
MALLOC Implementation

LIBMADCAP Manual

Håkan Byström, Mar ia Isberg, Pia L indström,
Fredr ik Pettersson, L inus Svensson, Åke Östmark

LIBMADCAP Manual
SMD113 − Networking Project

Department of Computer Science and Electrical Engineering
Division of Computer Communications

2001−05−16

Contents
1. Introduction 1

2. Installation 1

3. API 1
3.1 Address allocation...1
3.2 Changing the lifetime of an allocation...3
3.3 Deallocating addresses...3
3.4 Error handling..4

4. L inking libmadcap in a program 4

ii

1. Introduction LIBMADCAP Manual

1. Introduction
This manual describes how to write programs which use the libmadcap API in order to allocate
multicast addresses from a MADCAP server. The API is only intended for client side use. Note that
this is not a complete implementation of all functionality possible for a client program using
MADCAP. The functionality included is only the most basic functions.

2. Installation
The library is distributed as a file named l i bmadcap−<ver >. t ar . gz, where <ver > is the version of
the library. The current version is 0.1. In order to extract the files from the archive, use the
command

t ar −xvzf l i bmadcap−0. 1. t ar . gz

You now have a directory called l i bmadcap−0. 1. The rest of the installation procedure is described
in the file INSTALLATION in the newly created directory, but if you run as root you should only
need to do the following commands.

. / conf i gur e
make
make i nst al l

These are the installed files:

• / usr / i nc l ude/ madcap/ madcap. h is the header file containing the declarations of the public
functions in the library.

• / usr / l ocal / l i b/ l i bmadcap. a is the version of the library used for static linking.
• / usr / l ocal / l i b/ l i bmadcap. so is the version of the library used for dynamic linking.

3. API
This is a listing of the API functions and how to use them.

3.1 Address allocation
There are several functions for allocating addresses. The list of available functions are listed below.

This function has all the possible parameters.

i nt al l oc_mul t i cast _addr (ui nt 16 addr ess_f ami l y,
 scope * scope,
 ui nt 16 mi n_desi r ed_addr esses,
 ui nt 16 max_desi r ed_addr esses,
 ui nt 32 mi n_desi r ed_st ar t _t i me,
 ui nt 32 max_desi r ed_st ar t _t i me,
 ui nt 32 mi n_desi r ed_l i f et i me,
 ui nt 32 max_desi r ed_l i f et i me,
 ui nt 32 ser ver ,
 l ease * mul t i cast _addr ess_set _l ease,
 i nt * st at us) ;

1

3.1 Address allocation LIBMADCAP Manual

This is the same as the first, except no server has to be provided.
i nt al l oc_noser v_addr (ui nt 16 addr ess_f ami l y,
 scope * scope,
 ui nt 16 mi n_desi r ed_addr esses,
 ui nt 16 max_desi r ed_addr esses,
 ui nt 32 mi n_desi r ed_st ar t _t i me,
 ui nt 32 max_desi r ed_st ar t _t i me,
 ui nt 32 mi n_desi r ed_l i f et i me,
 ui nt 32 max_desi r ed_l i f et i me,
 l ease * mul t i cast _addr ess_set _l ease,
 i nt * st at us) ;

Allocates exactly one address.
i nt al l oc_one_addr (ui nt 16 addr ess_f ami l y,
 scope * scope,
 ui nt 32 mi n_desi r ed_st ar t _t i me,
 ui nt 32 max_desi r ed_st ar t _t i me,
 ui nt 32 mi n_desi r ed_l i f et i me,
 ui nt 32 max_desi r ed_l i f et i me,
 l ease * mul t i cast _addr ess_set _l ease,
 i nt * st at us) ;

Allocates addresses for a specific lifetime.
i nt al l oc_exact _addr (ui nt 16 addr ess_f ami l y,
 scope * scope,
 unsi gned i nt mi n_desi r ed_addr esses,
 unsi gned i nt max_desi r ed_addr esses,
 ui nt 32 mi n_desi r ed_st ar t _t i me,
 ui nt 32 max_desi r ed_st ar t _t i me,
 ui nt 32 l i f et i me,
 l ease * mul t i cast _addr ess_set _l ease,
 i nt * st at us) ;

Allocates an address which should start at once.

i nt al l oc_i mmedi at e_addr (ui nt 16 addr ess_f ami l y,
 scope * scope,
 i nt mi n_desi r ed_addr esses,
 i nt max_desi r ed_addr esses,
 ui nt 32 mi n_desi r ed_l i f et i me,
 ui nt 32 max_desi r ed_l i f et i me,
 l ease * mul t i cast _addr ess_set _l ease,
 i nt * st at us) ;

The parameters for the functions are:

• addr ess_f ami l y is a 16 bit unsigned integer identifying the address family from which to
allocate the addresses. The implementation currently only supports IPv4 as indicated by
MC_IPV4.

