
attach_database(gds) attach_database(gds)

NAME
gds_$attach_database −open database

SYNTAX

status = gds_$attach_database(
status_vector.vector_long.out,
db_name_length.ushort.in,
db_name.vector_char.in,
db_handle.ulong.inout,
parm_buffer_length.ulong.in,
parm_buffer_address.vector_byte.in)

DESCRIPTION
Thegds_$attach_databaseroutine opens an existing database for program access.Chapter 3 discusses the
use of this routine.

For many applications, you may find that theready statement is easier to code than a call to
gds_$attach_database. Except for overriding the two defaults on a database attach, the statement and the
attach call are functionally equivalent. However, if you want to override the defaults on the attach, you
should call thegds_$attach_databaseroutine.

Also, if the module does not contain any other statements, you might call thegds_$routine to avoid the
extra step of preprocessing the program withgpre to handle theready statement.

PARAMETERS
status_vector A vector of 20 longwords that the access method uses to return error messages to the calling
program. Ifyou pass zero as the address of the status vector and encounter an error, writes the message(s)
to standard error and aborts your program.See Chapter 8 for a discussion of the status vector.

db_name_length
db_name The length of the file name and the file name of the file that contains the database.If the length is
zero, the access method assumes thatdb_name is null-terminated. If you program inC, you can take
advantage of this convention. However, non-C programs must supply a non-zero value for the length.

db_handle Identifier for the database you want to attach.The handle must be zero at the time of the call.
Otherwise, the access method returns an error.

parm_buffer_length
parm_buffer_address The length in bytes and address of the parameter buffer. The calling program uses the
parameter buffer to pass information about the database to the access method.The parameter buffer
consists of a version number followed by a contiguous series ofclumplets:

1

attach_database(gds) attach_database(gds)

Syntax: Clumplet Format

parm_buffer ::= version_number clumplet...

version_number ::= 1

clumplet ::= type.ubytelength.ubytevalue.vector_byte

Each clumplet describes itself, including an itemtype to describe the parameter being passed, thelength of
the clumplet, and thevalue being passed.

DPB PARAMETERS
Parameters for the database parameter block fall into three catagories.They are:

• Special control on a normal attach (gds_$dpb_dbkey_scopeandgds_$dpb_num_buffers).

• System management functions (gds_$dpb_sweep, gds_$dpb_verify , gds_$dpb_enable_journal,
and gds_$dpb_disable_journal). Several parameters are used to invoke system management
functions. Some of them require exclusive access to the database.When you call
gds_$attach_databasewith a dpb parameter that implies exclusive access, the system will wait
until all users finish before attaching the database.When the function completes, the database is
attached and can be used for normal data access functions.

• Database creation.Such parameters apply only to newly created databases and are described in
the manual page forgds_$create_database.

A description of thedpb parameters used in calls to the attach database routine follows:

gds_$dpb_dbkey_scopeScope of dbkey context. If you explicitly reference a dbkey, the access method
returns either the same record it returned when you last referenced the dbkey or the error code
gds_$bad_dbkey. The format of this clumplet is:

type ubyte gds_$dpb_dbkey_scope

length ubyte length of clumplet in bytes (1)

value byte 0 (entire transaction) or
1 (entire database session)

gds_$dpb_num_buffers This parameter sets the number of buffers allocated for use with the database.
The number must be between 10 and 100.Each buffer holds one database page, so the buffer size is
determined by the database page size.The default is 25 buffers. Increasingthe number of buffers will
improve performance for multi-way joins. You can reduce the number of buffers when access is primarily
through a single relation.The format of this clumplet is:

type ubyte gds_$dpb_num_buffers

length ubyte length of clumplet in bytes (1)

value byte number of buffers to allocate

gds_$dpb_sweepThis parameter causes the access method to read all records in the database and remove

2

attach_database(gds) attach_database(gds)

versions that are no longer needed.Old versions are always removed when the record is accessed, so an
active database does not need sweeping.If, however, some records are modified intensely, then ignored, the
sweep option will free unused space.The format of this clumplet is:

type ubyte gds_$dpb_sweep

length ubyte length of clumplet in bytes (1)

value ubyte gds_$dpb_records

gds_$dpb_verify This parameter causes the access method to validate that internal structures are
consistent. Itrequires exclusive access to the database.The format of this clumplet is:

type ubyte gds_$dpb_verify

length ubyte length of clumplet in bytes (2)

value uword suboption bits.Suboption flags ofgds_$dpb_verify
direct the system to do a more or less complete
validation, and to correct or only report errors it finds.
The suboptions are:

— gds_$dpb_pages(default): Verifies that all pages
not in the free list are actually in use, and that the
structure of every page is correct. By default,
orphaned pages are returned to the free list.

— gds_$dpb_records: Verifies that all records and
record fragments are linked to relations, removes all
old versions, and validates the internal structure of
records. Bydefault, space used by orphaned records
and old versions is reclaimed, and the transaction
inventory pages are reset.

— gds_$dpb_no_update: Reports errors, but makes
no changes to the database.Specifically, it does not
add pages to the free list or reclaim space.

— gds_$dpb_repair: Corrects errors even if the
correction may involve the loss of data.

gds_$dpb_enable_journal This parameter names the journaling subsystem that will maintain an after-
image journal for the database.It requires exclusive access to the database.The format of this clumplet is:

3

attach_database(gds) attach_database(gds)

type ubyte gds_$dpb_enable_journal

length ubyte length of journal name in bytes

value vector_char journalsystem name

gds_$dpb_disable_journal This parameter turns off after-image journaling for the database.It requires
exclusive access to the database.The format of this clumplet is:

type ubyte gds_$dpb_disable_journal

length ubyte 0

EXAMPLE
. source: /gds/harrison/work/call_int/examp_17

CHAR *database, string [64], *p, *q, *dpb, journal [256];

long *handle, status_vector [20];

/* get database and journal file names from input command */

p = dpb = string;

*p++ = dpb_enable_journal;

*p++ = strlen (journal);

for (q = journal; *q;)

*p++ = *q++;

dpb_length = p - dpb;

gds_$attach_database (status_vector,

0, /* name is null terminated */

*database,

handle,

dpb_length,

*dpb);

if (status_vector [1])

gds_$print_status (status_vector);

if (handle)

gds_$detach_database (status_vector, handle);

SEE ALSO
See the entries in this chapter for:

• gds_$create_database

• gds_$database_info

• gds_$create_database

See also theready statement in

4

attach_database(gds) attach_database(gds)

DIAGNOSTICS
See Chapter 8 for a discussion of errors and error handling.

5

blob_info(gds) blob_info(gds)

NAME
gds_$blob_info −blob information call

SYNTAX

status = gds_$blob_info (
status_vector.vector_long.out,
blob_handle.ulong.in,
item_list_buffer_length.ushort.in,
item_list_buffer_address.vector_byte.in,
result_buffer_length.ushort.in,
result_buffer_address.unspec.out)

DESCRIPTION
The gds_$blob_info routine provides information about an open blob. You can callgds_$blob_info to
inquire about blob characteristics, such as how much space your program needs to process it.

The calling program passes its request for information through the item list buffer, and returns the
information to the result buffer. See Chapter 2 for an example of a call to a similar routine
(gds_$database_info) and the parsing of the result buffer.

PARAMETERS
status_vector A vector of 20 longwords that the access method uses to return error messages to the calling
program. Ifyou pass zero as the address of the status vector and encounter an error, writes the message(s)
to standard error and aborts your program.See Chapter 8 for a discussion of the status vector.

The returned status code indicates only that the access method accepted the request for information; it does
not mean that it understood the request or that it supplied all requested information.Your program must
interpret the contents of the result buffer.

blob_handle Identifies the blob about which you would like some information.A call to gds_$create_blob
or gds_$open_blobestablishes this handle.

item_list_buffer_length
item_list_buffer_address Provides the length and address of the item list buffer. The item list buffer is a
regular byte vector with no structure.The calling program lists the items about which it requires
information in the item list buffer. These items are listed below under the heading ‘‘Information Items.’’

result_buffer_length
result_buffer_address Provides the length and address of the result buffer. The access method returns the
requested information to the result buffer. The result buffer has the following format:

1

blob_info(gds) blob_info(gds)

Syntax: Information Call Result Buffer Clumplet

result_buffer ::= clumplet...

clumplet ::= type.ubytelength.ushortvalue.short

The value oftype is the item you requested in the item list buffer. These items are listed below under the
heading ‘‘Information Items.’’

The clumplets returned to the result buffer are not aligned.Furthermore, binary numbers are in a generic
format, which you must convert to a datatype native to your computer before interpreting them.In a
generic binary value, the least significant byte is first, and the most significant is last.The sign is in the last
byte. To interpret a binary value returned by an information call:

• Determine the size, which can be1, 2, or 4 bytes.

• Rev erse the order of the bytes.

The following routine converts the contents of the result buffer into something you can read:

REV_integer (ptr, length)

unsigned char *ptr;

short length;

{

/**************************************

*

* R E V _ i n t e g e r

*

*

* Functional description:

* Pick up (and convert) an integer

* of length 1, 2, or 4 bytes.

