
itools

Juan David Ibáñez Palomar1

jdavid@itaapy.com

March 21, 2006

1Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.2 or any later ver-
sion published by the Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. There is a copy of the license at
http://www.gnu.org/copyleft/fdl.html

2

Contents

1 Introduction 7
1.1 This is Free Software . 7
1.2 What is itools? . 7
1.3 Highlights . 9

1.3.1 The resource-handler model 9
1.3.2 eXtensible Markup Language 10
1.3.3 The Simple Template Language 10
1.3.4 Workflow . 10
1.3.5 Internationalization and Localization 10
1.3.6 Index and Search . 11

1.4 Project status . 11
1.5 Installation . 12
1.6 About this document . 12

2 Catalog 13
2.1 Quick Start . 13
2.2 Architecture . 14
2.3 Indexing . 15

2.3.1 The Catalog object . 15
2.3.2 Analysers . 15
2.3.3 Index/Unindex . 16

2.4 Searching . 16
2.4.1 The search method (introduction to queries) 16
2.4.2 Boolean queries . 17
2.4.3 Phrase searches . 17
2.4.4 Range searches . 17

2.5 API . 17
2.5.1 The Catalog . 17
2.5.2 Queries . 18

3 CMS (a.k.a. iKaaro) 21
3.1 Requirements . 21
3.2 Deploy and manage with icms 22

3.2.1 The configuration file . 25
3.3 A tour through iKaaro . 25
3.4 The URL interface . 25
3.5 Inspecting the data . 26
3.6 Extending and customizing ikaaro 27

3

4 CONTENTS

3.6.1 Bootstrap: Portal 0 . 27
3.6.2 Customize the graphic design (skins): Portal 1 29
3.6.3 Defining views: Portal 2 29

4 CSV 31
4.1 What we want to do . 31
4.2 Building the system . 32
4.3 CSV handler API . 34

5 Datatypes 35
5.1 Datatypes . 36

5.1.1 Out of the box . 36
5.1.2 Defining new datatypes 37
5.1.3 Instanciating . 38

6 Gettext 39

7 Handlers 41
7.1 File handlers . 41

7.1.1 Handler’s state . 42
7.1.2 The skeleton . 45
7.1.3 Text and binary handlers 46
7.1.4 Overview of the available handlers 47
7.1.5 The handler factory . 49

7.2 Writing file handler classes . 50
7.2.1 Functional scope . 50
7.2.2 The file format . 51
7.2.3 De-serialization . 51
7.2.4 Serialization . 53
7.2.5 The API . 53
7.2.6 The skeleton . 54
7.2.7 Register . 55

7.3 Folder handlers . 55
7.3.1 Folder’s state . 55
7.3.2 The API . 56
7.3.3 Example . 56
7.3.4 The handler tree . 57

8 HTML 59

9 Internationalization (i18n) 61
9.1 Internationalization . 61

9.1.1 Python code . 62
9.1.2 Templates . 63

9.2 Localization . 64
9.2.1 Message extraction . 64
9.2.2 Human translation . 65

9.3 Build . 65

10 iCalendar 67

CONTENTS 5

11 Resources 69
11.1 Quick Start . 69
11.2 File Resources (and Python Files) 70

11.2.1 Direct access . 70
11.3 Folder Resources . 71
11.4 Resource Types . 71

11.4.1 Memory resources . 72
11.5 API . 72

11.5.1 Package interface . 72
11.5.2 API common to Files and Folders 72
11.5.3 API specific to Files . 73
11.5.4 API specific to Folders . 74

