attach_database(gds) attach_database(gds)

NAME
gds_Sattach_database —open database

SYNTAX

status = gds_S$attach_databasé
status vector.vector_long.out,
db_name length.ushort.in,
db_name.vector_chain,
db_handle.ulong.inout,
parm_buffer_length.ulong.in,
parm_buffer_address.vector_byte.in)

DESCRIPTION
Thegds_$attach_databaseoutine opens anxesting database for program acce§&hapter 3 discusses the
use of this routine.

For mary applications, you may find that theeady statement is easier to code than a call to
gds_$attach_database Except for werriding the two defaults on a database attach, the statement and the
attach call are functionally eqalent. However, if you want to owerride the dediults on the attach, you
should call thegds_$attach_databaseoutine.

Also, if the module does not containyasther statements, you might call tgds_$routine to &oid the
extra step of preprocessing the program wipine to handle theeady statement.

PARAMETERS
status_vector A vector of 20 longwrds that the access method uses to return error messages to the calling
program. Ifyou pass zero as the address of the st@c®rand encounter an errarites the message(s)
to standard error and aborts your progréee Chapter 8 for a discussion of the stagsor

db_name length

db_name The length of the file name and the file name of the file that contains the datiéiasdéength is
zero, the access method assumes dbahame is null-terminated. If you program inC, you can tak
adwantage of this carention. Havever, non-C programs must supply a non-zedue for the length.

db_handle Identifier for the database youant to attach.The handle must be zero at the time of the call.
Otherwise, the access method returns an.error

parm_buffer_length

parm buffer_address The length in bytes and address of the parameféerb The calling program uses the
parameter bffer to pass information about the database to the access meéthedparameter uffer
consists of aersion number follwed by a contiguous seriesatimplets:

attach_database(gds) attach_database(gds)

Syntax: Clumplet Format

parm_buffer ::= version_number clumplet...
version_number ;=1

clumplet ::= type.ubytelength.ubytevalue.vector_byte

Each clumplet describes itself, including an itipe to describe the parameter being passedetigth of
the clumplet, and thealue being passed.

DPB PARAMETERS
Paameters for the database parameter blaltkrito three catagoriesThey are:

. Special control on a normal attaddé_$dpb_dbley_scopeandgds_$dpb_num_liffers).

. System management functiorgdé_$dpb_sweepgds $dpb_erify, gds_$dpb_enable_jounal,
and gds_$dpb_disable_jounal). Several parameters are used tovdke s/stem management
functions. Someof them require »xclusve acess to the databaseWhen you call
gds_$attach_databasevith a dpb parameter that impliesxelusive acess, the system will ait
until all users finish before attaching the databasken the function completes, the database is
attached and can be used for normal data access functions.

. Database creationSuch parameters apply only towlg created databases and are described in
the manual page fgds_$ceate_database

A description of thalpb parameters used in calls to the attach database routinggollo

gds_$dpb_dbley scopeScope of dbky montext. If you eplicitly reference a didy, the access method
returns either the same record it returned when you last referenced tbg abkhe error code
gds_$bad_dbley. The format of this clumplet is:

type ubyte gds_%$dpb_dbley_scope
length ubyte length of clumplet in bytes (1)
value byte 0 (entire transaction) or

1 (entire database session)

gds_$dpb_num_liffers This parameter sets the number afférs allocated for use with the database.
The number must be between 10 and 18ach luffer holds one database page, so th#eb size is
determined by the database page siEbe deéult is 25 lffers. Increasinghe number of bffers will
improve performance for multi-ay joins. You can reduce the number ofiffers when access is primarily
through a single relationThe format of this clumplet is:

type ubyte gds_$dpb_num_loffers
length ubyte length of clumplet in bytes (1)
value byte number of bffers to allocate

gds_$dpb_sweefThis parameter causes the access method to read all records in the databasevand remo

attach_database(gds) attach_database(gds)

versions that are no longer neededld versions are alays remaed when the record is accessed, so an
active catabase does not need sweepilfighowever, some records are modified intensehen ignored, the
sweep option will free unused spadéhe format of this clumplet is:

type ubyte gds_$dpb_sweep
length ubyte length of clumplet in bytes (1)
value ubyte gds_$dpb_records

type ubyte gds_$dpb_erify
length ubyte length of clumplet in bytes (2)
vaue uword suboption bits.Suboption flags ofylds_$dpb_erify

direct the system to do a more or less comp

gds_$dpb_verify This parameter causes the access methodalidate that internal structures are
consistent. Itequires Bclusive access to the databaséhe format of this clumplet is:

lete

validation, and to correct or only report errors it finds.

The suboptions are:

— gds_%$dpb_pagegdefault): \erifies that all pages

not in the free list are actually in use, and that
structure of eery page is correct. By default,
orphaned pages are returned to the free list.

— gds_%$dpb_kecords Verifies that all records an
record fragments are liekl to relations, renves dl
old versions, and alidates the internal structure
records. Bydefault, space used by orphaned recq
and old ersions is reclaimed, and the transact
inventory pages are reset.

— gds_%$dpb_no_updateReports errors, Ut males
no changes to the databasgpecifically it does not
add pages to the free list or reclaim space.

— gds_$dpb_epair: Corrects errors ven if the
correction may imolve the loss of data.

the

d

of
rds
ion

gds_$dpb_enable_jounal This parameter names the journaling subsystem that will maintain an after
image journal for the databask requires &clusive acess to the databaséhe format of this clumplet is:

attach_database(gds) attach_database(gds)

type ubyte gds_$dpb_enable_jounal
length ubyte length of journal name in bytes
value vector_char| journaystem name

gds_$dpb_disable_jounal This parameter turns foéfter-image journaling for the databask.requires
exclusive acess to the databas€he format of this clumplet is:

type ubyte gds_$dpb_disable_jounal

length ubyte 0

EXAMPLE
source: /gds/harrison/work/call _int/exanp_17
CHAR *dat abase, string [64], *p, *q, *dpb, journal [256];
long *handle, status_vector [20];

/* get database and journal file names frominput comrand */

p = dpb = string;

*p++ = dpb_enabl e_j ournal ;

*p++ = strlen (journal);

for (q = journal; *q;)
*p++ = *gt+

dpb_l ength = p - dpb;

gds_%$att ach_dat abase (status_vector,
0, /* name is null termnated */
*dat abase,
handl e,
dpb_I engt h,
*dpb);

if (status_vector [1])
gds_$print_status (status_vector);

if (handle)
gds_$det ach_dat abase (status_vector, handle);
SEE ALSO
See the entries in this chapter for:
. gds_S$ceate_database
. gds_S$database_inf
. gds_S$ceate_database

See also theeady statement in

attach_database(gds) attach_database(gds)

DIAGNOSTICS
See Chapter 8 for a discussion of errors and error handling.

blob_info(gds) blob_info(gds)

NAME
gds_$blob_info —blob information call

SYNTAX

status = gds_$blob_inb (

status vector.vector_long.out,
blob_handle.ulong.in,
item_list_buffer_length.ushort.in,

item list buffer_address.vector_byte.in,
result_buffer_length.ushort.in,
result_buffer_address.unspec.out)

DESCRIPTION
The gds_$blob_inb routine praides information about an open blolWou can callgds_$blob_inb to
inquire about blob characteristics, such as hmch space your program needs to process it.

The calling program passes its request for information through the itemuffst, kend returns the
information to the result Uffer. See Chapter 2 for anxample of a call to a similar routine
(gds_$database_ird) and the parsing of the resulaffer.

PARAMETERS
status_vector A vector of 20 longwrds that the access method uses to return error messages to the calling
program. Ifyou pass zero as the address of the st@c®rand encounter an errarites the message(s)
to standard error and aborts your progréee Chapter 8 for a discussion of the stagsor

The returned status code indicates only that the access method accepted the request for information; it does
not mean that it understood the request or that it supplied all requested infornyatiwrprogram must
interpret the contents of the resuliffier.

blob_handle Identifies the blob about which yowuld like sme information.A call to gds_$ceate_blob
or gds_$open_blotestablishes this handle.

item list_buffer_length

item _list_buffer_address Provides the length and address of the item ligtdo. The item list biffer is a
regular byte ector with no structure.The calling program lists the items about which it requires
information in the item listlffer. These items are listed balainder the headindlhformation Items:.

result_buffer_length
result_buffer_address Provides the length and address of the resuftelh The access method returns the
requested information to the resuliffer. The result bffer has the follwing format:

blob_info(gds) blob_info(gds)

Syntax: Information Call Result Buffer Clumplet

result_buffer ::= clumplet...

clumplet ::= type.ubytelength.ushortvalue.short

The \alue oftype is the item you requested in the item lisffbr. These items are listed baelander the
heading ‘Information Items.

The clumplets returned to the resuliffier are not alignedFurthermore, binary numbers are in a generic
format, which you must ceert to a datatype nat to your computer before interpreting therm a
generic binary &lue, the least significant byte is first, and the most significant isTihstsign is in the last
byte. To interpret a binaryalue returned by an information call:

. Determine the size, which can be2, or 4 bytes.
. Revease the order of the bytes.

The following routine comerts the contents of the resuliffer into something you can read:

REV_i nteger (ptr, |ength)
unsi gned char *ptr;
short |ength;

{

/**************************************
*
*“REV_integer
*
khkkhkkkhkkhkkhkkhkhkhkkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkkkkk*k*x*%

*

* Functional description:

* Pick up (and convert) an integer
* of length 1, 2, or 4 bytes.

