapsed, test error, epochs);
fprintf(stderr, ".");

}

delete ann;
}

void quality benchmark fann(float connection rate,
char ∗filename,
struct fann train data ∗train data,
struct fann train data ∗test data,
FILE ∗train out, FILE ∗test out,
unsigned int num input, unsigned int num neurons hidden1,
unsigned int num neurons hidden2, unsigned int num output,
unsigned int seconds of training, unsigned int seconds between reports)

{
float train error, test error;
unsigned int i, decimal point;
unsigned int epochs = 0;
double elapsed = 0;
double total elapsed = 0;
fann type ∗output;
struct fann ∗ann;
char fixed point file[256];

if(num neurons hidden2){
ann = fann create(connection rate, 0.7, 4,

num input, num neurons hidden1, num neurons hidden2, num output);
}else{

ann = fann create(connection rate, 0.7, 3,
num input, num neurons hidden1, num output);

}

calibrate timer();

while(total elapsed < (double)seconds of training){
/∗ train ∗/
elapsed = 0;
start timer();
while(elapsed < (double)seconds between reports){

for(i = 0; i 6= train data→num data; i++){
fann train(ann, train data→input[i], train data→output[i]);

}

elapsed = time elapsed();
epochs++;

}
stop timer();
total elapsed += getSecs();

/∗ make report ∗/
clear error();
for(i = 0; i 6= train data→num data; i++){

output = fann run(ann, train data→input[i]);
update error(output, train data→output[i], train data→num output);

}
train error = mean error();

clear error();
for(i = 0; i 6= test data→num data; i++){

output = fann run(ann, test data→input[i]);
update error(output, test data→output[i], test data→num output);

}
test error = mean error();

79

B.3 Benchmark programs B SOURCE CODE

fprintf(train out, "%f %.20e %d\n", total elapsed, train error, epochs);
fprintf(test out, "%f %.20e %d\n", total elapsed, test error, epochs);
fprintf(stderr, ".");

/∗ Save the data as fixed point, to allow for drawing of
a fixed point graph ∗/

if(connection rate == 1){
/∗ buffer overflow could occur here ∗/
sprintf(fixed point file, "%05d %f %s fixed", epochs, total elapsed, filename);
decimal point = fann save to fixed(ann, fixed point file);

sprintf(fixed point file, "%s fixed train %d", filename, decimal point);
fann save train to fixed(train data, fixed point file, decimal point);

sprintf(fixed point file, "%s fixed test %d", filename, decimal point);
fann save train to fixed(test data, fixed point file, decimal point);

}
}

fann destroy(ann);
}

void quality benchmark lwnn(
struct fann train data ∗train data,
struct fann train data ∗test data,
FILE ∗train out, FILE ∗test out,
unsigned int num input, unsigned int num neurons hidden1,
unsigned int num neurons hidden2, unsigned int num output,
unsigned int seconds of training, unsigned int seconds between reports)

{
float train error = 0;
float test error = 0;
unsigned int i;
unsigned int epochs = 0;
double elapsed = 0;
double total elapsed = 0;
fann type ∗output;
network t ∗ann;

if(num neurons hidden2){
ann = net allocate (4, num input, num neurons hidden1, num neurons hidden2, num output);

}else{
ann = net allocate (3, num input, num neurons hidden1, num output);

}

net set learning rate(ann, 0.7);

calibrate timer();

output = (fann type ∗)calloc(num output, sizeof(fann type));

while(total elapsed < (double)seconds of training){
/∗ train ∗/
elapsed = 0;
start timer();
while(elapsed < (double)seconds between reports){

for(i = 0; i 6= train data→num data; i++){
/∗ compute the outputs for inputs(i) ∗/
net compute (ann, train data→input[i], output);

/∗ find the error with respect to targets(i) ∗/
net compute output error (ann, train data→output[i]);

/∗ train the network one step ∗/
net train (ann);

}

elapsed = time elapsed();
epochs++;

}
stop timer();
total elapsed += getSecs();

/∗ make report ∗/

clear error();
for(i = 0; i 6= train data→num data; i++){

net compute (ann, train data→input[i], output);
update error(output, train data→output[i], train data→num output);