• scope is the multicast scope where the allocated addresses should be valid. The scope
struct is defined as

t ypedef s t r uct scope{
 addr ess_r ange addr esses; / * The set of addr esses i n t he scope. * /
 name * name_set ; / * The names f or t he scope. * /
 unsi gned i nt num_names; / * The number of names f or t he scope. * /
 unsi gned i nt t t l ; / * Def aul t TTL. * /
} scope;

t ypedef s t r uct addr ess_r ange{
 ui nt 32 st ar t ;
 ui nt 32 end;
} addr ess_r ange;
t ypedef s t r uct name{
 char * l anguage_t ag; / * NULL t er mi nat ed st r i ng i dent i f y i ng t he l anguage
 used f or t hi s name. * /
 char * name; / * NULL t er mi nat ed st r i ng cont ai ni ng t he name. * /
} name;

2

3.1 Address allocation LIBMADCAP Manual

• mi n_desi r ed_addr esses and max_desi r ed_addr esses are 16 bit unsigned integers
representing the number of addresses which should be allocated.

• mi n_desi r ed_st ar t _t i me and max_desi r ed_st ar t _t i me are 32 bit unsigned integers
representing the desired start time of the allocation. It has the same format as the time
given by the t i me function.

• mi n_desi r ed_l i f et i me and max_desi r ed_l i f et i me are 32 bit unsigned integers containing
the number of seconds which the allocations should last, as counted from the start time.

• ser ver is the IP address of the MADCAP server which the request for allocation should be
sent to. If no server is provided, a server will be searched for in the scope where the
allocation should take place.

• mul t i cast _addr ess_set _l ease is a pointer to the struct where the lease should be placed if
the allocation is successful. The format of the struct is

t ypedef s t r uct l ease{
 ui nt 32 * addr esses; / * The set of addr esses l eased. * /
 unsi gned i nt num_addr ; / * The number of addr esses l eased. * /
 ui nt 16 addr ess_f ami l y ; / * The addr ess f ami l y of t he l ease. * /
 ui nt 32 l i f et i me; / * How l ong ar e t he addr esses val i d? * /
 ui nt 32 st ar t _t i me; / * When t he l ease st ar t beei ng val i d. * /
 ui nt 8 * l ease_i d; / * Uni que i dent i f i er of t hi s l ease. * /
 unsi gned i nt i d_l en; / * The l engt h of t he l ease i d. * /
 ui nt 32 ser ver _addr ess; / * The ser ver whi ch gave us t he l ease. * /
} l ease;

• st at us is a pointer to an integer where the status code will be returned. The code can be
MC_SOK or MC_STRY_LATER. If the return value of the functions indicate success,
this integer must still be checked to see if the allocation has succeeded, or should be
attempted later.

All functions return 0 to indicate success, and −1 to indicate failure. The possible errors are
MC_EFAMILY, MC_ESCOPE, MC_ENUMADDR, MC_ELTIME, MC_ESTIME,
MC_ETIMECONF and MC_EFAILED. The error codes can be read in the manner described in
section 3.4.

3.2 Changing the lifetime of an allocation
This function is called in order to change the lifetime of an allocation. The function is declared as
follows.

i nt change_mul t i cast _addr _l i f et i me(l ease * mul t i cast _addr ess_set _l ease,
 ui nt 32 mi n_desi r ed_l i f et i me,
 ui nt 32 max_desi r ed_l i f et i me,
 ui nt 32 * l i f et i me) ;

The arguments are:

• mul t i cast _addr ess_set _l ease is the identifier of the lease as received from the allocation
function.

• mi n_desi r ed_l i f et i me and max_desi r ed_l i f et i me are 32 bit unsigned integers containing
the number of seconds which the allocations should last, as counted from the start time.

• l i f et i me is a pointer to a 32 bit unsigned integer which will contain the new lifetime after
the function has succeeded. The new lifetime will also be stored in the lease.

The function returns 0 to indicate success, and −1 to indicate failure. The possible errors are
MC_EFAMILY, MC_ELTIME, MC_EFAILED and MC_ELEASE. The error codes can be read in
the manner described in section 3.4.

3.3 Deallocating addresses
To release a lease this function should be called.

3

3.3 Deallocating addresses LIBMADCAP Manual

i nt deal l ocat e_mul t i cast _addr (l ease * mul t i cast _addr ess_set _l ease) ;

The only argument is the lease which should be released. The function returns 0 to indicate success,
and −1 to indicate failure. The possible errors are MC_EFAMILY, MC_ELEASE and
MC_EFAILED. The error codes can be read in the manner described in section 3.4.

3.4 Error handling
When any of the functions above return −1, that is an indication of an error. The global variable
mc_er r no is then set to indicate the type of error which has occurred. When a function has
succeeded the value of mc_er r no is undefined. There are two utility functions which can be used
with the error handling. They are declared as below.

This is used to get a string describing the error passed as argument.
char * mc_st r er r or (i nt er r num) ;

This is used to print an error message consisting of the string passed as argument followed by a
colon and the description of the current error and a newline.

voi d mc_per r or (const char * s) ;

The descriptions of the error messages can be found in the file madcap. c.

4. Linking libmadcap in a program
The header file madcap/ madcap. h should be included in the program, and the library should be
passed to the linker. When using gcc this is done by giving the argument −l madcap.

4