*
**************************************/
int val ue;

short shift;

val ue = shift = 0;

while (--length >= 0)
{
value += (*ptr++) << shift;
shift += 8;
}

return val ue;

}

blob_info(gds)

INFORMATION ITEMS

You can ask about the follding items in the item listudfer:

blob_info(gds)

gds_%$inb_blob_num_segmentsThe number of ggments that comprise the blob fieldhe paclkt
returned to the resululffer has the follwing format:

type ubyte gds_$inb_blob_num_segments
length ushort lengtbf clumplet in bytes
value unspec | total number of blob ggnents

gds_S$inb_blob_max_segmenThe length of the longestgment in the blob fieldThe packt returned to
the result bffer has the follwing format:

type ubyte gds_$inb_blob_max_segment
length ushort lengtbf clumplet in bytes
value unspec | length of longest ggnent

gds_Sinb_blob_total_lengthThe total length of the blobThe packt returned to the resultiffer has the

following format:

type ubyte gds_$inb_blob_total_length
length ushort lengtbf clumplet in bytes
value unspec | total length of blob field

gds_$inb_blob_typeThe blob type.The packt returned to the resuluffer has the follwing format:

type ubyte gds_$inb_blob_type
length ushort lengtbf clumplet in bytes
value unspec | O (segment) or 1 (reseed)

In addition to the abe@ items for which you can request information, the access method may also return

the folloving status messages to the resuftdy:

gds_$inb_end End of result bffer with no errors. The packt returned to the resultuffer has the

following format:

blob_info(gds)

blob_info(gds)

type

ubyte

gds_S$inb_end

length

ushort

lengtbf clumplet (0)

gds_$inb_truncated Input into the result differ was truncated.The access method returns a truncated
clumplet as the last clumplet in the resulffér if the result hffer was not lage enough to hold all the
information you requestedlf your program encounters this clumplet, it means that all preceding
information is walid, kut at least one item is missing.he packt returned to the resuluffer has the
following format:

type ubyte

gds_$inb_truncated

gds_Sinb_error An error The access method returns an error clumplet if an item of requested information
was ot available. Thisclumplet has the same form as other clumpletsthie information portion contains
only the information typealue and a code indicating wkhe information vas not gailable. Thepaclet
returned to the resulufffer has the follwing format:

type ubyte gds_S$inb_error
length ushort lengtbf clumplet (2)
value short rude error message

EXAMPLE
static char blob_itens [] = {
gds_$i nf o_nmax_segnent,
gds_$i nf o_nunber _segnent s,
gds_$i nf o_bl ob_t ype};

CHAR blob_info [32];

/* Open the blob and get its vital statistics */

if (gds_$open_blob (status_vector,
DB,
gds_$trans,
bl ob,
*bl ob_i d))
error ("gds_$open_blob failed", status_vector);

if (gds_$blob_info (status_vector,
bl ob,
si zeof (blob_itens),
bl ob_i t ens,
si zeof (bl ob_info),
bl ob_i nfo))
error ("gds_$blob_info failed", status_vector);

blob_info(gds) blob_info(gds)

SEE ALSO
See the entries in this chapter for:

. gds_S$ceate_blob
. gds_$open_blob

DIAGNOSTICS
See Chapter 8 for a discussion of errors and error handling.

cancel_blob(gds) cancel_blob(gds)

NAME
gds_$cancel_blob -reme Hob
SYNOPSIS
status = gds_$cancel_blol
status vector.vector_long.out,
blob_handle.ulong.inout)
DESCRIPTION
The gds_$cancel_blobstatement releases internal storage used by a discarded blob and sets the blob
handle to null.
When you create a blob, temporarily stores it in the databfgeu fail to close the blob, the temporary
storage space remains allocat&dirthermore, the handle is not null, ready to cause problemsyfiriramn
SO unwise as to tripver it.
Because a call to this routine daest produce an error if the handle is null, it is good practice to call this
routine before you call eithgids_$open_blotor gds_$ceate_blob This practice ensures that the access
method cleans up earlier blob operatiotfsyou abort a blob operation or if you do not trust the routine
that passed the blob id, you should gals_$cancel_blotbefore opening or creating a blob
PARAMETERS
status_vector A vector of 20 longwrds that the access method uses to return error messages to the calling
program. Ifyou pass zero as the address of the st@c®rand encounter an errarites the message(s)
to standard error and aborts your progré&ee Chapter 8 for a discussion of the stagsor
blob_handle Identifies the blob you ant to cancel.This routine sets the handle to zetdnlike ahergds
routines, this routine returns succegandf the handle is null.
EXAMPLE
. source:
gds_$cancel _blob (*gds_null, blob);
SEE ALSO
See the entries in this chapter for:
. gds_$close_blob
. gds_S$open_blob
. gds_$ceate_blob
DIAGNOSTICS

See Chapter 8 for a discussion of errors and error handling.

close_blob(gds) close_blob(gds)

NAME
gds_S$close_blob —finish blob
SYNOPSIS
status = gds_$close_blob (
status vector.vector_long.out,
blob_handle.ulong.inout)
DESCRIPTION
The gds_$close_blolstatement releases system resources associated with blob update \a. réfde
should callgds_$close_blofas soon as you finish reading or writing a blob
If you fail to close a blob you created, you may lose some of the Batause the remote intace hiffers
segment transfer between participating nodes, it may truncate the taserseyou write unless you
explicitly close the blob
You cannot read from or write to a closed blob without re-opening it with a cgdiso$open_blob
PARAMETERS
status_vector A vector of 20 longwrds that the access method uses to return error messages to the calling
program. Ifyou pass zero as the address of the st@c®rand encounter an errarites the message(s)
to standard error and aborts your progréee Chapter 8 for a discussion of the stagasor
blob_handle A non-zero alue established in a call guls_$ceate_blobor gds_$open_blokthat identifies
the blob you wvant to close.This routine sets thealue of the handle to zero.
EXAMPLE
if (gds_%cl ose_blob (status_vector,
from bl ob))
ERRQ dat abase_error (from.dbb, status_vector);
SEE ALSO
See the entries in this chapter for:
. gds_$cancel_blob
. gds_S$open_blob
. gds_$ceate_blob
DIAGNOSTICS

See Chapter 8 for a discussion of errors and error handling.

commit_transaction(gds) commit_transaction(gds)

NAME
gds_$commit_transaction —commit transaction
SYNOPSIS
status = gds_$commit_transaction(
status vector.vector_long.out,
transaction_handle.ulong.inout)
DESCRIPTION
The gds_$commit_transaction routine commits an ae® tansaction. A successful call to
gds_$commit_transaction
. Certifies database changes made during the transaction as permanent
. Unwinds actie requests
. Cancels open blobs
If you have questions about the importance ofeefs of the commit operation, you are reading the wrong
book. SeeChapter 4 of this manual for a discussion of transactions.
The access method automaticatke@ites a call tgds_S$pepare_transactionfor transactions that update
more than one databaseélowever, you can call the prepare routine yoursefee Chapter 4 for more
information about the tarphase commit operation.
If you are writing an interacté uility that starts transactions automatically for the ugeu should put an
automatic commit and detach in the normait eoutine to a@oid the confusion that results when an
inexperienced user undoes a morngngork by eiting and rolling back.
Note that acommit statement is shorter and easier to code than a catiso$commit_transaction
However, if the program or module does not contaip afier statements, you might call thesroutine to
avad the etra step of preprocessing the program gipine to handle theommit statement.
PARAMETERS

status_vector A vector of 20 longwrds that the access method uses to return error messages to the calling
program. Ifyou pass zero as the address of the st@c®rand encounter an errarites the message(s)
to standard error and aborts your progréee Chapter 8 for a discussion of the stagsor

transaction_handle A non-zero walue that identifies the transaction yownt to commit. A call to
gds_$start_transactionestablishes this handléf the call to this routine is successful, the access method
sets the transaction handle to ze@therwise, it leges it unchanged.

EXAMPLE
. doubl e backslash n in exanple
if (gds_$commit_transaction (status, trans))
{
fprintf ('Battle stations, battle stations!\n’);
gds_$print_status (status);

}

commit_transaction(gds) commit_transaction(gds)

SEE ALSO
See the entries in this chapter for:
. gds_S$pepare_transaction
. gds_$unwind_request
. gds_$cancel_blob
. gds_S$transaction_inb
DIAGNOSTICS

See Chapter 8 for a discussion of errors and error handling.

compile_request(gds) compile_request(gds)

NAME
gds_S$compile_request —compile request
SYNOPSIS
status = gds_$compile_equest(
status vector.vector_long.out,
db_handle.ulong.in,
request_handle.ulong.inout,
bir_string_length.ushort.in,
blr_string_address.vector_byte.in)
DESCRIPTION
Thegds_$compile_equestroutine compiles a request passe@liR form into an internal format that the
access method carxeeute. Theinternal format, called amxecution tree, has all field and relation
references resodd, all viev and computed field referencegpanded, and its access stggteptimized.
The compile request call does notdaktansaction handle, so compiled requests are not boung tman
transaction. Thereforeyou can start a request thatasvcompiled during a late, perhaps lamented
transaction. Call gds_$start equest and pass the request handle returned by the call to
gds_$compile_equestto start a request.
By saving a compiled request for re-use, yowid the cost of a second compilatiom general, séang
compiled requests is good idddhey will be used again. An interactve program that generates requests to
satisfy user queries should probably noteseompiled requests because it is ualikthat it can re-use a
request orwen match a compiled request to annguery,
Because a compiled request occupies menretgase it if you kne that it will not be re-usedCall
gds_$elease_equestto release memory and other system resources associated with a compiled request.
PARAMETERS

status_vector A vector of 20 longwrds that the access method uses to return error messages to the calling
program. Ifyou pass zero as the address of the st@c®rand encounter an errarites the message(s)
to standard error and aborts your progré&ee Chapter 8 for a discussion of the stagsor

dohandle Identifier for the database a@gst which the request will bexesuted. A call to
gds_$attach_databasestablishes this handle.

request_handle Identifier returned by the access methdthe handle identifies the request yoan
compiled for calls to gds_S$start_equest gds_$start_and_send gds_$wequest_inb, and
gds_$unwind_request The request handle must be null on input.

blr_string_length
blr_string_address The length and address of the BLR string that contains the request.

EXAMPLE
. source: /gds/harrison/work/call _int/exanp_conpile
. doubl e backslash n in exanple
request = NULL;
blr_length = blr - blr_buffer;

compile_request(gds) compile_request(gds)

if (gds_$conpil e_request (status_vector,
GDS_REF (DB),
GDS_REF (request),
bl r_l ength,
bl r_buffer))

{
ERROR ("gds_$conpile failed\n", status_vector);

}

SEE ALSO
See the entries in this chapter for:

. gds_$start_request

. gds_$elease_equest
DIAGNOSTICS

The access method returns an error if:

. The BLR string contains a&lues that are not defined, incorrect combinations ajfies, or
references to objects that do nriséin the database.

. The metadata you pass isvalid. You may encounter this problem if youvieadanged the
metadata since you created BidR.

See Chapter 8 for a discussion of errors and error handling.

create_blob(gds) create_blob(gds)

NAME
gds_$create_blob —storemélob

SYNOPSIS

status = gds_$ceate_blob(
status_vector.vector_long.out,
db_handle.ulong.in,
transaction_handle.ulong.in,
blob_handle.ulong.inout,
blob_id.uquad.out)

DESCRIPTION
Thegds_$ceate_blobstatement creates the coritéor storing a blob and opens the blob for write access.

A successful call tqgds_$ceate_blobcreates the eironment for storing a blobHoweve, the access
method does not store the blob untibl_assignment statement assigns it to a relatio@hapter 7
provides a detailed description of the stepslived in storing a blab

PARAMETERS
status_vector A vector of 20 longwrds that the access method uses to return error messages to the calling
program. Ifyou pass zero as the address of the st@c®rand encounter an errarites the message(s)
to standard error and aborts your progréee Chapter 8 for a discussion of the stagsor

db_handle Identifier for the database where the blob will be creaidall to gds_$attach_database
establishes this handle.

transaction_handle Identifier for the transaction in which the blob will be createdi. call to
gds_$start_transactionestablishes this handle.

blob_handle Identifier returned by the access methddhe blob handle is a name that identifies the ne
blob in the contet of the current transactiorhe blob handle must be zero on input.

blob_id Internal identifier for the blob assigned by the access methbe.identifier must hee a \alue of
gds $blob_null.