*

**************************************/

int value;

short shift;

value = shift = 0;

while (--length >= 0)

{

value += (*ptr++) << shift;

shift += 8;

}

return value;

}

2

blob_info(gds) blob_info(gds)

INFORMA TION ITEMS
You can ask about the following items in the item list buffer:

gds_$info_blob_num_segmentsThe number of segments that comprise the blob field.The packet
returned to the result buffer has the following format:

type ubyte gds_$info_blob_num_segments

length ushort lengthof clumplet in bytes

value unspec total number of blob segments

gds_$info_blob_max_segmentThe length of the longest segment in the blob field.The packet returned to
the result buffer has the following format:

type ubyte gds_$info_blob_max_segment

length ushort lengthof clumplet in bytes

value unspec length of longest segment

gds_$info_blob_total_lengthThe total length of the blob. The packet returned to the result buffer has the
following format:

type ubyte gds_$info_blob_total_length

length ushort lengthof clumplet in bytes

value unspec total length of blob field

gds_$info_blob_typeThe blob type.The packet returned to the result buffer has the following format:

type ubyte gds_$info_blob_type

length ushort lengthof clumplet in bytes

value unspec 0 (segment) or 1 (reserved)

In addition to the above items for which you can request information, the access method may also return
the following status messages to the result buffer:

gds_$info_end End of result buffer with no errors. The packet returned to the result buffer has the
following format:

3

blob_info(gds) blob_info(gds)

type ubyte gds_$info_end

length ushort lengthof clumplet (0)

gds_$info_truncated Input into the result buffer was truncated.The access method returns a truncated
clumplet as the last clumplet in the result buffer if the result buffer was not large enough to hold all the
information you requested.If your program encounters this clumplet, it means that all preceding
information is valid, but at least one item is missing.The packet returned to the result buffer has the
following format:

type ubyte gds_$info_truncated

gds_$info_error An error. The access method returns an error clumplet if an item of requested information
was not available. Thisclumplet has the same form as other clumplets, but the information portion contains
only the information type value and a code indicating why the information was not available. Thepacket
returned to the result buffer has the following format:

type ubyte gds_$info_error

length ushort lengthof clumplet (2)

value short rude error message

EXAMPLE
static char blob_items [] = {

gds_$info_max_segment,

gds_$info_number_segments,

gds_$info_blob_type};

CHAR blob_info [32];

/* Open the blob and get its vital statistics */

if (gds_$open_blob (status_vector,

DB,

gds_$trans,

blob,

*blob_id))

error ("gds_$open_blob failed", status_vector);

if (gds_$blob_info (status_vector,

blob,

sizeof (blob_items),

blob_items,

sizeof (blob_info),

blob_info))

error ("gds_$blob_info failed", status_vector);

4

blob_info(gds) blob_info(gds)

SEE ALSO
See the entries in this chapter for:

• gds_$create_blob

• gds_$open_blob

DIAGNOSTICS
See Chapter 8 for a discussion of errors and error handling.

5

cancel_blob(gds) cancel_blob(gds)

NAME
gds_$cancel_blob −remove blob

SYNOPSIS

status = gds_$cancel_blob(
status_vector.vector_long.out,
blob_handle.ulong.inout)

DESCRIPTION
The gds_$cancel_blobstatement releases internal storage used by a discarded blob and sets the blob
handle to null.

When you create a blob, temporarily stores it in the database.If you fail to close the blob, the temporary
storage space remains allocated.Furthermore, the handle is not null, ready to cause problems for anything
so unwise as to trip over it.

Because a call to this routine doesnot produce an error if the handle is null, it is good practice to call this
routine before you call eithergds_$open_blobor gds_$create_blob. This practice ensures that the access
method cleans up earlier blob operations.If you abort a blob operation or if you do not trust the routine
that passed the blob id, you should callgds_$cancel_blobbefore opening or creating a blob.

PARAMETERS
status_vector A vector of 20 longwords that the access method uses to return error messages to the calling
program. Ifyou pass zero as the address of the status vector and encounter an error, writes the message(s)
to standard error and aborts your program.See Chapter 8 for a discussion of the status vector.

blob_handle Identifies the blob you want to cancel.This routine sets the handle to zero.Unlike othergds
routines, this routine returns success even if the handle is null.

EXAMPLE
. source:

gds_$cancel_blob (*gds_null, blob);

SEE ALSO
See the entries in this chapter for:

• gds_$close_blob

• gds_$open_blob

• gds_$create_blob

DIAGNOSTICS
See Chapter 8 for a discussion of errors and error handling.

1

close_blob(gds) close_blob(gds)

NAME
gds_$close_blob −finish blob

SYNOPSIS

status = gds_$close_blob (
status_vector.vector_long.out,
blob_handle.ulong.inout)

DESCRIPTION
The gds_$close_blobstatement releases system resources associated with blob update or retrieval. You
should callgds_$close_blobas soon as you finish reading or writing a blob.

If you fail to close a blob you created, you may lose some of the data.Because the remote interface buffers
segment transfer between participating nodes, it may truncate the last segment you write unless you
explicitly close the blob.

You cannot read from or write to a closed blob without re-opening it with a call togds_$open_blob.

PARAMETERS
status_vector A vector of 20 longwords that the access method uses to return error messages to the calling
program. Ifyou pass zero as the address of the status vector and encounter an error, writes the message(s)
to standard error and aborts your program.See Chapter 8 for a discussion of the status vector.

blob_handle A non-zero value established in a call togds_$create_blobor gds_$open_blobthat identifies
the blob you want to close.This routine sets the value of the handle to zero.

EXAMPLE
if (gds_$close_blob (status_vector,

from_blob))

ERRQ_database_error (from_dbb, status_vector);

SEE ALSO
See the entries in this chapter for:

• gds_$cancel_blob

• gds_$open_blob

• gds_$create_blob

DIAGNOSTICS
See Chapter 8 for a discussion of errors and error handling.

1

commit_transaction(gds) commit_transaction(gds)

NAME
gds_$commit_transaction −commit transaction

SYNOPSIS

status = gds_$commit_transaction(
status_vector.vector_long.out,
transaction_handle.ulong.inout)

DESCRIPTION
The gds_$commit_transaction routine commits an active transaction. A successful call to
gds_$commit_transaction:

• Certifies database changes made during the transaction as permanent

• Unwinds active requests

• Cancels open blobs

If you have questions about the importance or effects of the commit operation, you are reading the wrong
book. SeeChapter 4 of this manual for a discussion of transactions.

The access method automatically executes a call togds_$prepare_transactionfor transactions that update
more than one database.However, you can call the prepare routine yourself.See Chapter 4 for more
information about the two-phase commit operation.

If you are writing an interactive utility that starts transactions automatically for the user, you should put an
automatic commit and detach in the normal exit routine to avoid the confusion that results when an
inexperienced user undoes a morning’s work by exiting and rolling back.

Note that acommit statement is shorter and easier to code than a call togds_$commit_transaction.
However, if the program or module does not contain any other statements, you might call thegdsroutine to
avoid the extra step of preprocessing the program withgpre to handle thecommit statement.

PARAMETERS
status_vector A vector of 20 longwords that the access method uses to return error messages to the calling
program. Ifyou pass zero as the address of the status vector and encounter an error, writes the message(s)
to standard error and aborts your program.See Chapter 8 for a discussion of the status vector.

transaction_handle A non-zero value that identifies the transaction you want to commit. A call to
gds_$start_transactionestablishes this handle.If the call to this routine is successful, the access method
sets the transaction handle to zero.Otherwise, it leaves it unchanged.

EXAMPLE
. double backslash n in example

if (gds_$commit_transaction (status, trans))

{

fprintf (’Battle stations, battle stations!\n’);

gds_$print_status (status);

}

1

commit_transaction(gds) commit_transaction(gds)

SEE ALSO
See the entries in this chapter for:

• gds_$prepare_transaction

• gds_$unwind_request

• gds_$cancel_blob

• gds_$transaction_info

DIAGNOSTICS
See Chapter 8 for a discussion of errors and error handling.

2

compile_request(gds) compile_request(gds)

NAME
gds_$compile_request −compile request

SYNOPSIS

status = gds_$compile_request(
status_vector.vector_long.out,
db_handle.ulong.in,
request_handle.ulong.inout,
blr_string_length.ushort.in,
blr_string_address.vector_byte.in)

DESCRIPTION
Thegds_$compile_requestroutine compiles a request passed inBLR form into an internal format that the
access method can execute. Theinternal format, called anexecution tree, has all field and relation
references resolved, all view and computed field references expanded, and its access strategy optimized.

The compile request call does not take a transaction handle, so compiled requests are not bound to any one
transaction. Therefore,you can start a request that was compiled during a late, perhaps lamented
transaction. Call gds_$start_request and pass the request handle returned by the call to
gds_$compile_requestto start a request.

By saving a compiled request for re-use, you avoid the cost of a second compilation.In general, saving
compiled requests is good ideaif they will be used again. An interactive program that generates requests to
satisfy user queries should probably not save compiled requests because it is unlikely that it can re-use a
request or even match a compiled request to a new query,

Because a compiled request occupies memory, release it if you know that it will not be re-used.Call
gds_$release_requestto release memory and other system resources associated with a compiled request.

PARAMETERS
status_vector A vector of 20 longwords that the access method uses to return error messages to the calling
program. Ifyou pass zero as the address of the status vector and encounter an error, writes the message(s)
to standard error and aborts your program.See Chapter 8 for a discussion of the status vector.

dbhandle Identifier for the database against which the request will be executed. A call to
gds_$attach_databaseestablishes this handle.

request_handle Identifier returned by the access method.The handle identifies the request you want
compiled for calls to gds_$start_request, gds_$start_and_send, gds_$request_info, and
gds_$unwind_request. The request handle must be null on input.

blr_string_length
blr_string_address The length and address of the BLR string that contains the request.

EXAMPLE
. source: /gds/harrison/work/call_int/examp_compile

. double backslash n in example

request = NULL;

blr_length = blr - blr_buffer;

1

compile_request(gds) compile_request(gds)

if (gds_$compile_request (status_vector,

GDS_REF (DB),

GDS_REF (request),

blr_length,

blr_buffer))

{

ERROR ("gds_$compile failed\n", status_vector);

}

SEE ALSO
See the entries in this chapter for:

• gds_$start_request

• gds_$release_request

DIAGNOSTICS
The access method returns an error if:

• The BLR string contains values that are not defined, incorrect combinations of values, or
references to objects that do not exist in the database.

• The metadata you pass is invalid. You may encounter this problem if you have changed the
metadata since you created theBLR.

See Chapter 8 for a discussion of errors and error handling.

2

create_blob(gds) create_blob(gds)

NAME
gds_$create_blob −store new blob

SYNOPSIS

status = gds_$create_blob(
status_vector.vector_long.out,
db_handle.ulong.in,
transaction_handle.ulong.in,
blob_handle.ulong.inout,
blob_id.uquad.out)

DESCRIPTION
Thegds_$create_blobstatement creates the context for storing a blob and opens the blob for write access.

A successful call togds_$create_blobcreates the environment for storing a blob. Howev er, the access
method does not store the blob until ablr_assignment statement assigns it to a relation.Chapter 7
provides a detailed description of the steps involved in storing a blob.

PARAMETERS
status_vector A vector of 20 longwords that the access method uses to return error messages to the calling
program. Ifyou pass zero as the address of the status vector and encounter an error, writes the message(s)
to standard error and aborts your program.See Chapter 8 for a discussion of the status vector.

db_handle Identifier for the database where the blob will be created.A call to gds_$attach_database
establishes this handle.

transaction_handle Identifier for the transaction in which the blob will be created.A call to
gds_$start_transactionestablishes this handle.

blob_handle Identifier returned by the access method.The blob handle is a name that identifies the new
blob in the context of the current transaction.The blob handle must be zero on input.

blob_id Internal identifier for the blob assigned by the access method.The identifier must have a value of
gds_$blob_null.