80

B.3 Benchmark programs B SOURCE CODE

}
train error = mean error();

clear error();
for(i = 0; i 6= test data→num data; i++){

net compute (ann, test data→input[i], output);
update error(output, test data→output[i], test data→num output);

}
test error = mean error();

fprintf(train out, "%f %.20e %d\n", total elapsed, train error, epochs);
fprintf(test out, "%f %.20e %d\n", total elapsed, test error, epochs);
fprintf(stderr, ".");

}

net free(ann);
}

int main(int argc, char∗ argv[])
{

/∗ parameters ∗/
unsigned int num neurons hidden1;
unsigned int num neurons hidden2;
unsigned int seconds of training;
unsigned int seconds between reports;

struct fann train data ∗train data, ∗test data;
FILE ∗train out, ∗test out;

if(argc 6= 10){
printf("usage %s net train file test file train file out test file out num hidden1

num hidden2 seconds of training seconds between reports\n", argv[0]);
return -1;

}

num neurons hidden1 = atoi(argv[6]);
num neurons hidden2 = atoi(argv[7]);
seconds of training = atoi(argv[8]);
seconds between reports = atoi(argv[9]);

train data = fann read train from file(argv[2]);
test data = fann read train from file(argv[3]);

if(strlen(argv[4]) == 1 && argv[4][0] == ’-’){
train out = stdout;

}else{
train out = fopen(argv[4], "w");

}

if(strlen(argv[5]) == 1 && argv[5][0] == ’-’){
test out = stdout;

}else{
test out = fopen(argv[5], "w");

}

fprintf(stderr, "Quality test of %s %s ", argv[1], argv[2]);

if(strcmp(argv[1], "lwnn") == 0){
quality benchmark lwnn(train data, test data,

train out, test out,
train data→num input, num neurons hidden1,
num neurons hidden2, train data→num output,
seconds of training, seconds between reports);

}else if(strcmp(argv[1], "fann") == 0){
quality benchmark fann(1, argv[4], train data, test data,

train out, test out,
train data→num input, num neurons hidden1,
num neurons hidden2, train data→num output,
seconds of training, seconds between reports);

}else if(strcmp(argv[1], "fann half") == 0){
quality benchmark fann(0.75, NULL, train data, test data,

train out, test out,
train data→num input, num neurons hidden1,
num neurons hidden2, train data→num output,
seconds of training, seconds between reports);

}else if(strcmp(argv[1], "jneural") == 0){
quality benchmark jneural(train data, test data,

train out, test out,
train data→num input, num neurons hidden1,

81

B.3 Benchmark programs B SOURCE CODE

num neurons hidden2, train data→num output,
seconds of training, seconds between reports);

}

fprintf(stderr, "\n");

fann destroy train(train data);
fann destroy train(test data);

return 0;
}

82

B.3 Benchmark programs B SOURCE CODE

B.3.2 quality fixed.c

#include <stdio.h>
#include ”fixedfann.h”

int main(int argc, char∗ argv[])
{

struct fann train data ∗train data, ∗test data;
FILE ∗train out, ∗test out;
struct fann ∗ann;
float train error, test error;
unsigned int i, j;
unsigned int epochs = 0;
double total elapsed = 0;
char file[256];

if(argc < 6){
printf("usage %s train file test file train file out test file out fixed conf files\n",

argv[0]);
return -1;

}

if(strlen(argv[3]) == 1 && argv[3][0] == ’-’){
train out = stdout;

}else{
train out = fopen(argv[3], "w");

}

if(strlen(argv[4]) == 1 && argv[4][0] == ’-’){
test out = stdout;

}else{
test out = fopen(argv[4], "w");