The access method udaeb_id when it opens the blob with a callgds_$open_blob Howeve, the \alue
of blob_id when you create the blobrist the same as when you open the blob

When you create the blob, it is essentially‘arphan’ until ablr_assignmentstatement assigns thalue
of blob_id to the blob field in a relation.

The access method automatically changes ahgevofblob_id at the time of assignmen©Once you assign
blob_id to its relation, the creatioralue disappears forer. Therefore, if you open the wéy created blob
later, you must readlob_id from the record.If you try to sae the oldblob id and re-use it, the access
method returns an error

create_blob(gds)

EXAMPLE
to_bl ob = NULL;
if (gds_$create_blob (status_vector,
to_dbb_handl e,
to_dbb_transacti on,
to_bl ob,
*t o_dsc_address))
ERRQ dat abase_error (to_dbb_handl e, status_vector);

SEE ALSO
See the entry in this chapter for:

. gds_$put_segment

DIAGNOSTICS

See Chapter 8 for a discussion of errors and error handling.

create_blob(gds)

create_database(gds) create_database(gds)

NAME
gds_$create_database —creats database

SYNOPSIS

status = gds_$ceate_databasé
status vector.vector_long.out,
db_name length.ushort.in,
db_name.vector_chain,
db_handle.ulong.inout,
parm_buffer_length.ulong.in,
parm_buffer_address.vector_byte.in)

DESCRIPTION
Thegds_$ceate_databaseoutine creates a ne enpty database, and attaches it for the calling program.
Although the database contains no user data, it does contain a full set of system relations that describe
themseles.

In general, you rarely need this routinEhe primary users of thgds $ceate_ databaseoutine aregdef
and the restore processgiiak. You will call this routine if you deslop an application that dynamically
creates indidual databases for an electronic mail system, calendar management, a diigitial board,
and so on.Another use wuld be a data definition utility intended for a particularimment.

This routine supersedesyadatabase with the same namieherefore, if you want to lkeep your present
databases, try to attach a database before you creHtthé.attach succeeds, do not call create.

PARAMETERS
status_vector A vector of 20 longwrds that the access method uses to return error messages to the calling
program. Ifyou pass zero as the address of the st@c®rand encounter an errarites the message(s)
to standard error and aborts your progréee Chapter 8 for a discussion of the stagsor

db_name length

db_name The length of the file name and the file name of the file that will contain the datab#se.
length is zero, the access method assumesglthatme is null-terminated.If you are programming in C,
you can tak alvantage of this camntion. Non-Cprogrammers must supply a non-zealue for the
length.

db_handle Identifier for the database youant to attach.The handle must be zero at the time of the call.
Otherwise, the access method returns an.error

parm_buffer_length

parm buffer_address The length in bytes and address of the parameféerb The calling program uses the
parameter bffer to pass information about the database to the access méthedparameter uifer
consists of aersion number follwed by a contiguous seriesaéimplets:

create_database(gds) create_database(gds)

parm_buffer ::= version_number clumplet...
version_number ;=1

clumplet ::= type.bytelength.ubytevalue.vector_byte

Each clumplet describes itself, includintype, thelength of the clumplet, and thealue you want to set.

DPB PARAMETERS
You can pass the folleing values to the access method:

gds $dpb_page size Page size in blocksThe defult page size is 1024 bytesitlyou should werride the

default if you hae a vey large databaseThe choices for page size are 1024, 2048, 4096, and 8f.92.

your database will contain relations with more than 20,000 records, you should increase the page size from
the dehult to 2048.For much lager relations, increase the sizeaimg Thepurpose of increasing the page

size is to increase the size of an gmge and reduce the depth of the indee. Becausef key
compression, there is no hard aadtfrule on the size of an indentry. An index node has four bytes of
overhead, plus the compressesyk There are ten bytes oferhead on the page.

Note that you can write a simple program to create a database wigieradage size, and then gaefto
modify that database to include your relations, fields, and so on.

This clumplet has the folaing format:

type ubyte gds $dpb_page size
length ubyte length of clumplet
value byte page size in bytes

gds $dpb_num_buffers This parameter sets the number offérs allocated for use with the databa3ke
number must be between 10 and 1&ach luffer holds one database page, so thféeb size is determined
by the database page siz€he de#ult is 25 lffers. Increasinghe number of bffers will improve
performance for multi-ay joins. You can reduce the number afiffers when access is primarily through a
single relation.The format of this clumplet is:

type ubyte gds_$dpb_num_buffers
length ubyte length of clumplet in bytes (1)
value byte number of bffers to allocate

gds $dpb_dbkey scope Scope of db&y mntext. If you eplicitly reference a dhdy, the access method
returns either the same record it returned when you last referenced tbg abkhe error code
gds $bad_dbkey. The format of this clumplet is:

create_database(gds)

create_database(gds)

type ubyte gds $dpb_dbkey scope
length ubyte length of clumplet in bytes (1)
value byte Ool

The scope can be the entire transacti@iu@ of0) or the entire database attach sessiatug@ of1).

EXAMPLE

source: /gds/harrison/work/call_int/exanp_18
if (gds_$create_database (gds_$status,
0, /* name is null-termnated */

*file_nane),
DB,

0, 0)) /* use default page size */

{

gds_$print_status (gds_$status);
sprintf (s, "Couldn't create database \"%\"", file_nane);

}
SEE ALSO

See the entry in this chapter for:

. gds_Sattach_database

DIAGNOSTICS

See Chapter 8 for a discussion of errors and error handling.

database_info(gds) database_info(gds)

NAME
gds_$database_info —database information call
SYNTAX
status = gds_$database_ind (
status vector.vector_long.out,
db_handle.ulong.in,
item list_buffer_length.ushort.in,
item list buffer_address.vector_byte.in,
result_buffer_length.ushort.in,
result_buffer_address.unspec.out)
DESCRIPTION

The gds_$database_inf routine returns information about an attached databagmi might call

gds_$database_irt for the followving reasons:

. Prepare to reconnect to transactions in limfAdis is, in fct, the primary use for calling the
gds_$database_ird routine. If a ftansaction dils after a successful call to
gds_$pepare_transaction but before a call togds_$commit_transaction completes, that
transaction becomes &dmbie” and must be forcibly terminatedThe dfix utility locates and
eliminates zombies,ub you may need more direct control in a sophisticated, critical application.
See Chapter 2 for axteact fromgfix, a uility that performs such functions.

. Determine hav much space is used for page cach€&ke space is, of course, the product of the
number of lffers and the page siz&o dfect this information, you must first attach the database,
callgds_$database_imd, then detach and attachaaig using the database parameter block.

. Monitor performance.For example, you might want to compare the fefiengy of two update
stratgies, such as updating a sorted or unsorted stream.

The calling program passes its request for information through the itenaffist, land the access method

returns the information to the resuliffer. See Chapter 2 for arkample of a call tgds_$database_ird

and the parsing of the resulifter.
PARAMETERS

status_vector A vector of 20 longwrds that the access method uses to return error messages to the calling
program. Ifyou pass zero as the address of the st@c®rand encounter an errarites the message(s)
to standard error and aborts your progréee Chapter 8 for a discussion of the stagsor

The returned status code indicates only that the access method accepted the request for information; it does
not mean that it understood the request or that it supplied all requested infornyatiwrprogram must
interpret the contents of the resuliffier.

db_handle Identifies the database about which yoantvinformation. A call to gds_$attach_database
establishes this handle.

item list_buffer_length
item_list_buffer_address Provides the length and address of the item ligtdo. The item list biffer is a

database_info(gds) database_info(gds)
regular byte ector with no structure.The calling program lists the items about which it requires
information in the item listlffer. These items are listed balainder the headinglhformation Items:
result_buffer_length
result_buffer_address Provides the length and address of the resutteh The access method returns the

requested information to the resuliffer. The result bffer has the follwing format:

Syntax: Information Call Result Buffer Clumplet

result_buffer ::= clumplet...

clumplet ::= type.ubytelength.ushortvalue.short

The \alue oftype is the item you requested in the item lisffbr. These items are listed balander the
heading ‘Information Items.

The clumplets returned to the resuliffier are not alignedFurthermore, binary numbers are in a generic
format, which you must ceert to a datatype nat to your computer before interpreting therm a
generic binary &lue, the least significant byte is first, and the most significant isTihstsign is in the last
byte. To interpret a binaryalue returned by an information call:

. Determine the size, which can be2, or 4 bytes.
. Revease the order of the bytes.

The following routine comerts the contents of the resuliffer into something you can read:

REV_i nteger (ptr, length)
unsi gned char *ptr;
short |ength;

{

/**************************************
*

*“REV_integer

*

IR R SRR SRS EEEEEREEEEEEEEEEEEEEEEESEEEEESES

*

* Functional description:

* Pick up (and convert) an integer
* of length 1, 2, or 4 bytes.

*

**************************************/

int val ue;
short shift;

val ue = shift = 0;

while (--length >= 0)
{

database_info(gds) database_info(gds)

val ue += (*ptr++) << shift;
shift += 8;
}

return val ue;

}

INFORMATION ITEMS
You can ask about the follding items in the item listudfer:

gds_%inb_page_sizePage size of databaseThe packt returned to the resuluffer has the follwing

format:
type ubyte gds_$inb_page_size
length short length of clumplet in bytes
value unspec | page size in bytes

gds_S$inb_num_huffers Number of luffers currently allocatedThe packt returned to the resulufer
has the follaving format:

type ubyte gds_$inb_num_huffers
length short length of clumplet in bytes
value unspec | number of allocateduffers

gds_$inDb_limbo Identification numbers of transactions in limbbhe packt returned to the resultufier
has the follaving format:

type ubyte gds_$inb_limbo
length short length of clumplet
value longword * | vector of transaction ids

In addition to the abe@ items for which you can request information, the access method may also return
the folloving status messages to the resuftdy:

gds_%$inb_end End of result bffer with no errors. The packt returned to the resultuffer has the
following format:

database_info(gds)

database_info(gds)

type ubyte

gds_S$inb_end

length short

length of clumplet (0)

gds_$inb_truncated Input into the result differ was truncated.The access method returns a truncated
clumplet as the last clumplet in the resulffér if the result hffer was not lage enough to hold all the
information you requestedlf your program encounters this clumplet, it means that all preceding
information is walid, kut at least one item is missing.he packt returned to the resuluffer has the

following format:

type ubyte

gds_$inb_truncated

gds_Sinb_error Error. The access method returns an error clumplet if an item of requested information
was ot available. Thisclumplet has the same form as other clumpletsthie information portion contains
only the information typealue and a code indicating wkhe information vas not gailable. Thepaclet
returned to the resulufffer has the follwing format:

type ubyte gds_$inb_error
length short length of clumplet
value short rude error message