The access method usesblob_id when it opens the blob with a call togds_$open_blob. Howev er, the value
of blob_id when you create the blob isnot the same as when you open the blob.

When you create the blob, it is essentially an ‘‘orphan’’ until a blr_assignmentstatement assigns the value
of blob_id to the blob field in a relation.

The access method automatically changes the value ofblob_id at the time of assignment.Once you assign
blob_id to its relation, the creation value disappears forever. Therefore, if you open the newly created blob
later, you must readblob_id from the record.If you try to save the oldblob_id and re-use it, the access
method returns an error.

1

create_blob(gds) create_blob(gds)

EXAMPLE
to_blob = NULL;

if (gds_$create_blob (status_vector,

to_dbb_handle,

to_dbb_transaction,

to_blob,

*to_dsc_address))

ERRQ_database_error (to_dbb_handle, status_vector);

SEE ALSO
See the entry in this chapter for:

• gds_$put_segment

DIAGNOSTICS
See Chapter 8 for a discussion of errors and error handling.

2

create_database(gds) create_database(gds)

NAME
gds_$create_database −create new database

SYNOPSIS

status = gds_$create_database(
status_vector.vector_long.out,
db_name_length.ushort.in,
db_name.vector_char.in,
db_handle.ulong.inout,
parm_buffer_length.ulong.in,
parm_buffer_address.vector_byte.in)

DESCRIPTION
Thegds_$create_databaseroutine creates a new, empty database, and attaches it for the calling program.
Although the database contains no user data, it does contain a full set of system relations that describe
themselves.

In general, you rarely need this routine.The primary users of thegds_$create_databaseroutine aregdef
and the restore process ofgbak. You will call this routine if you develop an application that dynamically
creates individual databases for an electronic mail system, calendar management, a digital bulletin board,
and so on.Another use would be a data definition utility intended for a particular environment.

This routine supersedes any database with the same name.Therefore, if you want to keep your present
databases, try to attach a database before you create it.If the attach succeeds, do not call create.

PARAMETERS
status_vector A vector of 20 longwords that the access method uses to return error messages to the calling
program. Ifyou pass zero as the address of the status vector and encounter an error, writes the message(s)
to standard error and aborts your program.See Chapter 8 for a discussion of the status vector.

db_name_length
db_name The length of the file name and the file name of the file that will contain the database.If the
length is zero, the access method assumes thatdb_name is null-terminated.If you are programming in C,
you can take advantage of this convention. Non-Cprogrammers must supply a non-zero value for the
length.

db_handle Identifier for the database you want to attach.The handle must be zero at the time of the call.
Otherwise, the access method returns an error.

parm_buffer_length
parm_buffer_address The length in bytes and address of the parameter buffer. The calling program uses the
parameter buffer to pass information about the database to the access method.The parameter buffer
consists of a version number followed by a contiguous series ofclumplets:

1

create_database(gds) create_database(gds)

parm_buffer ::= version_number clumplet...

version_number ::= 1

clumplet ::= type.bytelength.ubytevalue.vector_byte

Each clumplet describes itself, including atype, thelength of the clumplet, and thevalue you want to set.

DPB PARAMETERS
You can pass the following values to the access method:

gds_$dpb_page_size Page size in blocks.The default page size is 1024 bytes, but you should override the
default if you have a very large database.The choices for page size are 1024, 2048, 4096, and 8192.If
your database will contain relations with more than 20,000 records, you should increase the page size from
the default to 2048.For much larger relations, increase the size again. Thepurpose of increasing the page
size is to increase the size of an index page and reduce the depth of the index tree. Becauseof key
compression, there is no hard and fast rule on the size of an index entry. An index node has four bytes of
overhead, plus the compressed key. There are ten bytes of overhead on the page.

Note that you can write a simple program to create a database with a larger page size, and then usegdef to
modify that database to include your relations, fields, and so on.

This clumplet has the following format:

type ubyte gds_$dpb_page_size

length ubyte length of clumplet

value byte page size in bytes

gds_$dpb_num_buffers This parameter sets the number of buffers allocated for use with the database.The
number must be between 10 and 100.Each buffer holds one database page, so the buffer size is determined
by the database page size.The default is 25 buffers. Increasingthe number of buffers will improve
performance for multi-way joins. You can reduce the number of buffers when access is primarily through a
single relation.The format of this clumplet is:

type ubyte gds_$dpb_num_buffers

length ubyte length of clumplet in bytes (1)

value byte number of buffers to allocate

gds_$dpb_dbkey_scope Scope of dbkey context. If you explicitly reference a dbkey, the access method
returns either the same record it returned when you last referenced the dbkey or the error code
gds_$bad_dbkey. The format of this clumplet is:

2

create_database(gds) create_database(gds)

type ubyte gds_$dpb_dbkey_scope

length ubyte length of clumplet in bytes (1)

value byte 0 or 1

The scope can be the entire transaction (value of0) or the entire database attach session (value of1).

EXAMPLE
. source: /gds/harrison/work/call_int/examp_18

if (gds_$create_database (gds_$status,

0, /* name is null-terminated */

*file_name),

DB,

0, 0)) /* use default page size */

{

gds_$print_status (gds_$status);

sprintf (s, "Couldn’t create database \"%s\"", file_name);

}

SEE ALSO
See the entry in this chapter for:

• gds_$attach_database

DIAGNOSTICS
See Chapter 8 for a discussion of errors and error handling.

3

database_info(gds) database_info(gds)

NAME
gds_$database_info −database information call

SYNTAX

status = gds_$database_info (
status_vector.vector_long.out,
db_handle.ulong.in,
item_list_buffer_length.ushort.in,
item_list_buffer_address.vector_byte.in,
result_buffer_length.ushort.in,
result_buffer_address.unspec.out)

DESCRIPTION
The gds_$database_info routine returns information about an attached database.You might call
gds_$database_info for the following reasons:

• Prepare to reconnect to transactions in limbo.This is, in fact, the primary use for calling the
gds_$database_info routine. If a transaction fails after a successful call to
gds_$prepare_transaction, but before a call togds_$commit_transaction completes, that
transaction becomes a ‘‘zombie’’ and must be forcibly terminated.The gfix utility locates and
eliminates zombies, but you may need more direct control in a sophisticated, critical application.

See Chapter 2 for an extract fromgfix, a utility that performs such functions.

• Determine how much space is used for page caches.The space is, of course, the product of the
number of buffers and the page size.To affect this information, you must first attach the database,
call gds_$database_info, then detach and attach again using the database parameter block.

• Monitor performance.For example, you might want to compare the efficiency of two update
strategies, such as updating a sorted or unsorted stream.

The calling program passes its request for information through the item list buffer, and the access method
returns the information to the result buffer. See Chapter 2 for an example of a call togds_$database_info
and the parsing of the result buffer.

PARAMETERS
status_vector A vector of 20 longwords that the access method uses to return error messages to the calling
program. Ifyou pass zero as the address of the status vector and encounter an error, writes the message(s)
to standard error and aborts your program.See Chapter 8 for a discussion of the status vector.

The returned status code indicates only that the access method accepted the request for information; it does
not mean that it understood the request or that it supplied all requested information.Your program must
interpret the contents of the result buffer.

db_handle Identifies the database about which you want information. A call to gds_$attach_database
establishes this handle.

item_list_buffer_length
item_list_buffer_address Provides the length and address of the item list buffer. The item list buffer is a

1

database_info(gds) database_info(gds)

regular byte vector with no structure.The calling program lists the items about which it requires
information in the item list buffer. These items are listed below under the heading ‘‘Information Items.’’

result_buffer_length
result_buffer_address Provides the length and address of the result buffer. The access method returns the
requested information to the result buffer. The result buffer has the following format:

Syntax: Information Call Result Buffer Clumplet

result_buffer ::= clumplet...

clumplet ::= type.ubytelength.ushortvalue.short

The value oftype is the item you requested in the item list buffer. These items are listed below under the
heading ‘‘Information Items.’’

The clumplets returned to the result buffer are not aligned.Furthermore, binary numbers are in a generic
format, which you must convert to a datatype native to your computer before interpreting them.In a
generic binary value, the least significant byte is first, and the most significant is last.The sign is in the last
byte. To interpret a binary value returned by an information call:

• Determine the size, which can be1, 2, or 4 bytes.

• Rev erse the order of the bytes.

The following routine converts the contents of the result buffer into something you can read:

REV_integer (ptr, length)

unsigned char *ptr;

short length;

{

/**************************************

*

* R E V _ i n t e g e r

*

*

* Functional description:

* Pick up (and convert) an integer

* of length 1, 2, or 4 bytes.

*

**************************************/

int value;

short shift;

value = shift = 0;

while (--length >= 0)

{

2

database_info(gds) database_info(gds)

value += (*ptr++) << shift;

shift += 8;

}

return value;

}

INFORMA TION ITEMS
You can ask about the following items in the item list buffer:

gds_$info_page_sizePage size of database.The packet returned to the result buffer has the following
format:

type ubyte gds_$info_page_size

length short length of clumplet in bytes

value unspec page size in bytes

gds_$info_num_buffers Number of buffers currently allocated.The packet returned to the result buffer
has the following format:

type ubyte gds_$info_num_buffers

length short length of clumplet in bytes

value unspec number of allocated buffers

gds_$info_limbo Identification numbers of transactions in limbo.The packet returned to the result buffer
has the following format:

type ubyte gds_$info_limbo

length short length of clumplet

value longword * vector of transaction ids

In addition to the above items for which you can request information, the access method may also return
the following status messages to the result buffer:

gds_$info_end End of result buffer with no errors. The packet returned to the result buffer has the
following format:

3

database_info(gds) database_info(gds)

type ubyte gds_$info_end

length short length of clumplet (0)

gds_$info_truncated Input into the result buffer was truncated.The access method returns a truncated
clumplet as the last clumplet in the result buffer if the result buffer was not large enough to hold all the
information you requested.If your program encounters this clumplet, it means that all preceding
information is valid, but at least one item is missing.The packet returned to the result buffer has the
following format:

type ubyte gds_$info_truncated

gds_$info_error Error. The access method returns an error clumplet if an item of requested information
was not available. Thisclumplet has the same form as other clumplets, but the information portion contains
only the information type value and a code indicating why the information was not available. Thepacket
returned to the result buffer has the following format:

type ubyte gds_$info_error

length short length of clumplet

value short rude error message

The gds_$database_info routine can return information about items that mean more to the developers of
the access method than they will to your application.However, you can ask about them if you really want
to know:

gds_$info_readsNumber of page reads since the database was attached.The packet returned to the result
buffer has the following format:

type ubyte gds_$info_reads

length short length of clumplet

value longword numberof page reads
since last attach call

gds_$info_writesNumber of page writes since the database was attached.The packet returned to the result
buffer has the following format:

type ubyte gds_$info_writes

length short length of clumplet

value longword numberof page writes
since last attach call

4

database_info(gds) database_info(gds)

gds_$info_fetchesNumber of internal page accesses since the database was attached.The packet returned
to the result buffer has the following format:

type ubyte gds_$info_fetches

length short length of clumplet

value longword number of page accesses since last attach call

gds_$info_marks Number of internal page update declarations since the database was attached.The
packet returned to the result buffer has the following format:

type ubyte gds_$info_marks

length short length of clumplet

value longword number of page update declarations since last attach
call

gds_$info_max_memoryMost memory used at one time since the database was attached.The packet
returned to the result buffer has the following format:

type ubyte gds_$info_max_memory

length short length of clumplet

value longword highwater point of memory usage since last attach
call

gds_$info_current_memoryAmount of memory currently in use.The packet returned to the result buffer
has the following format:

type ubyte gds_$info_current_memory

length short length of clumplet

value longword amountof memory currently in use

EXAMPLE
The following call finds out about transactions in limbo for subsequent reconnects or rollbacks:

if (gds_$database_info (status_vector,

handle,

sizeof (limbo_info),

limbo_info,

sizeof (buffer),

buffer))

{

5

database_info(gds) database_info(gds)

gds_$print_status (status_vector);

return;

} You must interpret the contents of the result buffer. The gds_$print_statusroutine displays the contents of the status vector.

See Chapter 2 for an example of code that parses the information returned to the result buffer.

SEE ALSO
See the entry in this chapter for:

• gds_$attach_database

DIAGNOSTICS
See Chapter 8 for a discussion of errors and error handling.

6

detach_database(gds) detach_database(gds)

NAME
gds_$detach_database −detach and close database

SYNTAX

status = gds_$detach_database(
status_vector.vector_long.out,
db_handle.ulong.inout)

DESCRIPTION
Thegds_$detach_databaseroutine detaches an attached database.You should call this routine (or issue a
finish statement) to release system resources when you are finished using a database.Detaching a database
reduces the use of virtual memory by releasing:

• The cache

• Mapping windows

• Data structures such as compiled requests and transaction state information

If your program is attached to a remote database, a call togds_$detach_databasealso releases the buffers
and structures that control the remote interface on your node and the remote server on the node where the
database is stored.

If you call gds_$detach_databasewhile there are active transactions, the access method rolls back those
transactions. Ifthere are any transactions in limbo, they stay there.

For most applications, thefinish statement is easier to code than a call togds_$detach_database. Both
perform the same functions.There are no options that you can choose on the detach call.

However, you can callgds_$detach_databaseif your program does not contain any other statements.
Coding the detach call eliminates the need for preprocessing the program withgpre.

PARAMETERS
status_vector A vector of 20 longwords that the access method uses to return error messages to the calling
program. Ifyou pass zero as the address of the status vector and encounter an error, writes the message(s)
to standard error and aborts your program.See Chapter 8 for a discussion of the status vector.

db_handle Identifier for the database you want to detach. A call to gds_$attach_databaseor
gds_$create_databaseestablishes this handle.A successful return from the detach call sets the handle to
null. Thedatabase handle must not be null on input.

EXAMPLE
The following statement detaches a database:

if (handle)

gds_$detach_database (status_vector, handle);

See Chapter 2 for an example of this program in context.

1

detach_database(gds) detach_database(gds)

SEE ALSO
See the entries forgds_$attach_databaseandgds_$create_databasein this chapter.

DIAGNOSTICS
See Chapter 8 for a discussion of errors and error handling.

2

get_segment(gds) get_segment(gds)

NAME
gds_$get_segment −read segment

SYNOPSIS

status = gds_$get_segment(
status_vector.vector_long.out,
blob_handle.ushort.in,
actual_segment_length.ushort.out,
segment_buffer_length.ushort.in,
segment_buffer_address.unspec.out)

DESCRIPTION
The gds_$get_segmentroutine reads a portion of a blob field.This routine is theread call for blob
manipulation. Beforeyou can read a blob, you must open it with a call togds_$open_blobor an
equivalent routine. You may want to handle blobs with direct calls even in primarily and especially in
programs.

What a call togds_$get_segmentdoes depends on previous blob calls. If the last call that used
blob_handle was:

• gds_$get_blob, it reads the next segment.

• gds_$open_blob, it reads the first segment.

Chapter 7 provides a detailed description of the steps involved in accessing a blob.

PARAMETERS
status_vector A vector of 20 longwords that the access method uses to return error messages to the calling
program. Ifyou pass zero as the address of the status vector and encounter an error, writes the message(s)
to standard error and aborts your program.See Chapter 8 for a discussion of the status vector.

blob_handle Identifier for the blob. A call to gds_$open_blobduring the current transaction establishes
this handle.

actual_segment_length Number of bytes actually passed to the segment buffer by the access method.This
parameter is useful if the blob segment is shorter than the segment buffer.

If the blob segment is longer than the buffer, the blob segment will be truncated.In this case, the access
method returns the status codegds_$segment to indicate that the segment buffer contains a truncated
segment.

segment_buffer_length
segment_buffer_address The length and address of the segment buffer into which the access method reads
blob segments.

EXAMPLE
. source: /gds/harrison/work/call_int/examp_get_segment

/*

* Copy one blob into another. First create the new blob,

1

get_segment(gds) get_segment(gds)

* then open the old one, and loop getting segments from

* one and putting them to the other. Finally, close both.

* ERRQ_database_error prints the database status and performs

* reasonable cleanup.

*/

if (gds_$create_blob (status_vector,

to_dbb_handle,

to_dbb_transaction,

to_blob,

*to_dsc_address))

ERRQ_database_error (to_dbb_handle, status_vector);

if (gds_$open_blob (status_vector,

from_dbb_handle,

from_dbb_transaction,

from_blob,

*from_dsc_address))

ERRQ_database_error (from_dbb_handle, status_vector);

while (!gds_$get_segment (status_vector,

from_blob,

length,

sizeof (buffer),

buffer))

if (gds_$put_segment (status_vector,

to_blob,

length,

buffer))

ERRQ_database_error (to_dbb, status_vector);

if (gds_$close_blob (status_vector,

from_blob))

ERRQ_database_error (from_dbb, status_vector);

if (gds_$close_blob (status_vector,

to_blob))

ERRQ_database_error (to_dbb, status_vector);

SEE ALSO
See the entries in this chapter for:

• gds_$get_blob

• gds_$open_blob

• gds_$blob_info

DIAGNOSTICS
See Chapter 8 for a discussion of errors and error handling.

2

open_blob(gds) open_blob(gds)

NAME
gds_$open_blob −prepare a blob for retrieval

SYNOPSIS

status = gds_$open_blob(
status_vector.vector_long.out,
db_handle.ulong.in,
transaction_handle.ulong.in,
blob_handle.ulong.inout,
blob_id.uquad.in)

DESCRIPTION
Thegds_$open_blobroutine opens a blob so that its data may be retrieved.

It makes good sense to callgds_$cancel_blobbefore you open a blob.

PARAMETERS
status_vector A vector of 20 longwords that the access method uses to return error messages to the calling
program. Ifyou pass zero as the address of the status vector and encounter an error, writes the message(s)
to standard error and aborts your program.See Chapter 8 for a discussion of the status vector.

db_handle Identifier for the database that contains the blob. A call to gds_$attach_databaseestablishes
this handle.

transaction_handle Identifier for the transaction in which the blob will be processed.A call to
gds_$start_transactionestablishes this handle.

blob_handle Identifier returned by the access method.The blob handle uniquely identifies the blob that you
want opened.Read this from the field in your target record.

blob_id Internal identifier of the blob assigned by the access method.The identifier must be zero on input.

EXAMPLE
if (gds_$open_blob (status_vector,

from_dbb_handle,

from_dbb_transaction,

from_blob,

*from_dsc_address))

ERRQ_database_error (from_dbb_handle, status_vector);

SEE ALSO
See the entries in this chapter for:

• gds_$cancel_blob

• gds_$close_blob

• gds_$get_segment

1

open_blob(gds) open_blob(gds)

DIAGNOSTICS
See Chapter 8 for a discussion of errors and error handling.

2

prepare_transaction(gds) prepare_transaction(gds)

NAME
gds_$prepare_transaction −prepare to commit

SYNOPSIS

status = gds_$prepare_transaction(
status_vector.vector_long.out,
transaction_handle.ulong.in)

DESCRIPTION
The gds_$prepare_transaction routine performs the first phase of a two-phase commit for transactions
that involve more than one database.If you do not callgds_$prepare_transactionbefore trying to commit
such a transaction the access method automatically calls it when you callgds_$commit_transaction.

You may also want to callgds_$prepare_transactionif you have to coordinate database activity with non-
database operations.

Chapter 4 discusses the use of this routine for both single and multiple database transactions.

PARAMETERS
status_vector A vector of 20 longwords that the access method uses to return error messages to the calling
program. Ifyou pass zero as the address of the status vector and encounter an error, writes the message(s)
to standard error and aborts your program.See Chapter 8 for a discussion of the status vector.

transaction_handle Identifies the transaction to commit.A call to one of the start transaction routines
establishes this handle.

EXAMPLE
. double backslash n in example

if (gds_$prepare_transaction (status_vector, trans)

{

fprintf ("\n*** error during prepare ***\n");

gds_$print_status (status_vector);

locate_and_fix ("rollback");

}

SEE ALSO
See the entries in this chapter for:

• gds_$commit_transaction

• gds_$rollback_transaction

• gds_$transaction_info

See also the discussion of thegbak utility in

DIAGNOSTICS
See Chapter 8 for a discussion of errors and error handling.

1

put_segment(gds) put_segment(gds)

NAME
gds_$put_segment −write blob

SYNOPSIS

status = gds_$put_segment(
status_vector.vector_long.out,
blob_handle.ulong.in,
segment_buffer_length.ushort.in,
segment_buffer_address.unspec.in)

DESCRIPTION
Thegds_$put_segmentroutine writes the next segment or portion of a blob.