12 RSS 75

13 Schemas 77

14 Simple Template Language (STL) 79
14.1 How it works . 79

14.1.1 The template . 80
14.1.2 The namespace . 80

14.2 The Language . 81
14.2.1 STL attributes . 81
14.2.2 Expressions . 81

14.3 Example: Task Tracker . 82

15 TMX 85

16 Uniform Resource Identifiers 87
16.1 Syntax . 88

16.1.1 Generic URIs . 88
16.1.2 Non Generic URIs . 89

16.2 Relative references . 89
16.2.1 Resolving references . 90

16.3 Paths . 90

17 Web 93
17.1 The Publisher . 93
17.2 The Context . 94

17.2.1 The Request . 95
17.2.2 The Response . 95

18 Workflow 97

19 XHTML 99

20 XLIFF 101

6 CONTENTS

21 eXtensible Markup Language (XML) 103
21.1 The parser . 103
21.2 Namespaces . 104
21.3 Documents . 105

21.3.1 Inspecting the tree . 106
21.3.2 Elements . 107

A Coding style guide 109
A.1 Language and encoding . 109
A.2 Module structure . 109

A.2.1 Example . 110
A.3 Format rules . 111
A.4 Comments . 112
A.5 Naming conventions . 112

A.5.1 Class names . 113
A.5.2 Functions and methods 113
A.5.3 Variables . 113
A.5.4 Constants . 113

B GNU arch 115
B.1 Keeping track of itools . 115

B.1.1 Browsing the sources . 115
B.1.2 Check out . 115
B.1.3 A session with tla and itools 116
B.1.4 Help . 116

B.2 Maintaining private changes . 116
B.2.1 Create an archive . 117
B.2.2 Create a branch . 117
B.2.3 Working with your branch 118
B.2.4 Merging from the main branch 119

B.3 Contributing your work to the main tree 119

Chapter 1

Introduction

1.1 This is Free Software

The software package itools is released to the world under the terms and
conditions of the GNU General Public License1, developers own the copyright
of the code they write, contributions are very welcomed.

1.2 What is itools?

itools is a Python2 library, it groups a number of packages into a single meta-
package for easier development and deployment. The packages included are:

itools.catalog itools.i18n itools.web
itools.cms itools.ical itools.workflow
itools.csv itools.resources itools.xhtml
itools.datatypes itools.rss itools.xliff
itools.gettext itools.schemas itools.xml
itools.handlers itools.tmx
itools.html itools.uri

The Figure 1.1 shows the dependencies between the different packages. Be-
low a brief description of each package (sorted by alphabetical order):

• itools.catalog – An index and search engine. It provides full text in-
dexing as well as keyword indexing; and boolean, phrase and range search.

• itools.cms – A web application framework. The acronym cms stands for
Content Management System. This is the top package, which uses almost
everything else in itools.

• itools.csv – High level support for CSV files.

• itools.datatypes – Type marshalers for basic types (integer, date, etc.)
and not so basic types (filenames, XML qualified names, etc.).

1http://www.gnu.org/copyleft/gpl.html
2http://www.python.org

7

8 CHAPTER 1. INTRODUCTION

Figure 1.1: Dependency diagram

• itools.gettext – Support for the PO and MO file formats of the GNU
gettext tools.

• itools.handlers – Resource handlers are non persistent classes responsi-
ble to manage a resource (a file or a folder), they represent a resource as a
data structure on memory and provide an API to work with the resource.

Included are the resource handlers for folders, binary and text files, images,
CSV, etc.

• itools.html – Support for HTML documents.

• itools.i18n – Miscellaneous tools for internationalization and localiza-
tion (language negotiation, text segmentation, fuzzy matching, etc.).

• itools.ical – Support for the iCalendar standard (RFC 2445).

• itools.resources – An abstraction layer over resources (files and fold-
ers), provides a the same programming interdace accross different storages.

• itools.rss – Support for RSS 2.0.

• itools.schemas – Infrastructure for datatypes schemas. Support for
Dublin Core included.

• itools.stl – The Simple Template Language, a templating language for
XML documents.

• itools.tmx – Support for the industry standard Translation Memory eX-
change.

• itools.uri – Support for Uniform Resource Indentifiers (RFC 2396).