The gds_$database_irdf routine can return information about items that mean more to tleoders of
the access method than yheill to your application. However, you can ask about them if you reallamt

to know:

gds_Sinb_readsNumber of page reads since the database attachedThe paclkt returned to the result

buffer has the follewing format:

type ubyte gds_$inb_reads

length short length of clumplet

value longword | numbeof page reads
since last attach call

gds_S$inb_writes Number of page writes since the databaae attachedThe packt returned to the result

buffer has the follewing format:

type ubyte gds_$inb_writes

length short length of clumplet

value longword | numbeof page writes
since last attach call

database_info(gds)

database_info(gds)

gds_Sinb_fetchesNumber of internal page accesses since the datalzssatiachedThe packt returned
to the result bffer has the follwing format:

type ubyte gds_$inb_fetches
length short length of clumplet
value longword | number of page accesses since last attach call

gds_%$inb_marks Number of internal page update declarations since the datatzssattached.The
paclet returned to the resuluffer has the follwing format:

type ubyte gds_$inb_marks

length short length of clumplet

value longword | number of page update declarations since last a
call

ftach

gds_S$inb_max_memory Most memory used at one time since the database attached.The paclkt
returned to the resuluffer has the follwing format:

type ubyte gds_$inb_max_memory

length short length of clumplet

value longword | highwater point of memory usage since last att
call

ach

gds_$inb_current_memory Amount of memory currently in usélhe packt returned to the resultiffer

has the follaving format:

EXAMPLE

type ubyte gds_%$inb_current_memory
length short length of clumplet
value longword | amounbf memory currently in use

The following call finds out about transactions in limbo for subsequent reconnects or rollbacks:

if (gds_$database_info (status_vector,

handl e,

si zeof (linbo_info),

I'i mbo_i nf o,

si zeof (buffer),

buffer))

database_info(gds) database_info(gds)

gds_$print_status (status_vector);

return;

} You must interpret the contents of the resulffer. The gds_$print_statusroutine displays the contents of the statester
See Chapter 2 for axxample of code that parses the information returned to the regfelt b

SEE ALSO
See the entry in this chapter for:

. gds_Sattach_database

DIAGNOSTICS
See Chapter 8 for a discussion of errors and error handling.

detach_database(gds) detach_database(gds)

NAME
gds_$detach_database —detach and close database

SYNTAX

status = gds_$detach_databasg
status_vector.vector_long.out,
db_handle.ulong.inout)

DESCRIPTION
Thegds_$detach_databaseoutine detaches an attached databa®el should call this routine (or issue a
finish statement) to release system resources when you are finished using a d&taetzedeéng a database
reduces the use of virtual memory by releasing:

. The cache
. Mapping windevs
. Data structures such as compiled requests and transaction state information

If your program is attached to a remote database, a qgilstdbdetach_databasalso releases theaufiers
and structures that control the remote irgegef on your node and the remote een the node where the
database is stored.

If you call gds_$detach_databas®/hile there are aate ransactions, the access method rolls back those
transactions. Ifthere are antransactions in limbo, tlyestay there.

For most applications, thénish statement is easier to code than a caljde_$detach databaseBoth
perform the same function3.here are no options that you can choose on the detach call.

However, you can callgds_$detach_databasé your program does not containyaother statements.
Coding the detach call eliminates the need for preprocessing the progragpneith

PARAMETERS
status_vector A vector of 20 longwrds that the access method uses to return error messages to the calling
program. Ifyou pass zero as the address of the st@c®rand encounter an errarites the message(s)
to standard error and aborts your progréee Chapter 8 for a discussion of the stagsor

db_handle Identifier for the database youamt to detach. A call to gds_ $attach_databaseor
gds_$ceate databaseestablishes this handl& successful return from the detach call sets the handle to
null. Thedatabase handle must not be null on input.

EXAMPLE
The following statement detaches a database:

if (handle)
gds_$det ach_dat abase (status_vector, handle);

See Chapter 2 for axxample of this program in conte

detach_database(gds) detach_database(gds)

SEE ALSO
See the entries fgds_$attach_databasandgds_$ceate_databasén this chapter

DIAGNOSTICS
See Chapter 8 for a discussion of errors and error handling.

get_sgment(gds) get_genent(gds)

NAME
gds_$get_sgment —read ggnent

SYNOPSIS

status = gds_$get_segmertt

status vector.vector_long.out,
blob_handle.ushort.in,
actual_segment_length.ushort.out,
segment_buffer_length.ushort.in,
segment_buffer_address.unspec.out)

DESCRIPTION
The gds_$get_segmentoutine reads a portion of a blob field@his routine is theread call for blob
manipulation. Beforeyou can read a blob, you must open it with a callgtts_$open_blobor an
equiaent routine. You may want to handle blobs with direct callgea in primarily and especially in
programs.

What a call togds_$get segmentoes depends on mieus blob calls. If the last call that used
blob_handle was:

. gds_$get_blobit reads the ndé segment.
. gds_$open_blobit reads the first ggnent.

Chapter 7 preides a detailed description of the stepmiwed in accessing a blob

PARAMETERS
status_vector A vector of 20 longwrds that the access method uses to return error messages to the calling
program. Ifyou pass zero as the address of the st@c®rand encounter an errarites the message(s)
to standard error and aborts your progréee Chapter 8 for a discussion of the stagsor

blob_handle Identifier for the blob A call to gds_$open_blobduring the current transaction establishes
this handle.

actual_segment_length Number of bytes actually passed to thgnsent luffer by the access methodhis
parameter is useful if the blobgseent is shorter than thegseent luffer.

If the blob sgment is longer than theuffer, the blob sgment will be truncatedin this case, the access
method returns the status cogéds $segment to indicate that the genent luffer contains a truncated
segment.

segment_buffer_length
segment_buffer_address The length and address of thgsent huffer into which the access method reads
blob sgments.

EXAMPLE
. source: /gds/harrison/work/call _int/exanp_get_segnent
/*
* Copy one blob into another. First create the new bl ob,

get_sgment(gds) get_genent(gds)

* then open the old one, and | oop getting segments from

* one and putting themto the other. Finally, close both.

* ERRQ dat abase_error prints the database status and perforns
* reasonabl e cl eanup.

*/

if (gds_$create_blob (status_vector,
to_dbb_handl e,
to_dbb_transacti on,
to_bl ob,
*t o_dsc_address))
ERRQ dat abase_error (to_dbb_handl e, status_vector);

if (gds_$open_blob (status_vector,
from dbb_handl e,
from.dbb_transacti on,
from bl ob,
*from. dsc_address))
ERRQ dat abase_error (from.dbb_handl e, status_vector);

while (!gds_$get_segnent (status_vector,
from bl ob,
| engt h,
si zeof (buffer),
buffer))
if (gds_$put_segnent (status_vector,
to_bl ob,
| engt h,
buffer))
ERRQ dat abase_error (to_dbb, status_vector);

if (gds_$cl ose_blob (status_vector,
from bl ob))
ERRQ dat abase_error (from.dbb, status_vector);

if (gds_$cl ose_blob (status_vector,
to_bl ob))
ERRQ dat abase_error (to_dbb, status_vector);

SEE ALSO
See the entries in this chapter for:

. gds_$get_blob
. gds_$open_blob
. gds_$blob_inb

DIAGNOSTICS
See Chapter 8 for a discussion of errors and error handling.

open_blob(gds) open_blob(gds)

NAME
gds_S$open_blob —prepare a blob for retiie

SYNOPSIS
status = gds_$open_bloK
status vector.vector_long.out,
db_handle.ulong.in,
transaction_handle.ulong.in,
blob_handle.ulong.inout,
blob_id.uguad.in)

DESCRIPTION

Thegds_$open_blolroutine opens a blob so that its data may be vettie
It makes good sense to cagllls_$cancel_blolbefore you open a blob

PARAMETERS
status_vector A vector of 20 longwrds that the access method uses to return error messages to the calling
program. Ifyou pass zero as the address of the st@c®rand encounter an errarites the message(s)
to standard error and aborts your progréee Chapter 8 for a discussion of the stagsor

db_handle Identifier for the database that contains the .blakcall to gds_S$attach_databasestablishes
this handle.

transaction_handle Identifier for the transaction in which the blob will be processéd.call to
gds_$start_transactionestablishes this handle.

blob_handle Identifier returned by the access methdtie blob handle uniquely identifies the blob that you
want opened.Read this from the field in your gt record.

blob_id Internal identifier of the blob assigned by the access methioelidentifier must be zero on input.

EXAMPLE
if (gds_$open_bl ob (status_vector,
from dbb_handl e,
from.dbb_transaction,
from bl ob,
*from dsc_address))
ERRQ dat abase_error (from.dbb_handl e, status_vector);

SEE ALSO
See the entries in this chapter for:

. gds_$cancel_blob
. gds_$close_blob
. gds_$get_segment

open_blob(gds) open_blob(gds)

DIAGNOSTICS
See Chapter 8 for a discussion of errors and error handling.

prepare_transaction(gds) prepare_transaction(gds)

NAME
gds_S$prepare_transaction —prepare to commit
SYNOPSIS
status = gds_$pepare_transaction(
status vector.vector_long.out,
transaction_handle.ulong.in)
DESCRIPTION
The gds_S$prepare_transactionroutine performs the first phase of aotphase commit for transactions
that involve nore than one databask.you do not callgds_$prepare_transactionbefore trying to commit
such a transaction the access method automatically calls it when ygdscaltommit_transaction
You may also vant to callgds_$prepare_transactionif you have o coordinate database adty with non-
database operations.
Chapter 4 discusses the use of this routine for both single and multiple database transactions.
PARAMETERS

status_vector A vector of 20 longwrds that the access method uses to return error messages to the calling
program. Ifyou pass zero as the address of the st@c®rand encounter an errarites the message(s)
to standard error and aborts your progréee Chapter 8 for a discussion of the stagsor

transaction_handle Identifies the transaction to commif call to one of the start transaction routines
establishes this handle.

EXAMPLE
. doubl e backslash n in exanple
if (gds_$prepare_transaction (status_vector, trans)
{
fprintf ("\'n*** error during prepare ***\n");
gds_$print_status (status_vector);
locate_and_fix ("rollback");

}

SEE ALSO
See the entries in this chapter for:
. gds_$commit_transaction
. gds_$ollback_transaction
. gds_$transaction_inb

See also the discussion of tjigak utility in

DIAGNOSTICS
See Chapter 8 for a discussion of errors and error handling.

put_sg@ment(gds) put_sgnent(gds)

NAME
gds_$put_sgment —write blob

SYNOPSIS

status = gds_$put_segmeng
status vector.vector_long.out,
blob_handle.ulong.in,
segment_buffer_length.ushort.in,
segment_buffer_address.unspec.in)

DESCRIPTION
Thegds_$put_segmentoutine writes the ne segment or portion of a blob

You cannot read ggments written with calls tgds_$put_segmentntil you close the blob with a call to
gds_$close_blob

PARAMETERS
status_vector A vector of 20 longwrds that the access method uses to return error messages to the calling
program. Ifyou pass zero as the address of the st@c®rand encounter an errarites the message(s)
to standard error and aborts your progréee Chapter 8 for a discussion of the stagsor

blob_handle Identifier for the blob to which youamt to write. A call to gds_$ceate_blobestablishes this
handle.

segment_buffer_length
segment_buffer_address The length and address of thegisent luffer that passes data to the access
method.