}

for(j = 5; j < argc; j++){
ann = fann create from file(argv[j]);

sprintf(file, "%s %d", argv[1], fann get decimal point(ann));
train data = fann read train from file(file);

sprintf(file, "%s %d", argv[2], fann get decimal point(ann));
test data = fann read train from file(file);

fann reset error(ann);
for(i = 0; i 6= train data→num data; i++){

fann test(ann, train data→input[i], train data→output[i]);
}
train error = fann get error(ann);

fann reset error(ann);
for(i = 0; i 6= test data→num data; i++){

fann test(ann, test data→input[i], test data→output[i]);
}
test error = fann get error(ann);

sscanf(argv[j], "%d %lf", &epochs, &total elapsed);
fprintf(train out, "%f %.20e %d\n", total elapsed, train error, epochs);
fprintf(test out, "%f %.20e %d\n", total elapsed, test error, epochs);
fprintf(stderr, ".");

fann destroy(ann);
}

return 0;
}

83

B.3 Benchmark programs B SOURCE CODE

B.3.3 performance.cc

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include ”ctimer.h”

#ifndef FIXEDFANN

#include ”nets/backprop.h”
#include ”lwneuralnet.h”

void performance benchmark jneural(FILE ∗out, fann type ∗input,
unsigned int num neurons, unsigned int seconds per test)

{
unsigned int i, total connections;
fann type ∗output;

backprop ∗ann = new backprop(0.7, num neurons, num neurons, 2, num neurons, num neurons);

total connections = (num neurons+1) ∗ num neurons ∗ 3;

start timer();

for(i = 0; time elapsed() < (double)seconds per test; i++){
ann→set input(input);
output = ann→query output();

}

stop timer();

fprintf(out, "%d %.20e\n", num neurons, getNanoPerN(i)/total connections);
fprintf(stderr, "%d ", num neurons);

delete ann;
}

void performance benchmark lwnn(FILE ∗out, fann type ∗input,
unsigned int num neurons, unsigned int seconds per test)

{
unsigned int i, total connections;
fann type ∗output;

output = (fann type∗)calloc(num neurons, sizeof(fann type));
network t ∗ann = net allocate (4, num neurons, num neurons, num neurons, num neurons);

total connections = num neurons ∗ num neurons ∗ 3;

start timer();

for(i = 0; time elapsed() < (double)seconds per test; i++){
net compute (ann, input, output);

}

stop timer();

fprintf(out, "%d %.20e\n", num neurons, getNanoPerN(i)/total connections);
fprintf(stderr, "%d ", num neurons);

net free(ann);
free(output);

}

void performance benchmark fann noopt(FILE ∗out, fann type ∗input,
unsigned int num neurons, unsigned int seconds per test)

{
unsigned int i, total connections;
fann type ∗output;

struct fann ∗ann = fann create(1, 0.7, 4,
num neurons, num neurons, num neurons, num neurons);

//just to fool the optimizer into thinking that the network is not fully connected
ann→connection rate = 0.9;

total connections = (num neurons+1) ∗ num neurons ∗ 3;

start timer();

for(i = 0; time elapsed() < (double)seconds per test; i++){

84

B.3 Benchmark programs B SOURCE CODE

output = fann run(ann, input);
}

stop timer();

fprintf(out, "%d %.20e\n", num neurons, getNanoPerN(i)/total connections);
fprintf(stderr, "%d ", num neurons);
fann destroy(ann);

}

void performance benchmark fann thres(FILE ∗out, fann type ∗input,
unsigned int num neurons, unsigned int seconds per test)

{
unsigned int i, total connections;
fann type ∗output;

struct fann ∗ann = fann create(1, 0.7, 4,
num neurons, num neurons, num neurons, num neurons);

fann set activation function hidden(ann, FANN THRESHOLD);
fann set activation function output(ann, FANN THRESHOLD);

total connections = (num neurons+1) ∗ num neurons ∗ 3;

start timer();

for(i = 0; time elapsed() < (double)seconds per test; i++){
output = fann run(ann, input);

}

stop timer();

fprintf(out, "%d %.20e\n", num neurons, getNanoPerN(i)/total connections);
fprintf(stderr, "%d ", num neurons);
fann destroy(ann);

}

#endif

void performance benchmark fann(FILE ∗out, fann type ∗input,
unsigned int num neurons, unsigned int seconds per test)