You cannot read segments written with calls togds_$put_segmentuntil you close the blob with a call to
gds_$close_blob.

PARAMETERS
status_vector A vector of 20 longwords that the access method uses to return error messages to the calling
program. Ifyou pass zero as the address of the status vector and encounter an error, writes the message(s)
to standard error and aborts your program.See Chapter 8 for a discussion of the status vector.

blob_handle Identifier for the blob to which you want to write. A call to gds_$create_blobestablishes this
handle.

segment_buffer_length
segment_buffer_address The length and address of the segment buffer that passes data to the access
method.

EXAMPLE
. source: /gds/harrison/work/call_int/examp_put_blob

if (gds_$put_segment (status_vector,

to_blob,

length,

buffer))

ERRQ_database_error (to_dbb, status_vector);

SEE ALSO
See the entries in this chapter for:

• gds_$create_blob

• gds_$close_blob

• gds_$blob_info

DIAGNOSTICS
See Chapter 8 for a discussion of errors and error handling.

1

receive(gds) receive(gds)

NAME
gds_$receive −receive message

SYNOPSIS

status = gds_$receive (
status_vector.vector_long.out,
request_handle.ulong.in,
message_type.ushort.in,
message_length.ushort.in,
message_address.unspec.out,
instantiation.ushort.in)

DESCRIPTION
Thegds_$receive routine transfers a formatted message from the access method to the calling program.

The gds_$receive call accepts data sent by the access method to the program with ablr_send statement
that processes the same message type.If there is no correspondingblr_send statement in the request, the
access method returns a synchronization error and unwinds the request.

PARAMETERS
status_vector A vector of 20 longwords that the access method uses to return error messages to the calling
program. Ifyou pass zero as the address of the status vector and encounter an error, writes the message(s)
to standard error and aborts your program.See Chapter 8 for a discussion of the status vector.

request_handle Identifier for the request that defined the message.A call to gds_$compile_request
establishes this handle, and a call togds_$start_requestor gds_$start_and_sendactivates the request.

message_type Flag that identifies type of message in message buffer. Theblr_messagestatement provides
the message type and structure for the message.

message_length
message_address Length in bytes and address of the calling program’s message buffer. The blr_message
statement provides the message type and structure for the message.Your program must provide a
corresponding buffer with that structure.

instantiation Incarnation of the request.This parameter avoids the cost of recompilation in a request that is
called recursively. The instantiation parameter in this call identifies the instance of request you want to
hear from.See the entries forgds_$start_requestor gds_$start_and_sendin this chapter.

EXAMPLE
. source: /gds/harrison/work/call_int/examp_receive

EXEC_receive (message)

MSG message;

{

/**************************************

*

* E X E C _ r e c e i v e

1

receive(gds) receive(gds)

*

*

* Functional description

* Receive a message from a running request.

*

**************************************/

REQ request;

long status_vector [20];

request = message->msg_request;

if (gds_$receive (status_vector,

request->req_handle,

message->msg_number,

message->msg_length,

*message->msg_buffer,

message->level))

db_error (request, status_vector);

}

SEE ALSO
See the entries in this chapter for:

• gds_$send

• gds_$start_request

• gds_$start_and_send

See also the entries in Chapter 10 for:

• blr_send

• blr_message

DIAGNOSTICS
See Chapter 8 for a discussion of errors and error handling.

2

reconnect_transaction(gds) reconnect_transaction(gds)

NAME
gds_$reconnect_transaction −reconnect transaction

SYNOPSIS

status = gds_$reconnect_transaction(
status_vector.vector_long.out,
db_handle.ulong.in,
transaction_handle.ulong.inout,
trans_id_length.ushort.in,
trans_id.vector_byte.in)

DESCRIPTION
The gds_$reconnect_transactionroutine connects a transaction with a status of limbo to a new parent
process. Chapter4 discusses the conditions under which a transaction might become disconnected and how
to deal with it.

When you reconnect to a transaction, the only valid operations are commit and rollback.If you try to use
the reconnected transaction in any other way, the call or statement fails and the access method returns an
error.

For some applications, you may choose to exert close control and write your own routines for locating and
expunging transactions in limbo.Thegds_$reconnect_transactioncall supports such a utility.

PARAMETERS
status_vector A vector of 20 longwords that the access method uses to return error messages to the calling
program. Ifyou pass zero as the address of the status vector and encounter an error, writes the message(s)
to standard error and aborts your program.See Chapter 8 for a discussion of the status vector.

db_handle Identifier for the database against which the transaction is running.A call to
gds_$attach_databaseestablishes this handle.

transaction_handle Identifier for the transaction that you want to reconnect.This handle must be zero on
input.

trans_id_length
trans_id Length of transaction identifier and id itself.

EXAMPLE
static reconnect (handle, number, switches)

int *handle;

long number;

SHORT switches;

{

/**************************************

*

* r e c o n n e c t

*

1

reconnect_transaction(gds) reconnect_transaction(gds)

*

* Functional description:

* Commit or rollback a named transaction.

* Invert_integer takes a byte length and

* the address of a number and reverses the

* bytes.

*

**************************************/

int *transaction;

long id;

long status_vector [20];

id = INVERT_integer (&number, 4);

transaction = NULL;

if (gds_$reconnect_transaction (status_vector,

handle,

transaction,

sizeof (id),

id))

{

gds_$print_status (status_vector);

return;

}

if (switches & sw_commit)

gds_$commit_transaction (status_vector, transaction);

else

gds_$rollback_transaction (status_vector, transaction);

if (status_vector [1])

gds_$print_status (status_vector);

}

SEE ALSO
See the entries in this chapter for:

• gds_$prepare_transaction

• gds_$commit_transaction

• gds_$rollback_transaction

DIAGNOSTICS
See Chapter 8 for a discussion of errors and error handling.

2

release_request(gds) release_request(gds)

NAME
gds_$release_request −terminate request

SYNOPSIS

status = gds_$release_request(
status_vector.vector_long.out,
request_handle.ulong.inout)

DESCRIPTION
Thegds_$release_requestroutine frees the memory used by the execution tree of a compiled request and
sets the request handle to null.Releasing an active request causes it, and all its instantiations, to unwind.

Most compiled programs use a relatively small (fewer than 50) number of requests and re-use them as the
program iterates through its internal loops.For such a program, the cost of recompilation overrides the
savings of released memory.

However, for an interactive program that generates requests in response to user input, the likelihood of re-
using an old request is low while the number of requests is potentially high.Such a program should call
gds_$release_requestonce a request has been terminated.

You can callgds_$release_requestfrom a compiled program if it makes a large (greater than 75) number
of requests and you can predict that certain requests will not be re-executed.

Once you have released a request, you must compile it again before you can re-use it.Call
gds_$compile_requestto compile the request.

PARAMETERS
status_vector A vector of 20 longwords that the access method uses to return error messages to the calling
program. Ifyou pass zero as the address of the status vector and encounter an error, writes the message(s)
to standard error and aborts your program.See Chapter 8 for a discussion of the status vector.

request_handle Identifier for the request you want to release.A call to gds_$compile_requestestablishes
this handle.

EXAMPLE
. /gds/harrison/work/call_int/examp_release

GEN_release ()

{

/**************************************

*

* G E N _ r e l e a s e

*

*

* Functional description:

* Release any compiled requests following

* execution or abandonment of a request.

* Just recurse around releasing requests.

*

1

release_request(gds) release_request(gds)

**************************************/

long status_vector [20];

for (request = top_request; request; request = request->req_next)

if (request->req_handle && request->req_active)

if (gds_$release_request (status_vector,

request->req_handle))

gds_$print_status (status_vector);

}

SEE ALSO
See the entries in this chapter for:

• gds_$unwind_request

• gds_$compile_request

• gds_$request_info

DIAGNOSTICS
See Chapter 8 for a discussion of errors and error handling.

2

request_info(gds) request_info(gds)

NAME
gds_$request_info −information call

SYNTAX

status = gds_$request_info (
status_vector.vector_long.out,
request_handle.ulong.in,
item_list_length.ushort.in,
item_list_buffer_address.vector_byte.in,
result_buffer_length.ushort.in,
result_buffer_address.unspec.out,
instantiation.ushort.in)

DESCRIPTION
Thegds_$request_info routine returns information about a compiled request.

In all likelihood, nothing but the standard remote interface would ever use this call.The remote interface
calls this routine when it sets up buffers, handles error conditions, and manages pipelined communication.

Some special applications may require a customized remote interace or a layer on top of the database to
emulate multiple database requests.Thegds_$request_info routine is essential for such applications.

The calling program passes its request for information through the item list buffer, and the access method
returns the information to the result buffer. See Chapter 2 for an example of a call to a similar routine
(gds_$database_info) and the parsing of the result buffer.

PARAMETERS
status_vector A vector of 20 longwords that the access method uses to return error messages to the calling
program. Ifyou pass zero as the address of the status vector and encounter an error, writes the message(s)
to standard error and aborts your program.See Chapter 8 for a discussion of the status vector.

The returned status code indicates only that the access method accepted the request for information; it does
not mean that it understood the request or that it supplied all requested information.Your program must
interpret the contents of the result buffer.

request_handle Identifier for the request about which you want information. A call to
gds_$compile_requestestablishes this handle, and a call togds_$start_requestactivates the request.

item_list_buffer_length
item_list_buffer_address Provides the length and address of the item list buffer. The item list buffer is a
regular byte vector with no structure.The calling program lists the items about which it requires
information in the item list buffer. These items are listed below under the heading ‘‘Information Items.’’

result_buffer_length
result_buffer_address Provides the length and address of the result buffer. The access method returns the
requested information to the result buffer. The result buffer has the following format:

1

request_info(gds) request_info(gds)

Syntax: Information Call Result Buffer Clumplet

result_buffer ::= clumplet...

clumplet ::= type.ubytelength.ushortvalue.short

The value oftype is the item you requested in the item list buffer. These items are listed below under the
heading ‘‘Information Items.’’

The clumplets returned to the result buffer are not aligned.Furthermore, binary numbers are in a generic
format, which you must convert to a datatype native to your computer before interpreting them.In a
generic binary value, the least significant byte is first, and the most significant is last.The sign is in the last
byte. To interpret a binary value returned by an information call:

• Determine the size, which can be1, 2, or 4 bytes.

• Rev erse the order of the bytes.