EXAMPLE
. source: /gds/harrison/work/call _int/exanp_put_bl ob
if (gds_$put_segnent (status_vector,
to_bl ob,
| engt h,
buffer))
ERRQ dat abase_error (to_dbb, status_vector);

SEE ALSO
See the entries in this chapter for:

. gds_$ceate_blob

. gds_$close_blob

. gds_$blob_inb
DIAGNOSTICS

See Chapter 8 for a discussion of errors and error handling.

recevve(gds) receie(gds)

NAME
gds_%receie receve message
SYNOPSIS
status = gds_$receive (
status vector.vector_long.out,
request_handle.ulong.in,
message_type.ushort.in,
message |length.ushort.in,
message address.unspec.out,
instantiation.ushort.in)
DESCRIPTION
Thegds_$eceieroutine transfers a formatted message from the access method to the calling program.
The gds_$eceve call accepts data sent by the access method to the program blittsend statement
that processes the same message tifphere is no correspondintgr_send statement in the request, the
access method returns a synchronization error and unwinds the request.
PARAMETERS
status_vector A vector of 20 longwrds that the access method uses to return error messages to the calling
program. Ifyou pass zero as the address of the st@c®rand encounter an errarites the message(s)
to standard error and aborts your progréee Chapter 8 for a discussion of the stagsor
request_handle Identifier for the request that defined the messafjecall to gds_$compile_equest
establishes this handle, and a caljtis $start equestor gds_$start and_sendctivates the request.
message_type Flag that identifies type of message in messafferb The blr_messagestatement pnides
the message type and structure for the message.
message |length
message_address Length in bytes and address of the calling progsamgssage wffer. The blr_message
statement pnddes the message type and structure for the messéma. program must préde a
corresponding tffer with that structure.
instantiation Incarnation of the requesthis parameterwids the cost of recompilation in a request that is
called recursiely. The instantiation parameter in this call identifies the instance of requestamduov
hear from. See the entries fgds_$start_requestor gds_$start and_sendh this chapter
EXAMPLE
. source: /gds/harrison/work/call _int/exanp_receive

EXEC recei ve (nmessage)
MG message;

{

/**************************************

*

* " EXEC_receive

recevve(gds) receie(gds)

*
kkhkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkkkkkk*%x

*

* Functional description
* Receive a nmessage froma running request.

*
**************************************/
REQ request;

long status_vector [20];

request = message- >nmsg_request;

if (gds_$receive (status_vector,
request - >req_handl e,
message- >nsg_nunber ,
message- >nsg_| engt h,
*message- >nsg_buffer,
message- >l evel))
db_error (request, status_vector);

}
SEE ALSO
See the entries in this chapter for:
. gds_$send
. gds_$start_request
. gds_$start_and_send

See also the entries in Chapter 10 for:

. bir_send
. blr_message
DIAGNOSTICS

See Chapter 8 for a discussion of errors and error handling.

reconnect_transaction(gds) reconnect_transaction(gds)

NAME
gds_$reconnect_transaction —reconnect transaction
SYNOPSIS
status = gds_$reconnect_transaction
status vector.vector_long.out,
db_handle.ulong.in,
transaction_handle.ulong.inout,
trans id_length.ushort.in,
trans_id.vector_byte.in)
DESCRIPTION
The gds_$reconnect_transactionroutine connects a transaction with a status of limbo tovapagent
process. Chapterdiscusses the conditions under which a transaction might become disconnected and ho
to deal with it.
When you reconnect to a transaction, the oaljdvoperations are commit and rollbadk.you try to use
the reconnected transaction inyasther way, the call or statemenails and the access method returns an
error
For some applications, you may choose xeréclose control and write youmm routines for locating and
expunging transactions in limbolhegds_$reconnect_transactiorcall supports such a utility
PARAMETERS
status vector A vector of 20 longwrds that the access method uses to return error messages to the calling
program. Ifyou pass zero as the address of the st@c®rand encounter an errarites the message(s)
to standard error and aborts your progréee Chapter 8 for a discussion of the stagsor
db_handle Identifier for the database a@gst which the transaction is runningA call to
gds_$attach_databasestablishes this handle.
transaction_handle Identifier for the transaction that yowamt to reconnectThis handle must be zero on
input.
trans_id_length
trans _id Length of transaction identifier and id itself.
EXAMPLE

static reconnect (handle, nunber, switches)
int *handl e;
long nunber;
SHORT swi t ches;
{

[ok ok ok ok ks ok ok ok ok ok K Sk ok ok ok kK ok ok ok ok ok Sk ok ok kK K kR k ok ok
*
*'reconnect
*

khkkhkkhkkhkkkhkkhkkkkkkkk*k*x*%x

reconnect_transaction(gds) reconnect_transaction(gds)

* Functional description:

* Commit or rollback a named transaction.
* Invert_integer takes a byte | ength and

* the address of a nunber and reverses the
* bytes.

*

**************************************/

int *transaction;
long id;
long status_vector [20];

id = INVERT_i nteger (&nunber, 4);
transaction = NULL;

if (gds_$reconnect_transaction (status_vector,

handl e,
transacti on,
si zeof (id),
id))

{

gds_$print_status (status_vector);

return;

}

if (switches & sw conmit)
gds_$conmi t _transaction (status_vector, transaction);
el se
gds_$rol | back_transaction (status_vector, transaction);

if (status_vector [1])
gds_$print_status (status_vector);

}
SEE ALSO
See the entries in this chapter for:
. gds_S$pepare_transaction
. gds_$commit_transaction
. gds_$ollback_transaction
DIAGNOSTICS

See Chapter 8 for a discussion of errors and error handling.

release_request(gds) release_request(gds)

NAME
gds_%release_request —terminate request

SYNOPSIS

status = gds_$release_equest(
status vector.vector_long.out,
request_handle.ulong.inout)

DESCRIPTION
Thegds_$elease_equestroutine frees the memory used by thecaition tree of a compiled request and
sets the request handle to nueleasing an ast request causes it, and all its instantiations, to unwind.

Most compiled programs use a relaly small (faver than 50) number of requests and re-use them as the
program iterates through its internal loogSor such a program, the cost of recompilatioreroides the
savings of released memory

However, for an interactie program that generates requests in response to user inputefif@bkl of re-
using an old request islowhile the number of requests is potentially higguch a program should call
gds_$elease_equestonce a request has been terminated.

You can callgds_$elease_equestfrom a compiled program if it mak a lage (greater than 75) number
of requests and you can predict that certain requests will not eawted.

Once you hee rleased a request, you must compile iaimgbefore you can re-use itCall
gds_$compile_equestto compile the request.

PARAMETERS
status_vector A vector of 20 longwrds that the access method uses to return error messages to the calling
program. Ifyou pass zero as the address of the st@c®rand encounter an errarites the message(s)
to standard error and aborts your progréee Chapter 8 for a discussion of the stagesor

request_handle Identifier for the request youanmt to releaseA call to gds_$compile_equestestablishes
this handle.

EXAMPLE
. lgds/harrison/work/call _int/exanp_rel ease
GEN rel ease ()
{

/**************************************
*

* GEN_rel ease

*

LR R R EEEEEEREEEEEEEEREEEEEEEEEEEEEEEEEEE

*

* Functional description:
* Rel ease any conpil ed requests follow ng
* execution or abandonment of a request.

* Just recurse around rel easi ng requests.
*

release_request(gds) release_request(gds)

**************************************/

long status_vector [20];

for (request = top_request; request; request = request->req_next)
if (request->req_handl e & request->req_active)
if (gds_$rel ease_request (status_vector
request - >req_handl e))
gds_$print_status (status_vector)

}
SEE ALSO
See the entries in this chapter for:
. gds_$unwind_request
. gds_$compile_equest
. gds_$request_inb
DIAGNOSTICS

See Chapter 8 for a discussion of errors and error handling.

request_info(gds) request_info(gds)

NAME
gds_%$request_info —information call
SYNTAX
status = gds_$request_inb (
status vector.vector_long.out,
request_handle.ulong.in,
item list_length.ushort.in,
item list buffer_address.vector_byte.in,
result_buffer_length.ushort.in,
result_buffer_address.unspec.out,
instantiation.ushort.in)
DESCRIPTION
Thegds_$equest_inb routine returns information about a compiled request.
In all likelihood, nothing bt the standard remote intace wuld eser use this call. The remote intedce
calls this routine when it sets upffers, handles error conditions, and manages pipelined communication.
Some special applications may require a customized remote interace or a layer on top of the database to
emulate multiple database requestbegds_$request_inb routine is essential for such applications.
The calling program passes its request for information through the itenaffist, land the access method
returns the information to the resuliffer. See Chapter 2 for anxample of a call to a similar routine
(gds_$database_ird) and the parsing of the resulaffer.
PARAMETERS

status_vector A vector of 20 longwrds that the access method uses to return error messages to the calling
program. Ifyou pass zero as the address of the st@c®rand encounter an errarites the message(s)
to standard error and aborts your progréee Chapter 8 for a discussion of the stagsor

The returned status code indicates only that the access method accepted the request for information; it does
not mean that it understood the request or that it supplied all requested infornyatiwrprogram must
interpret the contents of the resuliffier.

request_handle Identifier for the request about which youant information. A call to
gds_$compile_equestestablishes this handle, and a caljds_$start equestactivates the request.

item list_buffer_length

item_list_buffer_address Provides the length and address of the item ligtdo. The item list biffer is a
regular byte ector with no structure.The calling program lists the items about which it requires
information in the item listliffer. These items are listed balander the headinglhformation Items:.

result_buffer_length
result_buffer_address Provides the length and address of the resuftelh The access method returns the
requested information to the resuliffer. The result bffer has the follwing format:

request_info(gds) request_info(gds)

Syntax: Information Call Result Buffer Clumplet

result_buffer ::= clumplet...

clumplet ::= type.ubytelength.ushortvalue.short

The \alue oftype is the item you requested in the item lisffbr. These items are listed baelander the
heading ‘Information Items.

The clumplets returned to the resuliffier are not alignedFurthermore, binary numbers are in a generic
format, which you must ceert to a datatype nat to your computer before interpreting therm a
generic binary &lue, the least significant byte is first, and the most significant isTihstsign is in the last
byte. To interpret a binaryalue returned by an information call:

. Determine the size, which can be2, or 4 bytes.
. Revease the order of the bytes.

The following routine comerts the contents of the resuliffer into something you can read:

REV_i nteger (ptr, |ength)
unsi gned char *ptr;
short |ength;

{

/**************************************
*
*“REV_integer
*
khkkhkkkhkkhkkhkkhkhkhkkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkkkkk*k*x*%

*

* Functional description:

* Pick up (and convert) an integer
* of length 1, 2, or 4 bytes.