1.3. HIGHLIGHTS 9

• itools.web – Abstract programming interface for web applications. Proof-
of-concept implementations for the CGI protocol and an standalone server.

• itools.workflow – Programming interface to implement workflow in ap-
plications.

Workflows are represented as automatons, objects can move from one state
to another through transitions, classes can add specific semantics to states
and transitions.

• itools.xhtml – Support for XHTML documents.

• itools.xliff – Support for the industry standard XML Localisation In-
terchange File Format.

• itools.xml – Support for XML (eXtensible Markup Language).

Includes an intuitive event driven parser and a DOM-like representation
of XML documents.

1.3 Highlights

1.3.1 The resource-handler model

Of everything in itools I am probably most proud of the the three sub-packages
itools.uri, itools.resources and itools.handlers, which make up what
I call the resource-handler model.

There is a linear relationship of dependency between these modules, uri
depends on nothing but Python, resources depends on uri, and handlers
depends on resources.

This allows to use these modules on a flexible way. For example, you can
just use itools.uri (ignoring the others) to benefit from a higher level API to
work with URIs than that provided by the Standard Library (urlparse).

Or you may use itools.resources if you want to benefit from an abstrac-
tion layer over the storage. This is to say, if you want to be able to manipulate
many resources stored in different systems and accessed through different pro-
tocols with the same, consistent, rich API.

You may even take advantage of itools.handlers without fully under-
standing the model behind. For example, you could use some of the handlers
itools offers out-of-the-box for standard file formats like CSV, PO or XHTML,
to simplify your life if you ever need to work with one of these formats.

But, in order to exploit everything itools has to offer to its limit, you
may choose to base part or all of your application architecture on the resource-
handler model, a model heavily influenced by the filesystem and the Web. In this
situation the three packages (uri, resources and handlers) show themselves
as three different components with a distinct role in the architecture:

• itools.uri identifies and locates resources, wherever they are. Altogether
with itools.resources it effectively enables your information system to
be distributed through an heterogeneous base.

• itools.resources provides persistency to your data, this is to say, re-
sources are where the data is stored.

10 CHAPTER 1. INTRODUCTION

• and itools.handlers is where the logic lives. The essential characteristic
of a resource handler (or handler for short) is that it is non-persistent,
instead it is associated with a resource, whose content it is responsible to
manage.

The first chapters of this document will cover these sub-packages, itools.uri,
itools.resources and itools.handlers with detail.

1.3.2 eXtensible Markup Language

The itools.xml package depends on itools.handlers, this is its first advan-
tage. It represents an XML document as an DOM like tree. But it also provides
support for schemas, what allows to easily build higher level data structures.

The package also provides handlers for specific document types out-of-the-
box, most notably XHTML and HTML (even if HTML is not XML, it shares a
lot with XHTML).

1.3.3 The Simple Template Language

The Simple Template Language is included in the itools.xml package, but it
is important enough to deserve its own chapter in the documentation.

Its design goals are:

• Truly separate logic and presentation. Even Python expressions are not
allowed within the template.

• Really simple. It can be mastered in half a day.

• Damn fast (easy to achieve through simplicity).

• Secure. Even non-trusted users could write templates without risk, be-
cause code is not allowed within the template.

And the key idea behind, is to make it a descriptive language.

1.3.4 Workflow

The sub-package itools.workflow (once known as flux) is the oldest code in
itools. It does not depend on anything but the Standard Library, and don’t
puts any restriction on the storage. This makes it very easy to combine with
other frameworks.

There is a chapter exclusively dedicated to it.

1.3.5 Internationalization and Localization

The itools.i18n package provides a wide range of tools for internationalization
and localization of both software and data. From message extraction to language
negotiation, through text segmentation, fuzzy matching or algorithms to guess
the language a text is written in.

A chapter is devoted to this topic.