{
unsigned int i, total connections;
fann type ∗output;

struct fann ∗ann = fann create(1, 0.7, 4,
num neurons, num neurons, num neurons, num neurons);

total connections = (num neurons+1) ∗ num neurons ∗ 3;

start timer();

for(i = 0; time elapsed() < (double)seconds per test; i++){
output = fann run(ann, input);

}

stop timer();

fprintf(out, "%d %.20e\n", num neurons, getNanoPerN(i)/total connections);
fprintf(stderr, "%d ", num neurons);
fann destroy(ann);

}

int main(int argc, char∗ argv[])
{

/∗ parameters ∗/
unsigned int num neurons first;
unsigned int num neurons last;
double multiplier;
unsigned int seconds per test;
FILE ∗out;

fann type ∗input;
unsigned int num neurons, i;

if(argc 6= 7){
printf("usage %s net file out num neurons first num neurons last multiplier

seconds per test\n", argv[0]);
return -1;

}

85

B.3 Benchmark programs B SOURCE CODE

calibrate timer();

num neurons first = atoi(argv[3]);
num neurons last = atoi(argv[4]);
multiplier = atof(argv[5]);
seconds per test = atoi(argv[6]);

if(strlen(argv[2]) == 1 && argv[2][0] == ’-’){
out = stdout;

}else{
out = fopen(argv[2], "w");

}

fprintf(stderr, "Performance test of %s %s ", argv[1], argv[2]);

input = (fann type∗)calloc(num neurons last, sizeof(fann type));
for(i = 0; i < num neurons last; i++){

input[i] = fann random weight(); //fill input with random variables
}

for(num neurons = num neurons first;
num neurons ≤ num neurons last; num neurons = (int)(num neurons ∗ multiplier)){

#ifndef FIXEDFANN
if(strcmp(argv[1], "lwnn") == 0){

performance benchmark lwnn(out, input,
num neurons, seconds per test);

}else if(strcmp(argv[1], "fann") == 0){
#endif

performance benchmark fann(out, input,
num neurons, seconds per test);

#ifndef FIXEDFANN
}else if(strcmp(argv[1], "fann noopt") == 0){

performance benchmark fann noopt(out, input,
num neurons, seconds per test);

}else if(strcmp(argv[1], "fann thres") == 0){
performance benchmark fann thres(out, input,

num neurons, seconds per test);
}else if(strcmp(argv[1], "jneural") == 0){

performance benchmark jneural(out, input,
num neurons, seconds per test);

}
#endif

}

fprintf(stderr, "\n");
free(input);

return 0;
}

86

B.3 Benchmark programs B SOURCE CODE

B.3.4 benchmark.sh

#!/bin/sh
test/performance fann fann performance.out 1 2048 2 20
test/performance fann noopt fann noopt performance.out 1 2048 2 20
test/performance fann thres fann thres performance.out 1 2048 2 20
test/performance fixed fann fann fixed performance.out 1 2048 2 20
test/performance lwnn lwnn performance.out 1 2048 2 20
test/performance jneural jneural performance.out 1 512 2 20

#./performance arm fann fann performance arm.out 1 512 2 20
#./performance arm fann noopt fann noopt performance arm.out 1 512 2 20
#./performance arm fann thres fann thres performance arm.out 1 512 2 20
#./performance fixed arm fann fann fixed performance arm.out 1 512 2 20
#./performance arm lwnn lwnn performance arm.out 1 512 2 20
#./performance arm jneural jneural performance arm.out 1 512 2 20

rm -f ∗ fixed
test/quality fann datasets/mydata/building.train datasets/mydata/building.test
building fann train.out building fann test.out 16 0 200 1
test/quality fixed building fann train.out fixed train building fann train.out fixed test
building fann fixed train.out building fann fixed test.out ∗ fixed
test/quality fann half datasets/mydata/building.train datasets/mydata/building.test
building fann half train.out building fann half test.out 16 0 200 1
test/quality lwnn datasets/mydata/building.train datasets/mydata/building.test
building lwnn train.out building lwnn test.out 16 0 200 1
test/quality jneural datasets/mydata/building.train datasets/mydata/building.test
building jneural train.out building jneural test.out 16 0 200 1