*
**************************************/
int val ue;

short shift;

val ue = shift = 0;

while (--length >= 0)
{
value += (*ptr++) << shift;
shift += 8;
}

return val ue;

}

request_info(gds)

request_info(gds)

instantiation Incarnation of the reques® recursve routine may actually wolve ®veal actve vasions of the same requesthis
parameter specifies which instance yawuid like to know about.

INFORMATION ITEMS

You can ask about the follding items in the item listudfer:

gds_S$inb_number_messagedNumber of diferent request message typeghe packt returned to the

result uffer has the follwing format:

type ubyte gds_$inb_number_messages

length ushort lengtbf clumplet in bytes

value unspec | number of message types
referenced in compiled request

gds_S$inb_max_messagelighest numbered message tydée packt returned to the resultfier has the

following format:

type ubyte gds_%inb_max_message
length ushort lengtbf clumplet in bytes
value unspec | number of highest message type

gds_S$inb_max_sendLength of longest send messagkhe packt returned to the resuluffer has the

following format:

type ubyte gds_$inb_max_send
length ushort lengtbf clumplet in bytes
value unspec | length of longest message to be sent

gds_S$inb_max_receve Length of longest rece message. Theaclet returned to the resuluffer has

the folloving format:

type ubyte gds_$inb_max_receve
length ushort lengtbf clumplet in bytes
value unspec | length of longest message to reeei

gds_Sinb_stateCurrent status of the requesthe packt returned to the resuluffer has the follwing

format:

request_info(gds)

gds_S$inb_message_numbeCurrent message for sen@he packt returned to the resuluffer has the

request_info(gds)

type ubyte gds_$inb_state
length ushort lengtbf clumplet in bytes
value unspec | status of request. The status of the request can be:

— gds_$inb_active: The request isusy, happy, and
quiet.

— gds_$inb_inactive: Request is not running.

— gds_$inb_send Request is witing for program
to receve a nessage.

— gds_$inb_receve: Request
program to send a message.

is aiting for

— gds_$inb_select Request is iting for one of
several messages to be sent from program.

following format:

gds_%$inb_message_siz8end message lengtiThe packt returned to the resuluffer has the follwing

type ubyte gds_$inb_message_number
length ushort lengtbf clumplet in bytes
value unspec | what message typeviolved in send or reces

format:
type ubyte gds_%inb_message_size
length ushort lengtbf clumplet in bytes
value unspec | length of message to be sent or returned

In addition to the abe@ items for which you can request information, the access method may also return

the folloving status messages to the resuftds:

gds_$inb_end End of result bffer with no errors. The packt returned to the resultuffer has the

following format:

type

ubyte

gds_S$inb_end

length

ushort

lengtbf clumplet in bytes

gds_$inb_truncated Input into the result differ was truncated.The access method returns a truncated
clumplet as the last clumplet in the resulffér if the result hffer was not lage enough to hold all the
information you requestedlf your program encounters this clumplet, it means that all preceding

request_info(gds) request_info(gds)

information is alid, kut at least one item is missind@-he packt returned to the resulutier has the
following format:

type ubyte gds_$inb_truncated

gds_$inb_error An error The access method returns an error clumplet if an item of requested information
was rot available. Thisclumplet has the same form as other clumpletsthe information portion contains
only the information typealue and a code indicating withe information vas not sailable. Thepaclet
returned to the resuluffer has the follwing format:

type ubyte gds_$inb_error
length ushort lengtbf clumplet in bytes
value short rude error message
EXAMPLE
source: /gds/harrison/work/call_int/exanp_req_info

static CHAR request_info [] =
{ inf_state, inf_nessage_nunber, inf_end };

gds_$request _info (status_vector,
request - >rrq_handl e,
current _i nstance,
si zeof (request_info),
request _i nfo,
sizeof (info_buffer),
info_buffer);

SEE ALSO
See the entry in this chapter for:

. gds_S$compile_equest

DIAGNOSTICS
See Chapter 8 for a discussion of errors and error handling.

rollback_transaction(gds) rollback_transaction(gds)

NAME
gds_%rollback_transaction —undoing transaction
SYNOPSIS
status = gds_$llback_transaction (
status vector.vector_long.out,
transaction_handle.ulong.inout)
DESCRIPTION

Thegds_$ollback_transactionroutine undoes changes made during a transaction.

A successful call tagds_$ollback_transaction closes requests and blob&. call to this routine canail

only if:

. You pass an irid transaction handle.

. The transaction dealt with more than one database and a communicatioraidirdufing the
rollback operation.If that happens, subtransactions on the remote node will end up in livobo.
must usegfix (or a functionally equiaent utility of your avn design) to roll back those
transactions.

See Chapter 4 for more information about transactions tavemultiple databases.
PARAMETERS

status vector A vector of 20 longwrds that the access method uses to return error messages to the calling

program. Ifyou pass zero as the address of the stac®rvand encounter an errarites the message(s)

to standard error and aborts your progré&ee Chapter 8 for a discussion of the stagsor

transaction_handle Identifier for the transaction youant to roll back.A call to gds_$start_transaction

establishes this handléf the call to this routine is successful, the access method sets this handle to zero.

Otherwise, it leges it unchanged.

EXAMPLE
. source: /gds/harrison/work/call _int/exanp_rollback
if (switches & sw conmt)
gds_$commit _transaction (status_vector, transaction);
el se
gds_$rol | back_transaction (status_vector, transaction);
SEE ALSO

See the entries in this chapter for:

. gds_$commit_transaction

. gds_$pepare_transaction

DIAGNOSTICS

See Chapter 8 for a discussion of errors and error handling.

send(gds) send(gds)

NAME
gds_$send —send message

SYNOPSIS

status = gds_$send

status vector.vector_long.out,
request_handle.ulong.in,
message_type.ushort.in,
message |length.ushort.in,
message address.unspec.in,
instantiation.ushort.in)

DESCRIPTION
Thegds_$sendoutine transfers a formatted message from the calling program to the access method.

You must match each call tgds_$sendwith a blr_r ecevve statement that processes the same message
type. Ifyou do not hee a orrespondinglr_r ecevve statement in the request, the access method returns a
synchronization error and unwinds the request.

Under some circumstances, your program may need to send a choice of messagemffia, here’s
some datd,“ skip this oné€, or “punt”). In this case, theyds_$sendcall should be matched by a
bir_select statement. Thélr_select statement is a case statement contaibing eceve statements for
different message types and actions for each type.

Remember that when coding requests each sendiecmises xecution on each side to stall until the
other has completedlhis stalling and netark trafic can be costly during remote access.

PARAMETERS
status_vector A vector of 20 longwrds that the access method uses to return error messages to the calling
program. Ifyou pass zero as the address of the st@c®rand encounter an errarites the message(s)
to standard error and aborts your progréee Chapter 8 for a discussion of the stagsor

request_handle Identifier for the request that defined the messafjecall to gds_$compile_equest
establishes this handle, and a caljtis_$start equestor gds_$start and_sendctivates the request.

message_type Flag that identifies type of message in messafferb The blr_messagestatement pnides
the message type and structure for the message.

message |length

message address Length in bytes and address of the calling progsamgssage lffer. The blr_message
statement pnides the message type and structure for the messémar. program must préde a
corresponding tnfer.

instantiation Incarnation of the requesh recursve routine may actually wolve sveal active vasions of
the same requesthis parameter specifies which instance shouldvegeur call.

send(gds) send(gds)

EXAMPLE
source: /gds/harrison/work/call_int/exanp_send
EXEC _send (message)
M5G nmessage;
{

/**************************************
*

* EXEC_send

*

kkhkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkhkkkkkkkkkkkkkk*%x

* Functional description:
* Send a message to a running request.
* Sonmebody el se already filled the nmessage

* wi th good and val uabl e i nformation.
*

**************************************/
REQ request;
long status_vector [20];

request = message- >nmsg_request;

if (gds_$send (status_vector,
request - >req_handl e,
message- >nsg_nunber ,
message- >nsg_| engt h,
*message- >nsg_buffer),
message- >req_i nstance))
db_error (request, status_vector);

}

SEE ALSO
See the entry in this chapter for:

. gds_$receive

See also the entries in Chapter 10 for:

. blr_receve
. blr_message
DIAGNOSTICS

See Chapter 8 for a discussion of errors and error handling.

start_and_send(gds) start_and_send(gds)

NAME

gds_$start_and_send -start request and send message

SYNOPSIS

status = gds_$start_and_send
status vector.vector_long.out,
request_handle.ulong.in,
transaction_handle.ulong.in,
message_type.ushort.in,
message |length.ushort.in,
message address.unspec.in,
instantiation.ushort.in)

DESCRIPTION

Thegds_$start_and_sendoutine is &actly equvalent to a call tagds_$start_requestfollowed by a call
to gds_$send See the manual pages for those routines for more information about their purposes and uses.

Many requests kgin with a send, transmittingaviable data required for record selectiof. call to
gds_$start_and_send piggy-backs’the send with the start request cadtlhas eactly the efiect of a call
to gds_$start_requestfollowed by a call tgds_$sendthus reducing communication costs.

PARAMETERS

status_vector A vector of 20 longwrds that the access method uses to return error messages to the calling
program. Ifyou pass zero as the address of the st@c®rand encounter an errarites the message(s)
to standard error and aborts your progréee Chapter 8 for a discussion of the stagsor

request_handle Identifies the compiled request youamt to start. A call to gds_$compile_equest
establishes this handle.

transaction_handle Identifies the transaction in which youamt the request toxecute. A call to
gds_$start_transactionestablishes this handle.

message_type Flag that identifies type of message in messafferb The blr_messagestatement pnides
the message type and structure for the message.

message |length

message address Length in bytes and address of the calling progsamgssage ffer. The blr_message
statement pnddes the message type and structure for the messémd. program must préde a
corresponding tifer.

instantiation Incarnation of the requestf you call gds_$start_requestor gds_$start_and_sendvith the

handle of an acte request, that request is uomnd, and a e request startsOccasionallyin a recursve

routine, you need multiple copies of the same requesteagtnultaneously An organization chart, for
example, or a bill of materials, can most easily be done by getting a tag from one record and using it to get
the net record davn the tree.Instantiation numbers alloyou to clone an asté request and start awwe

version without recompiling the request.

start_and_send(gds)

start_and_send(gds)

Instantiations normally start at O and increase as you recurse fuftherinstantiation call parameter

corresponds to thevel request option in

EXAMPLE
/ gds/ harrison/work/call_int/sands
EXEC start_request (request, message, |evel)
REQ request;
M5G nessage;
SHORT | evel;

{

/**************************************
*
**"EXEC_start _request
*
kkhkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkhkkhkkkkkkkkkkkkkkk*%x

*

* Functional description:

* Start a request running. |If there is a message
* to send, do a start and send. Otherw se, just do
* a start. |If there is a nessage, sonebody has

* already filled it for us. Save the request |evel

* everywhere plausible.
*

**************************************/

| ong status_vector [20];

if (message)

{

message- >nsg_|l evel = req->req_l evel = level;

if (!gds_$start_and_send (status_vector,
request - >req_handl e,
request - >r eq_dat abase- >dbb_t ransacti on,
message- >nsg_nunber ,
message- >nsg_| engt h,
*message- >nsg_buffer,

level))
return;
el se
request->req_|l evel = |evel;

if (!gds_$start_request (status_vector,
request - >req_handl e,
request - >r eq_dat abase- >dbb_t ransacti on,
level))

return;

}

db_error (request, status_vector);

}

start_and_send(gds) start_and_send(gds)

SEE ALSO
See the entries in this chapter for:

. gds_$start_request
. gds_$send

DIAGNOSTICS
See Chapter 8 for a discussion of errors and error handling.

start_multiple(gds) start_multiple(gds)

NAME
gds_S$start_multiple —lggn transaction

SYNOPSIS

status = gds_$start_multiple (
status vector.vector_long.out,
transaction_handle.ulong.inout,
db_handle count.ushort.in,
teb_vector_address.usbyte.in)

DESCRIPTION
The gds_S$start multiple routine begins a n& transaction. Itis functionally equident to
gds_$start_transaction but is intended for use with languages thatehgroblems handling aariable
number of aguments on a callThis routine can also be used in other languages when you must code the
start transaction function before you knbow mary databases you will access.