The following routine converts the contents of the result buffer into something you can read:

REV_integer (ptr, length)

unsigned char *ptr;

short length;

{

/**************************************

*

* R E V _ i n t e g e r

*

*

* Functional description:

* Pick up (and convert) an integer

* of length 1, 2, or 4 bytes.

*

**************************************/

int value;

short shift;

value = shift = 0;

while (--length >= 0)

{

value += (*ptr++) << shift;

shift += 8;

}

return value;

}

2

request_info(gds) request_info(gds)

instantiation Incarnation of the request.A recursive routine may actually involve sev eral active versions of the same request.This

parameter specifies which instance you would like to know about.

INFORMA TION ITEMS
You can ask about the following items in the item list buffer:

gds_$info_number_messagesNumber of different request message types.The packet returned to the
result buffer has the following format:

type ubyte gds_$info_number_messages

length ushort lengthof clumplet in bytes

value unspec number of message types
referenced in compiled request

gds_$info_max_messageHighest numbered message type.The packet returned to the result buffer has the
following format:

type ubyte gds_$info_max_message

length ushort lengthof clumplet in bytes

value unspec number of highest message type

gds_$info_max_sendLength of longest send message.The packet returned to the result buffer has the
following format:

type ubyte gds_$info_max_send

length ushort lengthof clumplet in bytes

value unspec length of longest message to be sent

gds_$info_max_receive Length of longest receive message. Thepacket returned to the result buffer has
the following format:

type ubyte gds_$info_max_receive

length ushort lengthof clumplet in bytes

value unspec length of longest message to receive

gds_$info_stateCurrent status of the request.The packet returned to the result buffer has the following
format:

3

request_info(gds) request_info(gds)

type ubyte gds_$info_state

length ushort lengthof clumplet in bytes

value unspec status of request. The status of the request can be:

— gds_$info_active: The request is busy, happy, and
quiet.

— gds_$info_inactive: Request is not running.

— gds_$info_send: Request is waiting for program
to receive a message.

— gds_$info_receive: Request is waiting for
program to send a message.

— gds_$info_select: Request is waiting for one of
several messages to be sent from program.

gds_$info_message_numberCurrent message for send.The packet returned to the result buffer has the
following format:

type ubyte gds_$info_message_number

length ushort lengthof clumplet in bytes

value unspec what message type involved in send or receive

gds_$info_message_sizeSend message length.The packet returned to the result buffer has the following
format:

type ubyte gds_$info_message_size

length ushort lengthof clumplet in bytes

value unspec length of message to be sent or returned

In addition to the above items for which you can request information, the access method may also return
the following status messages to the result buffer:

gds_$info_end End of result buffer with no errors. The packet returned to the result buffer has the
following format:

type ubyte gds_$info_end

length ushort lengthof clumplet in bytes

gds_$info_truncated Input into the result buffer was truncated.The access method returns a truncated
clumplet as the last clumplet in the result buffer if the result buffer was not large enough to hold all the
information you requested.If your program encounters this clumplet, it means that all preceding

4

request_info(gds) request_info(gds)

information is valid, but at least one item is missing.The packet returned to the result buffer has the
following format:

type ubyte gds_$info_truncated

gds_$info_error An error. The access method returns an error clumplet if an item of requested information
was not available. Thisclumplet has the same form as other clumplets, but the information portion contains
only the information type value and a code indicating why the information was not available. Thepacket
returned to the result buffer has the following format:

type ubyte gds_$info_error

length ushort lengthof clumplet in bytes

value short rude error message

EXAMPLE
. source: /gds/harrison/work/call_int/examp_req_info

static CHAR request_info [] =

{ inf_state, inf_message_number, inf_end };

gds_$request_info (status_vector,

request->rrq_handle,

current_instance,

sizeof (request_info),

request_info,

sizeof (info_buffer),

info_buffer);

SEE ALSO
See the entry in this chapter for:

• gds_$compile_request

DIAGNOSTICS
See Chapter 8 for a discussion of errors and error handling.

5

rollback_transaction(gds) rollback_transaction(gds)

NAME
gds_$rollback_transaction −undoing transaction

SYNOPSIS

status = gds_$rollback_transaction (
status_vector.vector_long.out,
transaction_handle.ulong.inout)

DESCRIPTION
Thegds_$rollback_transaction routine undoes changes made during a transaction.

A successful call togds_$rollback_transaction closes requests and blobs.A call to this routine can fail
only if:

• You pass an invalid transaction handle.

• The transaction dealt with more than one database and a communications link fails during the
rollback operation.If that happens, subtransactions on the remote node will end up in limbo.You
must usegfix (or a functionally equivalent utility of your own design) to roll back those
transactions.

See Chapter 4 for more information about transactions that involve multiple databases.

PARAMETERS
status_vector A vector of 20 longwords that the access method uses to return error messages to the calling
program. Ifyou pass zero as the address of the status vector and encounter an error, writes the message(s)
to standard error and aborts your program.See Chapter 8 for a discussion of the status vector.

transaction_handle Identifier for the transaction you want to roll back.A call to gds_$start_transaction
establishes this handle.If the call to this routine is successful, the access method sets this handle to zero.
Otherwise, it leaves it unchanged.

EXAMPLE
. source: /gds/harrison/work/call_int/examp_rollback

if (switches & sw_commit)

gds_$commit_transaction (status_vector, transaction);

else

gds_$rollback_transaction (status_vector, transaction);

SEE ALSO
See the entries in this chapter for:

• gds_$commit_transaction

• gds_$prepare_transaction

DIAGNOSTICS
See Chapter 8 for a discussion of errors and error handling.

1

send(gds) send(gds)

NAME
gds_$send −send message

SYNOPSIS

status = gds_$send(
status_vector.vector_long.out,
request_handle.ulong.in,
message_type.ushort.in,
message_length.ushort.in,
message_address.unspec.in,
instantiation.ushort.in)

DESCRIPTION
Thegds_$sendroutine transfers a formatted message from the calling program to the access method.

You must match each call togds_$sendwith a blr_r eceive statement that processes the same message
type. If you do not have a correspondingblr_r eceive statement in the request, the access method returns a
synchronization error and unwinds the request.

Under some circumstances, your program may need to send a choice of messages (for example, ‘‘here’s
some data,’’ ‘‘ skip this one,’’ o r ‘‘punt’’). In this case, thegds_$sendcall should be matched by a
blr_select statement. Theblr_select statement is a case statement containingblr_r eceive statements for
different message types and actions for each type.

Remember that when coding requests each send/receive causes execution on each side to stall until the
other has completed.This stalling and network traffic can be costly during remote access.

PARAMETERS
status_vector A vector of 20 longwords that the access method uses to return error messages to the calling
program. Ifyou pass zero as the address of the status vector and encounter an error, writes the message(s)
to standard error and aborts your program.See Chapter 8 for a discussion of the status vector.

request_handle Identifier for the request that defined the message.A call to gds_$compile_request
establishes this handle, and a call togds_$start_requestor gds_$start_and_sendactivates the request.

message_type Flag that identifies type of message in message buffer. Theblr_messagestatement provides
the message type and structure for the message.

message_length
message_address Length in bytes and address of the calling program’s message buffer. The blr_message
statement provides the message type and structure for the message.Your program must provide a
corresponding buffer.

instantiation Incarnation of the request.A recursive routine may actually involve sev eral active versions of
the same request.This parameter specifies which instance should receive your call.

1

send(gds) send(gds)

EXAMPLE
. source: /gds/harrison/work/call_int/examp_send

EXEC_send (message)

MSG message;

{

/**************************************

*

* E X E C _ s e n d

*

*

* Functional description:

* Send a message to a running request.

* Somebody else already filled the message

* with good and valuable information.

*

**************************************/

REQ request;

long status_vector [20];

request = message->msg_request;

if (gds_$send (status_vector,

request->req_handle,

message->msg_number,

message->msg_length,

*message->msg_buffer),

message->req_instance))

db_error (request, status_vector);

}

SEE ALSO
See the entry in this chapter for:

• gds_$receive

See also the entries in Chapter 10 for:

• blr_r eceive

• blr_message

DIAGNOSTICS
See Chapter 8 for a discussion of errors and error handling.

2

start_and_send(gds) start_and_send(gds)

NAME
gds_$start_and_send −start request and send message

SYNOPSIS

status = gds_$start_and_send(
status_vector.vector_long.out,
request_handle.ulong.in,
transaction_handle.ulong.in,
message_type.ushort.in,
message_length.ushort.in,
message_address.unspec.in,
instantiation.ushort.in)

DESCRIPTION
Thegds_$start_and_sendroutine is exactly equivalent to a call togds_$start_requestfollowed by a call
to gds_$send. See the manual pages for those routines for more information about their purposes and uses.

Many requests begin with a send, transmitting variable data required for record selection.A call to
gds_$start_and_send‘‘ piggy-backs’’ the send with the start request call.It has exactly the effect of a call
to gds_$start_requestfollowed by a call togds_$send, thus reducing communication costs.

PARAMETERS
status_vector A vector of 20 longwords that the access method uses to return error messages to the calling
program. Ifyou pass zero as the address of the status vector and encounter an error, writes the message(s)
to standard error and aborts your program.See Chapter 8 for a discussion of the status vector.

request_handle Identifies the compiled request you want to start. A call to gds_$compile_request
establishes this handle.

transaction_handle Identifies the transaction in which you want the request to execute. A call to
gds_$start_transactionestablishes this handle.

message_type Flag that identifies type of message in message buffer. Theblr_messagestatement provides
the message type and structure for the message.

message_length
message_address Length in bytes and address of the calling program’s message buffer. The blr_message
statement provides the message type and structure for the message.Your program must provide a
corresponding buffer.

instantiation Incarnation of the request.If you call gds_$start_requestor gds_$start_and_sendwith the
handle of an active request, that request is unwound, and a new request starts.Occasionally, in a recursive
routine, you need multiple copies of the same request active simultaneously. An org anization chart, for
example, or a bill of materials, can most easily be done by getting a tag from one record and using it to get
the next record down the tree.Instantiation numbers allow you to clone an active request and start a new
version without recompiling the request.

1

start_and_send(gds) start_and_send(gds)

Instantiations normally start at 0 and increase as you recurse further. The instantiation call parameter
corresponds to thelevel request option in

EXAMPLE
. /gds/harrison/work/call_int/sands

EXEC_start_request (request, message, level)

REQ request;

MSG message;

SHORT level;

{

/**************************************

*

* E X E C _ s t a r t _ r e q u e s t

*

*

* Functional description:

* Start a request running. If there is a message

* to send, do a start and send. Otherwise, just do

* a start. If there is a message, somebody has

* already filled it for us. Save the request level

* everywhere plausible.