rm -f ∗ fixed
test/quality fann datasets/mydata/card.train datasets/mydata/card.test card fann train.out
card fann test.out 32 0 200 1
test/quality fixed card fann train.out fixed train card fann train.out fixed test
card fann fixed train.out card fann fixed test.out ∗ fixed
test/quality fann half datasets/mydata/card.train datasets/mydata/card.test card fann half train.out
card fann half test.out 32 0 200 1
test/quality lwnn datasets/mydata/card.train datasets/mydata/card.test card lwnn train.out
card lwnn test.out 32 0 200 1
test/quality jneural datasets/mydata/card.train datasets/mydata/card.test card jneural train.out
card jneural test.out 32 0 200 1

rm -f ∗ fixed
test/quality fann datasets/mydata/gene.train datasets/mydata/gene.test gene fann train.out
gene fann test.out 4 2 200 1
test/quality fixed gene fann train.out fixed train gene fann train.out fixed test
gene fann fixed train.out gene fann fixed test.out ∗ fixed
test/quality fann half datasets/mydata/gene.train datasets/mydata/gene.test gene fann half train.out
gene fann half test.out 4 2 200 1
test/quality lwnn datasets/mydata/gene.train datasets/mydata/gene.test gene lwnn train.out
gene lwnn test.out 4 2 200 1
test/quality jneural datasets/mydata/gene.train datasets/mydata/gene.test gene jneural train.out
gene jneural test.out 4 2 200 1

rm -f ∗ fixed
test/quality fann datasets/mydata/mushroom.train datasets/mydata/mushroom.test
mushroom fann train.out mushroom fann test.out 32 0 200 1
test/quality fixed mushroom fann train.out fixed train mushroom fann train.out fixed test
mushroom fann fixed train.out mushroom fann fixed test.out ∗ fixed
test/quality fann half datasets/mydata/mushroom.train datasets/mydata/mushroom.test
mushroom fann half train.out mushroom fann half test.out 32 0 200 1
test/quality lwnn datasets/mydata/mushroom.train datasets/mydata/mushroom.test
mushroom lwnn train.out mushroom lwnn test.out 32 0 200 1
test/quality jneural datasets/mydata/mushroom.train datasets/mydata/mushroom.test
mushroom jneural train.out mushroom jneural test.out 32 0 200 1

rm -f ∗ fixed
test/quality fann datasets/mydata/soybean.train datasets/mydata/soybean.test
soybean fann train.out soybean fann test.out 16 8 200 1
test/quality fixed soybean fann train.out fixed train soybean fann train.out fixed test
soybean fann fixed train.out soybean fann fixed test.out ∗ fixed
test/quality fann half datasets/mydata/soybean.train datasets/mydata/soybean.test
soybean fann half train.out soybean fann half test.out 16 8 200 1
test/quality lwnn datasets/mydata/soybean.train datasets/mydata/soybean.test
soybean lwnn train.out soybean lwnn test.out 16 8 200 1
test/quality jneural datasets/mydata/soybean.train datasets/mydata/soybean.test
soybean jneural train.out soybean jneural test.out 16 8 200 1

rm -f ∗ fixed
test/quality fann datasets/mydata/thyroid.train datasets/mydata/thyroid.test thyroid fann train.out
thyroid fann test.out 16 8 200 1

87

B.3 Benchmark programs B SOURCE CODE

test/quality fixed thyroid fann train.out fixed train thyroid fann train.out fixed test
thyroid fann fixed train.out thyroid fann fixed test.out ∗ fixed
test/quality fann half datasets/mydata/thyroid.train datasets/mydata/thyroid.test
thyroid fann half train.out thyroid fann half test.out 16 8 200 1
test/quality lwnn datasets/mydata/thyroid.train datasets/mydata/thyroid.test thyroid lwnn train.out
thyroid lwnn test.out 16 8 200 1
test/quality jneural datasets/mydata/thyroid.train datasets/mydata/thyroid.test
thyroid jneural train.out thyroid jneural test.out 16 8 200 1

88