PARAMETERS
status_vector A vector of 20 longwrds that the access method uses to return error messages to the calling
program. Ifyou pass zero as the address of the st@c®rand encounter an errarites the message(s)
to standard error and aborts your progréee Chapter 8 for a discussion of the stagsor

transaction_handle Identifier returned by this routinelhe handle must be zero on input.

db_handle count Number of database handles passed in this tddintifies the databaséhis handle is
returned from a call tgds_S$attach_databaser gds_$ceate_database

teb vector_address Address of a ector of transaction existence blocks, or tebs. The teb vector is
equiaent to the list of database handles gpimblocks in thegds_$start_transactioncall. Thelength of
the teb_vector is determined by thdb_handle count parameter There is ondeb block in the ector for
each databaselhe format of theeb block follows:

typdef struct {
&gds $handle
long

*char

} GDS_$TEB

dbb_ptr Address of the database handle.
tpb_len Length of the transaction parameter block for that database.
tpb_ptr Pointer to a transaction parameter blagk);

tpb_vector Describes the conditions of acce3hetpb vector consists of a@rsion number and awtor of
bytes that describes the transaction characteristics:

start_multiple(gds) start_multiple(gds)

tpb_vector ::= version_number.ubyte \ector_byte
version_number ::=tpb_$version3

See the section belaitled “TPB PARAMETERS? for a list of alues forvector_byte.

TPB PARAMETERS
The following are \alid parameteralues:

gds $tpb_concurrency (default)

gds $tpb consistency The de&ult mode for a transaction specifies a high throughput, high congurrenc
transaction with generally acceptable consistenthe optional mode specifies that the operations
performed in the transaction should be serializable in some order

gds $tpb_wait (default)
gds $tpb _nowait The deéult action if your program encounters a ledkelation is to wit until the lock
goes avay. The navait option is not recommended.

gds $tpb_write (default)
gds $tpb read The deéult intention of a transaction is that it will write dat&oth the dedult and the
option tale a elation name as ang@ment.

gds $tpb lock level Specifies the intention of a transactionvaod a specified relationThe format of
gds $tpb_lock level is:

lock option, length, relation_name, access option
lock_option ::= { gds_$tpb_lock_ead| gds_$tpb_lock write}

access_option ::= { gds_$tpb_shaed | gds_$tpb_pimotected|
gds_S$tpb_exclusie}

The defult lock option is write. The de#ult access option is concurrent shared access, the protected
option allavs concurrent restricted access, and #utusive gotion disallavs ary concurrent access.

EXAMPLE
. source: /gds/harrison/work/call _int/exanp_teb
#i nclude "/sys/ins/gds.ins.c"

typedef struct {
int *dbb_ptr;
long tpb_len;
char *tpb_ptr;
} GDS_$TEB;

GDS_$TEB teb_vec [2];

start_multiple(gds)

int
gds_$st at us
*db0, *db1l,
*trans;

static char
gds_$tpb_0

[20], /* status vector */
/* dat abase handl e */

(1 =4

gds_$t pb_version3, gds_$tpb_wite,

gds_$t pb_consi st ency,
gds_$tpb_|l ock_write,

gds_$t pb_prot ect ed},

gds_$tpb_1

(1 =4

gds_$t pb_wai t,
3.'1".'D,’S,

gds_$t pb_version3, gds_$tpb_wite,

gds_$t pb_consi st ency,
gds_$tpb_|l ock_write,

gds_$t pb_prot ect ed};

main ()

{

db0 = dbl = O;

trans = 0;

if (! gds_$attach_database (

gds_$t pb_wai t,
3,'0,'2.'S,

dbo, 0,0))

dbl, 0,0);

= sizeof (gds_$tpb_0);

= sizeof (gds_$tpb_1);

gds_$status, 0, "test_0.gdb",
gds_$at t ach_dat abase (
gds_$status, 0, "test_1.gdb",
if (db0 && dbl)
{
teb_vec[0].dbb_ptr = &dIbO;
teb_vec[O0].tpb_Ien
teb_vec[0].tpb_ptr = gds_$tpb_0;
teb_vec[1].dbb_ptr = &dbil;
teb_vec[1].tpb_len
teb_vec[1].tpb_ptr = gds_$tpb_1;

if (gds_$start_nultiple (gds_$status, trans,
gds_$print_status (gds_$status);

}

if (trans)

gds_$commit _transaction (gds_$status, trans);

if (dbO && !'t

rans)

gds_$det ach_dat abase (gds_$status, db0);

start_multiple(gds)

start_multiple(gds) start_multiple(gds)
if (dbl && !(trans && db0))
gds_$det ach_dat abase (gds_$status, dbl);

if (gds_$status [1])
gds_$print_status (gds_$status);

}

SEE ALSO
See the entries in this chapter for:
. gds_$start_transaction
. gds_S$pepare_transaction
. gds_$commit_transaction
. gds_$ollback_transaction
DIAGNOSTICS

See Chapter 8 for a discussion of errors and error handling.

start_request(gds) start_request(gds)

NAME
gds_Sstart_request —tfia request

SYNOPSIS

status = gds_ $start_request(
status vector.vector_long.out,
request_handle.ulong.in,
transaction_handle.ulong.in,
instantiation.ushort.in)

DESCRIPTION
The gds_$start_requestroutine bgins the &ecution of a preiously compiled request under axisting
transaction.

You can attach a database, start a transaction, compile a request, or get information yabimgf, dmt
until you start a request, you cannot touch the contents of a databaseiling a request prepares an
executable form of the requesh call to gds_$start_requestbegins execution.

If you call gds_$start_requestand pass the handle of a request that is already running, the access method
unwinds the actie request and starts ameequest. Hwever, if you pass aalue forinstantiation, the
access method starts awniestance of that request.

At times, particularly in recurgé cde, you may ant to run seeral copies of the same requesfou
cannot simply restart the request because it has internakctrdeit must retain.You can, havever, sart
another instance of the request, usingitisantiation parameter on thgds_$start equestcall. A start
request call with an unusedlue for theinstantiation parameter clones the requestimy it the same
executable structureli with a separate conte Creatinga new instance of a request is considerably less
expensve than recompiling th&LR to create a e request.

Many requests kgin with a send, transmittingaviable data required for record selectiof. call to
gds_$start_and_send piggy-backs’the send with the start request cdtlhas eactly the effect of a call
to gds_$start_requestfollowed by a call tgds_$sendand reducing communication costs.

PARAMETERS
status_vector A vector of 20 longwrds that the access method uses to return error messages to the calling
program. Ifyou pass zero as the address of the st@c®rand encounter an errarites the message(s)
to standard error and aborts your progréee Chapter 8 for a discussion of the stagsor

request_handle Identifies the compiled request youamt to start. A call to gds_$compile_equest
establishes this handle.

transaction_handle Identifies the transaction in which youamt the request toxecute. A call to
gds_$start_transactionestablishes this handle.

instantiation Incarnation of the requestf you call gds_$start_requestor gds_$start_and_sendvith the

handle of an acte request, that request is uomnd, and a e request startsOccasionallyin a recursve

routine, you need multiple copies of the same requesteagtnultaneously An organization chart, for
example, or a bill of materials, can most easily be done by getting a tag from one record and using it to get
the net record davn the tree.Instantiation numbers alloyou to clone an asté request and start awwe

start_request(gds) start_request(gds)

version without recompiling BLR.

Instantiations normally start at O and increase as you recurse fuftherinstantiation call parameter
corresponds to thevel request option in GDML.

EXAMPLE
The follonving example actually tads adentage of piggybacking of a start request and send through the
gds_$start_and_sendoutine:

source: /gds/harrison/work/call_int/sands
EXEC start_request (request, message, |evel)
REQ request;
MG message;
SHORT | evel ;

{

/**************************************
*
*"EXEC_start _request
*

kkhkkkkhkkkkkkkkkkkkkk*%x

* Functional description:

* Start a request running. |If there is a nmessage
* to send, do a start and send, otherw se just do
* a start. |If there is a nessage, sonebody has

* already filled it for us. Save the request |evel

* everywhere plausible.
*

**************************************/

long status_vector [20];

if (message)

{

message- >nsg_|l evel = req->req_l evel = level;

if (!gds_$start_and_send (status_vector,
request - >req_handl e,
request - >r eq_dat abase- >dbb_t ransacti on,
message- >nsg_nunber,
message- >nsg_| engt h,
*message- >nsg_buffer,

level))
return;
el se
request->req_|l evel = level;

if (!gds_$start_request (status_vector,
request - >req_handl e,
request - >r eq_dat abase- >dbb_t ransacti on,

start_request(gds)

level))
return;

}

db_error (request, status_vector);

}

SEE ALSO
See the entries in this chapter for:

. gds_$compile_equest

. gds_$start_and_send

DIAGNOSTICS

See Chapter 8 for a discussion of errors and error handling.

start_request(gds)

start_transaction(gds) start_transaction(gds)

NAME
gds_$start_transaction -gie transaction
SYNTAX
status = gds_ $start_transaction(
status vector.vector_status.out,
transaction_handle.ulong.inout,
db_handle count.ushort.in,
{ db_handle.ulong.in,
tpb_length.ushort.in,
tpb_address.ubyte.in }...)
DESCRIPTION
The gds_$start_transactionroutine bgins a nw transaction. Se¢he Chapter 4 of this manual for
transaction capabilities accessible only through the call auerf
If you are working with multiple databases and a language that requiresdarfixmber of guments on
each call, you should callgds $start multiple instead of gds_$start_transaction The
gds_$start_multiple routine is also useful if you need to code the start transaction call withowtinigno
how mary databases will be wolved.
For most applications, you may find that thirt_transaction statement is easier to code than a call to
gds_Sstart_transaction The statement and the start transaction call are functionallyakenii
If the module does not containyaother statements, calling tlyels $start_transactionroutine will avoid
the tra step of preprocessing the program giphne.
PARAMETERS

status vector A vector of 20 longwrds that the access method uses to return error messages to the calling
program. Ifyou pass zero as the address of the stac®rvand encounter an errarites the message(s)

to standard error and aborts your progréee Chapter 8 for a discussion of the stagsor

transaction_handle Identifier returned by this routinelhe handle must be zero on input.

db_handle_count Number of database handles passed in this Baltause a single transaction can access
multiple databases, this routine passes information about each database it accesses and the conditions of
access for that database:

db_handle Identifies the database.

tpb_length Length of thetpb_vector that describes the conditions of access.

tpb_address Address of thepb_vector.