*

**************************************/

long status_vector [20];

if (message)

{

message->msg_level = req->req_level = level;

if (!gds_$start_and_send (status_vector,

request->req_handle,

request->req_database->dbb_transaction,

message->msg_number,

message->msg_length,

*message->msg_buffer,

level))

return;

}

else

{

request->req_level = level;

if (!gds_$start_request (status_vector,

request->req_handle,

request->req_database->dbb_transaction,

level))

return;

}

db_error (request, status_vector);

}

2

start_and_send(gds) start_and_send(gds)

SEE ALSO
See the entries in this chapter for:

• gds_$start_request

• gds_$send

DIAGNOSTICS
See Chapter 8 for a discussion of errors and error handling.

3

start_multiple(gds) start_multiple(gds)

NAME
gds_$start_multiple −begin transaction

SYNOPSIS

status = gds_$start_multiple(
status_vector.vector_long.out,
transaction_handle.ulong.inout,
db_handle_count.ushort.in,
teb_vector_address.usbyte.in)

DESCRIPTION
The gds_$start_multiple routine begins a new transaction. It is functionally equivalent to
gds_$start_transaction, but is intended for use with languages that have problems handling a variable
number of arguments on a call.This routine can also be used in other languages when you must code the
start transaction function before you know how many databases you will access.

PARAMETERS
status_vector A vector of 20 longwords that the access method uses to return error messages to the calling
program. Ifyou pass zero as the address of the status vector and encounter an error, writes the message(s)
to standard error and aborts your program.See Chapter 8 for a discussion of the status vector.

transaction_handle Identifier returned by this routine.The handle must be zero on input.

db_handle_count Number of database handles passed in this call.Identifies the database.This handle is
returned from a call togds_$attach_databaseor gds_$create_database.

teb_vector_address Address of a vector of transaction existence blocks, or tebs. The teb_vector is
equivalent to the list of database handles andtpb blocks in thegds_$start_transactioncall. Thelength of
the teb_vector is determined by thedb_handle_count parameter. There is oneteb block in the vector for
each database.The format of theteb block follows:

typdef struct {
&gds_$handle
long
*char
} GDS_$TEB

dbb_ptr Address of the database handle.

tpb_len Length of the transaction parameter block for that database.

tpb_ptr Pointer to a transaction parameter block (tpb).

tpb_vector Describes the conditions of access.The tpb_vector consists of a version number and a vector of
bytes that describes the transaction characteristics:

1

start_multiple(gds) start_multiple(gds)

tpb_vector ::= version_number.ubyte vector_byte
version_number ::= tpb_$version3

See the section below titled ‘‘TPB PARAMETERS’’ f or a list of values forvector_byte.

TPB PARAMETERS
The following are valid parameter values:

gds_$tpb_concurrency (default)
gds_$tpb_consistency The default mode for a transaction specifies a high throughput, high concurrency
transaction with generally acceptable consistency. The optional mode specifies that the operations
performed in the transaction should be serializable in some order.

gds_$tpb_wait (default)
gds_$tpb_nowait The default action if your program encounters a locked relation is to wait until the lock
goes away. The nowait option is not recommended.

gds_$tpb_write (default)
gds_$tpb_read The default intention of a transaction is that it will write data.Both the default and the
option take a relation name as an argument.

gds_$tpb_lock_level Specifies the intention of a transaction toward a specified relation.The format of
gds_$tpb_lock_level is:

lock_option, length, relation_name, access_option

lock_option ::= { gds_$tpb_lock_read | gds_$tpb_lock_write}

access_option ::= { gds_$tpb_shared | gds_$tpb_protected|
gds_$tpb_exclusive }

The default lock_option is write. The default access_option is concurrent shared access, the protected
option allows concurrent restricted access, and the exclusive option disallows any concurrent access.

EXAMPLE
. source: /gds/harrison/work/call_int/examp_teb

#include "/sys/ins/gds.ins.c"

typedef struct {

int *dbb_ptr;

long tpb_len;

char *tpb_ptr;

} GDS_$TEB;

GDS_$TEB teb_vec [2];

2

start_multiple(gds) start_multiple(gds)

int

gds_$status[20], /* status vector */

*db0, *db1, /* database handle */

*trans;

static char

gds_$tpb_0 [] = {

gds_$tpb_version3, gds_$tpb_write,

gds_$tpb_consistency, gds_$tpb_wait,

gds_$tpb_lock_write, 3,’I’,’D’,’S’,

gds_$tpb_protected},

gds_$tpb_1 [] = {

gds_$tpb_version3, gds_$tpb_write,

gds_$tpb_consistency, gds_$tpb_wait,

gds_$tpb_lock_write, 3,’O’,’Z’,’S’,

gds_$tpb_protected};

main ()

{

db0 = db1 = 0;

trans = 0;

if (! gds_$attach_database (

gds_$status, 0, "test_0.gdb", db0, 0,0))

gds_$attach_database (

gds_$status, 0, "test_1.gdb", db1, 0,0);

if (db0 && db1)

{

teb_vec[0].dbb_ptr = &db0;

teb_vec[0].tpb_len = sizeof (gds_$tpb_0);

teb_vec[0].tpb_ptr = gds_$tpb_0;

teb_vec[1].dbb_ptr = &db1;

teb_vec[1].tpb_len = sizeof (gds_$tpb_1);

teb_vec[1].tpb_ptr = gds_$tpb_1;

if (gds_$start_multiple (gds_$status, trans, 2, teb_vec))

gds_$print_status (gds_$status);

}

if (trans)

gds_$commit_transaction (gds_$status, trans);

if (db0 && !trans)

gds_$detach_database (gds_$status, db0);

3

start_multiple(gds) start_multiple(gds)

if (db1 && !(trans && db0))

gds_$detach_database (gds_$status, db1);

if (gds_$status [1])

gds_$print_status (gds_$status);

}

SEE ALSO
See the entries in this chapter for:

• gds_$start_transaction

• gds_$prepare_transaction

• gds_$commit_transaction

• gds_$rollback_transaction

DIAGNOSTICS
See Chapter 8 for a discussion of errors and error handling.

4

start_request(gds) start_request(gds)

NAME
gds_$start_request −begin request

SYNOPSIS

status = gds_$start_request(
status_vector.vector_long.out,
request_handle.ulong.in,
transaction_handle.ulong.in,
instantiation.ushort.in)

DESCRIPTION
The gds_$start_requestroutine begins the execution of a previously compiled request under an existing
transaction.

You can attach a database, start a transaction, compile a request, or get information about anything, but
until you start a request, you cannot touch the contents of a database.Compiling a request prepares an
executable form of the request.A call to gds_$start_requestbegins execution.

If you call gds_$start_requestand pass the handle of a request that is already running, the access method
unwinds the active request and starts a new request. However, if you pass a value for instantiation, the
access method starts a new instance of that request.

At times, particularly in recursive code, you may want to run several copies of the same request.You
cannot simply restart the request because it has internal context that it must retain.You can, however, start
another instance of the request, using theinstantiation parameter on thegds_$start_requestcall. A start
request call with an unused value for theinstantiation parameter clones the request, giving it the same
executable structure but with a separate context. Creatinga new instance of a request is considerably less
expensive than recompiling theBLR to create a new request.

Many requests begin with a send, transmitting variable data required for record selection.A call to
gds_$start_and_send‘‘ piggy-backs’’ the send with the start request call.It has exactly the effect of a call
to gds_$start_requestfollowed by a call togds_$send, and reducing communication costs.

PARAMETERS
status_vector A vector of 20 longwords that the access method uses to return error messages to the calling
program. Ifyou pass zero as the address of the status vector and encounter an error, writes the message(s)
to standard error and aborts your program.See Chapter 8 for a discussion of the status vector.

request_handle Identifies the compiled request you want to start. A call to gds_$compile_request
establishes this handle.

transaction_handle Identifies the transaction in which you want the request to execute. A call to
gds_$start_transactionestablishes this handle.

instantiation Incarnation of the request.If you call gds_$start_requestor gds_$start_and_sendwith the
handle of an active request, that request is unwound, and a new request starts.Occasionally, in a recursive
routine, you need multiple copies of the same request active simultaneously. An org anization chart, for
example, or a bill of materials, can most easily be done by getting a tag from one record and using it to get
the next record down the tree.Instantiation numbers allow you to clone an active request and start a new

1

start_request(gds) start_request(gds)

version without recompiling BLR.

Instantiations normally start at 0 and increase as you recurse further. The instantiation call parameter
corresponds to thelevel request option in GDML.

EXAMPLE
The following example actually takes advantage of piggybacking of a start request and send through the
gds_$start_and_sendroutine:

. source: /gds/harrison/work/call_int/sands

EXEC_start_request (request, message, level)

REQ request;

MSG message;

SHORT level;

{

/**************************************

*

* E X E C _ s t a r t _ r e q u e s t

*

*

* Functional description:

* Start a request running. If there is a message

* to send, do a start and send, otherwise just do

* a start. If there is a message, somebody has

* already filled it for us. Save the request level

* everywhere plausible.

*

**************************************/

long status_vector [20];

if (message)

{

message->msg_level = req->req_level = level;

if (!gds_$start_and_send (status_vector,

request->req_handle,

request->req_database->dbb_transaction,

message->msg_number,

message->msg_length,

*message->msg_buffer,

level))

return;

}

else

{

request->req_level = level;

if (!gds_$start_request (status_vector,

request->req_handle,

request->req_database->dbb_transaction,

2

start_request(gds) start_request(gds)

level))

return;

}

db_error (request, status_vector);

}

SEE ALSO
See the entries in this chapter for:

• gds_$compile_request

• gds_$start_and_send

DIAGNOSTICS
See Chapter 8 for a discussion of errors and error handling.

3

start_transaction(gds) start_transaction(gds)

NAME
gds_$start_transaction −begin transaction

SYNTAX

status = gds_$start_transaction(
status_vector.vector_status.out,
transaction_handle.ulong.inout,
db_handle_count.ushort.in,
{ db_handle.ulong.in,
tpb_length.ushort.in,
tpb_address.ubyte.in }...)

DESCRIPTION
The gds_$start_transaction routine begins a new transaction. Seethe Chapter 4 of this manual for
transaction capabilities accessible only through the call interface.

If you are working with multiple databases and a language that requires a fixed number of arguments on
each call, you should callgds_$start_multiple instead of gds_$start_transaction. The
gds_$start_multiple routine is also useful if you need to code the start transaction call without knowing
how many databases will be involved.

For most applications, you may find that thestart_transaction statement is easier to code than a call to
gds_$start_transaction. The statement and the start transaction call are functionally equivalent.

If the module does not contain any other statements, calling thegds_$start_transactionroutine will avoid
the extra step of preprocessing the program withgpre.

PARAMETERS
status_vector A vector of 20 longwords that the access method uses to return error messages to the calling
program. Ifyou pass zero as the address of the status vector and encounter an error, writes the message(s)
to standard error and aborts your program.See Chapter 8 for a discussion of the status vector.

transaction_handle Identifier returned by this routine.The handle must be zero on input.

db_handle_count Number of database handles passed in this call.Because a single transaction can access
multiple databases, this routine passes information about each database it accesses and the conditions of
access for that database:

db_handle Identifies the database.

tpb_length Length of thetpb_vector that describes the conditions of access.

tpb_address Address of thetpb_vector.

The tpb_vector (transactionparameterblock) consists of a version number and a vector of bytes that
describes the transaction characteristics:

1

start_transaction(gds) start_transaction(gds)

tpb_vector ::= version_number.ubyte vector_byte

version_number ::= tpb_$version3

See ‘‘TPB Parameters below for a list of values forvector_byte.

TPB PARAMETERS
The following are valid parameter values:

gds_$tpb_concurrency (default)
gds_$tpb_consistency The default mode for a transaction specifies a high throughput, high concurrency
transaction with generally acceptable consistency. The optional mode specifies that the operations
performed in the transaction should be serializable in some order.

gds_$tpb_wait (default)
gds_$tpb_nowait The default action if your program encounters a locked relation is to wait until the lock
goes away. The nowait option is not recommended.

gds_$tpb_write (default)
gds_$tpb_read The default intention of a transaction is that it will write data.Both the default and the
option take a relation name as an argument.

gds_$tpb_lock_level Specifies the intention of a transaction toward a specified relation.The format of
gds_$tpb_lock_level is:

lock_option, length, relation_name, access_option

lock_option ::= { gds_$tpb_lock_read | gds_$tpb_lock_write}

access_option ::=
{ gds_$tpb_shared | gds_$tpb_protected| gds_$tpb_exclusive }

The default lock_option is write. The default access_option is concurrent shared access, the protected
option allows concurrent restricted access, and the exclusive option disallows any concurrent access.

EXAMPLE
. source: /gds/harrison/work/call_int/examp_23

#include "/sys/ins/gds.ins.c"

int

gds_$status[20], /* status vector */

db, / database handle */

*trans;

static char

gds_$tpb_0 [] = {

gds_$tpb_version3, gds_$tpb_write,

gds_$tpb_consistency, gds_$tpb_wait,

gds_$tpb_lock_write, 3,’I’,’D’,’S’,

2

start_transaction(gds) start_transaction(gds)

gds_$tpb_protected};

main ()

{

db = 0;

trans = 0;

gds_$attach_database (gds_$status, 0, "test.gdb", db, 0,0);

if (db)

if (gds_$start_transaction (

gds_$status, trans, 1, db,

sizeof(gds_$tpb_0), gds_$tpb_0))

gds_$print_status (gds_$status);

if (trans)

gds_$commit_transaction (gds_$status, trans);

if (db && !trans)

gds_$detach_database (gds_$status, db);

if (gds_$status [1])

gds_$print_status (gds_$status);

}

SEE ALSO
See the entries in this chapter for:

• gds_$prepare_transaction

• gds_$commit_transaction

• gds_$rollback_transaction

• gds_$start_multiple

DIAGNOSTICS
See Chapter 8 for a discussion of errors and error handling.

3

transaction_info(gds) transaction_info(gds)

NAME
gds_$transaction_info −information call

SYNOPSIS

status = gds_$transaction_info (
status_vector.vector_long.out,
transaction_handle.ulong.in,
item_list_length.ushort.in,
item_list_buffer_address.vector_byte.in,
result_buffer_length.ushort.in,
result_buffer_address.unspec.out)

DESCRIPTION
The gds_$transaction_info routine returns information about the current transaction.A call to
gds_$transaction_info returns information necessary for keeping track of permanent transaction ids,
instead of volatile transaction handles.

PARAMETERS
status_vector A vector of 20 longwords that the access method uses to return error messages to the calling
program. Ifyou pass zero as the address of the status vector and encounter an error, writes the message(s)
to standard error and aborts your program.See Chapter 8 for a discussion of the status vector.

The returned status code indicates only that the access method accepted the request for information; it does
not mean that it understood the request or that it supplied all requested information.Your program must
interpret the contents of the result buffer.

transaction_handle Identifies the transaction about which you would like some information.

item_list_buffer_length
item_list_buffer_address Provides the length and address of the item list buffer. The item list buffer is a
regular byte vector with no structure.The calling program lists the items about which it requires
information in the item list buffer. These items are listed below under the heading ‘‘Information Items.’’

result_buffer_length
result_buffer_address Provides the length and address of the result buffer. The access method returns the
requested information to the result buffer. The result buffer has the following format:

1

transaction_info(gds) transaction_info(gds)

Syntax: Information Call Result Buffer Clumplet

result_buffer ::= clumplet...

clumplet ::= type.ubytelength.ushortvalue.short

The value oftype is the item you requested in the item list buffer. These items are listed below under the
heading ‘‘Information Items.’’

The clumplets returned to the result buffer are not aligned.Furthermore, binary numbers are in a generic
format, which you must convert to a datatype native to your computer before interpreting them.In a
generic binary value, the least significant byte is first, and the most significant is last.The sign is in the last
byte. To interpret a binary value returned by an information call:

• Determine the size, which can be1, 2, or 4 bytes.

• Rev erse the order of the bytes.

The following routine converts the contents of the result buffer into something you can read:

REV_integer (ptr, length)

unsigned char *ptr;

short length;

{

/**************************************

*

* R E V _ i n t e g e r

*

*

* Functional description:

* Pick up (and convert) an integer

* of length 1, 2, or 4 bytes.

*

**************************************/

int value;

short shift;

value = shift = 0;

while (--length >= 0)

{

value += (*ptr++) << shift;

shift += 8;

}

return value;

}

2

transaction_info(gds) transaction_info(gds)

INFORMA TION ITEMS
You can ask about the following item in the item list buffer:

gds_$info_tra_id Transaction id number. The packet returned to the result buffer has the following format:

type ubyte gds_$info_tra_id

length ushort lengthof clumplet in bytes

value short transaction id

In addition to the above item about which you can request information, the access method may also return
the following status messages to the result buffer:

gds_$info_endEnd of message.The packet returned to the result buffer has the following format:

type ubyte gds_$info_end

gds_$info_truncated Input into the result buffer was truncated.The access method returns a truncated
clumplet as the last clumplet in the result buffer if the result buffer was not large enough to hold all the
information you requested.If your program encounters this clumplet, it means that all preceding
information is valid, but at least one item is missing.The packet returned to the result buffer has the
following format:

type ubyte gds_$info_truncated

gds_$info_error An error. The access method returns an error clumplet if an item of requested information
was not available. Thisclumplet has the same form as other clumplets, but the information portion contains
only the information type value and a code indicating why the information was not available. Thepacket
returned to the result buffer has the following format:

type ubyte gds_$info_error

EXAMPLE
. source: /gds/harrison/work/call_int/examp_tra_info

static char tra_items [] =

{gds_$info_tra_id}

CHAR tra_info [32];

if (gds_$transaction_info (status_vector,

blob,

sizeof (tra_items),

tra_items,

sizeof (tra_info),

tra_info))

3

transaction_info(gds) transaction_info(gds)

error ("gds_$transaction_info failed", status_vector);

SEE ALSO
See the entry in this chapter for:

• gds_$reconnect_transaction

DIAGNOSTICS
See Chapter 8 for a discussion of errors and error handling.

4

unwind_request(gds) unwind_request(gds)

NAME
gds_$unwind_request −stop running request

SYNOPSIS

status = gds_$unwind_request(
status_vector.vector_long.out,
request_handle.ulong.in,
instantiation.ushort.in)

DESCRIPTION
Thegds_$unwind_requestroutine stops a running request.The target request stops as soon as it can stop
safely. When you unwind an instantiated request, the access method also unwinds all instantiations of that
request with higher values forinstantiation.

A call to this routine lets you terminate a request cleanly without aborting the transaction or database
attach. Itis particularly useful in interactive applications where the user provides selection criteria that
return more records than desired.

Any updates made prior to this call will remain in the database unless you roll back the transaction with a
call to thegds_$rollback_transaction routine.

Although a request has been unwound, it can be re-used without being recompiled.You can re-use the
transaction by passing the request handle of the request you want to start to thegds_$start_request
routine.

In addition to a successful return from a call to this routine, the following events cause a request to unwind:

• An error

• A blr_leavestatement

• Restart of the request bygds_$start_request

• Release of the request bygds_$release_request

• Powerdown, hardware fault, operating system crash, or other system failure

• A successful return fromgds_$commit_transaction, gds_$rollback_transactionf, and
gds_$detach_database

PARAMETERS
status_vector A vector of 20 longwords that the access method uses to return error messages to the calling
program.

If you pass zero as the address of the status vector and encounter an error, the access method writes the
message(s) to standard error and aborts your program.

request_handle Identifies the request you want to unwind.A call to gds_$unwind_requestestablishes this
handle, and a call togds_$start_requestor gds_$start_and_sendactivates the request.

instantiation Incarnation of the request.The instantiation parameter in this call identifies the instance of
request you want to unwind.

1

unwind_request(gds) unwind_request(gds)

EXAMPLE
EXEC_stop ()

{

/**************************************

*

* E X E C _ s t o p

*

*

* Functional description:

* A loop has been stopped. Unwind active

* requests set flag.

*

**************************************/

long status_vector [20];

REQ request;

for (request = TOP_request; request; request = request->req_next)

if (request->req_handle)

gds_$unwind_request (status_vector,

request->req_handle,

request->req_level);

SIG_stop = TRUE;

}

SEE ALSO
See the entries in this chapter for:

• gds_$rollback_transaction

• gds_$start_request

DIAGNOSTICS
See Chapter 8 for a discussion of errors and error handling.

2