The tpb_vector (transactionparameterblock) consists of a ersion number and aewgtor of bytes that
describes the transaction characteristics:

start_transaction(gds) start_transaction(gds)

tpb_vector ::= version_number.ubyte \ector_byte

version_number ::=tpb_$version3

See “TPB Parameters belo for a list of \alues forvector _byte.

TPB PARAMETERS
The following are \alid parameteralues:

gds $tpb_concurrency (default)

gds $tpb consistency The de&ult mode for a transaction specifies a high throughput, high congurrenc
transaction with generally acceptable consistenthe optional mode specifies that the operations
performed in the transaction should be serializable in some order

gds $tpb_wait (default)
gds $tpb _nowait The deault action if your program encounters a ledkelation is to wit until the lock
goes avay. The navait option is not recommended.

gds $tpb_write (default)
gds $tpb read The deéult intention of a transaction is that it will write dat&oth the dedult and the
option tale a elation name as ang@ment.

gds $tpb lock level Specifies the intention of a transactionvaod a specified relationThe format of
gds $tpb _lock level is:

lock option, length, relation_name, access option
lock_option ::= { gds_$tpb_lock_ead| gds_$tpb_lock write}

access option ::=
{ gds_$tpb_shaed| gds_$tpb_pmotected| gds_S$tpb_exclusie }

The defult lock option is write. The de#ult access option is concurrent shared access, the protected
option allavs concurrent restricted access, and #utusive gotion disallavs ary concurrent access.

EXAMPLE
. source: /gds/harrison/work/call _int/exanp_23
#i nclude "/sys/ins/gds.ins.c"

int
gds_$status[20], /* status vector */
db, / database handle */
*trans;

static char
gds_$tpb_0 [] = {
gds_$t pb_version3, gds_$tpb_wite,
gds_$t pb_consi stency, gds_$t pb_wai t,
gds_S$tpb_l ock_wite, 3,'1",'D,’S,

start_transaction(gds) start_transaction(gds)

gds_$t pb_prot ect ed};

main ()

{

db = 0;
trans = 0;

gds_$at tach_dat abase (gds_$status, 0, "test.gdb", db, 0,0);

if (db)
if (gds_$start_transaction (
gds_$status, trans, 1, db,
si zeof (gds_$t pb_0), gds_$tpb_0))
gds_$print_status (gds_$status);
if (trans)
gds_$commit _transaction (gds_$status, trans);

if (db && !'trans)
gds_$det ach_dat abase (gds_$status, db);

if (gds_$status [1])
gds_$print_status (gds_$status);

}
SEE ALSO
See the entries in this chapter for:
. gds_S$pepare_transaction
. gds_$commit_transaction
. gds_$ollback_transaction
. gds_$start_multiple
DIAGNOSTICS

See Chapter 8 for a discussion of errors and error handling.

transaction_info(gds) transaction_info(gds)

NAME
gds_$transaction_info —information call
SYNOPSIS
status = gds_S$transaction_inb (
status_vector.vector_long.out,
transaction_handle.ulong.in,
item list_length.ushort.in,
item list buffer_address.vector_byte.in,
result_buffer_length.ushort.in,
result_buffer_address.unspec.out)
DESCRIPTION
The gds_$transaction_ind routine returns information about the current transactidn.call to
gds_$transaction_ind returns information necessary foedping track of permanent transaction ids,
instead of vlatile transaction handles.
PARAMETERS

status_vector A vector of 20 longwrds that the access method uses to return error messages to the calling
program. Ifyou pass zero as the address of the st@c®rand encounter an errarites the message(s)
to standard error and aborts your progréee Chapter 8 for a discussion of the stagesor

The returned status code indicates only that the access method accepted the request for information; it does
not mean that it understood the request or that it supplied all requested infornyatiwrprogram must
interpret the contents of the resuliffier.

transaction_handle Identifies the transaction about which yoould like ome information.

item list_buffer_length

item_list_buffer_address Provides the length and address of the item ligtdo. The item list biffer is a
regular byte ector with no structure.The calling program lists the items about which it requires
information in the item listlffer. These items are listed balander the headinglhformation Items:.

result_buffer_length
result_buffer_address Provides the length and address of the resufteh The access method returns the
requested information to the resuliffer. The result bffer has the follwing format:

transaction_info(gds) transaction_info(gds)

Syntax: Information Call Result Buffer Clumplet

result_buffer ::= clumplet...

clumplet ::= type.ubytelength.ushortvalue.short

The \alue oftype is the item you requested in the item lisffbr. These items are listed baelander the
heading ‘Information Items.

The clumplets returned to the resuliffier are not alignedFurthermore, binary numbers are in a generic
format, which you must ceert to a datatype nat to your computer before interpreting therm a
generic binary &lue, the least significant byte is first, and the most significant isTihstsign is in the last
byte. To interpret a binaryalue returned by an information call:

. Determine the size, which can be2, or 4 bytes.
. Revease the order of the bytes.

The following routine comerts the contents of the resuliffer into something you can read:

REV_i nteger (ptr, |ength)
unsi gned char *ptr;
short |ength;

{

/**************************************
*
*“REV_integer
*
khkkhkkkhkkhkkhkkhkhkhkkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkkkkk*k*x*%

*

* Functional description:

* Pick up (and convert) an integer
* of length 1, 2, or 4 bytes.

*
**************************************/
int val ue;

short shift;

val ue = shift = 0;

while (--length >= 0)
{
value += (*ptr++) << shift;
shift += 8;
}

return val ue;

}

transaction_info(gds)

INFORMATION ITEMS
You can ask about the follding item in the item list bffer:

transaction_info(gds)

gds_$inb_tra_id Transaction id numbefThe packt returned to the resulufier has the follwing format:

type ubyte gds_$inb_tra_id
length ushort lengtbf clumplet in bytes
vaue short transaction id

In addition to the ah@ item about which you can request information, the access method may also return
the folloving status messages to the resuftdy:

gds_%$inb_endEnd of messageThe packt returned to the resulufier has the follwing format:

type

ubyte

gds_S$inb_end

gds_$inDb_truncated Input into the result differ was truncated.The access method returns a truncated
clumplet as the last clumplet in the resulffer if the result bffer was not lage enough to hold all the
information you requestedlf your program encounters this clumplet, it means that all preceding
information is walid, kut at least one item is missind.he packt returned to the resulutfer has the
following format:

type

ubyte

gds_$inb_truncated

gds_$inb_error An error The access method returns an error clumplet if an item of requested information
was ot available. Thisclumplet has the same form as other clumpletsthe information portion contains
only the information typealue and a code indicating wkhe information vas not gailable. Thepaclet
returned to the resulufffer has the follwing format:

EXAMPLE
. source:

static char

type

ubyte

gds_$info_error

/ gds/ harrison/work/call_int/exanp_tra_info
tra_itens [] =
{gds_$info_tra_id}

CHAR tra_info [32];

if (gds_$transaction_info (status_vector,

bl ob,

sizeof (tra_itens),
tra_itens,
sizeof (tra_info),
tra_info))

transaction_info(gds) transaction_info(gds)

error ("gds_$transaction_info failed", status_vector);

SEE ALSO
See the entry in this chapter for:

. gds_$econnect_transaction

DIAGNOSTICS
See Chapter 8 for a discussion of errors and error handling.

unwind_request(gds) unwind_request(gds)

NAME
gds_S$unwind_request —stop running request
SYNOPSIS
status = gds_$unwind_request(
status vector.vector_long.out,
request_handle.ulong.in,
instantiation.ushort.in)
DESCRIPTION
Thegds_$unwind_requestroutine stops a running requedthe taget request stops as soon as it can stop
safely When you unwind an instantiated request, the access method also unwinds all instantiations of that
request with higheralues forinstantiation.
A call to this routine lets you terminate a request cleanly without aborting the transaction or database
attach. Itis particularly useful in interac gplications where the user pides selection criteria that
return more records than desired.
Any updates made prior to this call will remain in the database unless you roll back the transaction with a
call to thegds_$mllback _transactionroutine.
Although a request has been wumd, it can be re-used without being recompil®du can re-use the
transaction by passing the request handle of the request gouter start to theyds_$start_request
routine.
In addition to a successful return from a call to this routine, theafimitpevents cause a request to unwind:
. An eror
. A blr_leave statement
. Restart of the request Iygs_$start_request
. Release of the request bgs_$elease_equest
. Powerdavn, hardvare fault, operating system crash, or other systaifare
. A successful return fromgds $commit_transaction gds_$wllback transactionf, and
gds_$detach_database
PARAMETERS
status_vector A vector of 20 longwrds that the access method uses to return error messages to the calling
program.

If you pass zero as the address of the statator and encounter an errtiie access method writes the
message(s) to standard error and aborts your program.

request_handle Identifies the request youant to unwind.A call to gds_$unwind_requestestablishes this
handle, and a call tgpds_$start_requestor gds_$start_and_sendctivates the request.

instantiation Incarnation of the requesiThe instantiation parameter in this call identifies the instance of
request you ant to unwind.

unwind_request(gds) unwind_request(gds)

EXAMPLE
EXEC stop ()
{

/**************************************
*

* " EXEC_stop

*
khkkkkhkhkkhkhkhkhkhkhhkkhhkhkhkhkhkhkhhkdhkhkhkhhhhhhkhhkhkhdxkkx

*

* Functional description:
* A loop has been stopped. Unw nd active

* requests set flag.
*

**************************************/

| ong status_vector [20];
REQ r equest;

for (request = TOP_request; request; request = request->reqg_next)
if (request->req_handl e)
gds_$unwi nd_r equest (status_vector,
request - >req_handl e,
request->req_| evel);

SI G stop = TRUE;
}

SEE ALSO
See the entries in this chapter for:

. gds_$ollback_transaction
. gds_$start_request

DIAGNOSTICS
See Chapter 8 for a discussion of errors and error handling.