1.4. PROJECT STATUS 11

1.3.6 Index and Search

The itools.catalog sub-package provides an index and search engine. Though
still young, it already provides full text indexing, boolean queries and results
sorted by weight.

1.4 Project status

Currently itools is under active development. At the time of this writing the
last version available is 0.12, what it provides is the scope of this document.
Here I want to offer a glance about what is comming next:

• SQL. Relying on third party products, we will explore relational databases
and see what we can do to simplify its use. Specifically the goal is to
provide a programming interface that seemlessly integrates with the rest
of itools.

• Standards support. itools is strongly focused on the implemetation of
standards. While we will add new standards to the collection, in the short-
term the focus will be on improving the support we already provide for
some of them, just two spotlights:

– A native parser for XML would increase the control we have of the
parsing process, to allow things like parsing fragments. Also, some
rough corners of the XML API must be polished.

– CSV is a very common format, hence to have a very good pro-
gramming interface is more of a priority. Probably a new package,
itools.csv, will be implemented.

• Performance. While performance is already one of the strong points of
itools, as the Simple Template Language illustrates, it is not enough:

– One thing we need is better benchmarks, so we can better measure
how itools compares to other alternatives, specially for the catalog.

– Support for lazy load will be added to the most important handler
classes.

– While profiling the CPU usage is easy with the Python profiler, the
lack of similar tools to measure the memory consumption makes it
hard to optimize this aspect. Anyway some infrastructure must be
put in place.

• Documentation, is critical. The target for this document is to cover all of
itools. Also some changes in the structure may arise, one idea is have
one complete reference guide, plus a collection of tutorials.

• Lower the entry point, improve the development process. Today we use
tla 1 to manage the sources, it is great when you master it, but is hard to
get there. It looks like the new version, tla 2, is addressing this problem;
other alternatives like bazaar are worth considering.

To keep improving the development process of itools is a constant we
don’t stop working on.

12 CHAPTER 1. INTRODUCTION

For further information you are welcome to the itools mailing list; the bug-
tracker is available to report bugs and suggestions; the sources can be browsed
through the web; and don’t forget to check the web site for last downloads and
news:

• Mailing list, http://in-girum.net/mailman/listinfo/ikaaro

• Bug Tracker, http://bugs.ikaaro.org

• Browse the sources, http://lleu.org/cgi-bin/gitweb.cgi

• The web site, http://www.ikaaro.org/itools

1.5 Installation

itools requires Python 2.4, earlier versions are not supported.
The last version of itools can be downloaded from http://www.ikaaro.org.

It is distributed as tarball, download and unpack it somewhere; then install with
distutils, type:

$ python setup.py install

Be sure to have the right permissions.

1.6 About this document

This paper is the official documentation of itools. It is addressed to Python
developers. Though it may be useful to software architects in general, as some
ideas exposed here may be found interesting3.

It is convenient to have some basic skills with the Python programming
language to fully understand this document. Probably the best introduction to
Python is the official tutorial:

http://python.org/doc/2.4.1/tut/tut.html.

This document touches many different technologies and standards, such as
XML. References will be given in the relevant chapters.

Currently the document covers around 60% of the itools package. There
are also two appendixes, one explaining the coding style itools is written in,
another one introducing the use of GNU arch. Both are specially addressed to
those that want to contribute back to the main tree.

3For example, itools.workflow inspired XXX to write a similar engine in Java, see
http://XXX

Chapter 2

Catalog

The (itools.catalog) package provides an index and search engine. There are
not many solutions of its kind available to Python developers, the most popular
are:

• Lupy1, an implementation in Python of the Lucene2 engine. The main
drawback is that it is not maintained anymore.

• PyLucene3, a wrapper around Lucene that allows to use it directly from
Python. It is somewhat complex to deploy.

• ZCatalog4, the solution for Zope 25. It only works with the ZODB6 (un-
able to index a file in the filesystem or a web page for example), and its
future is uncertain with the new Zope 37.

In this context itools.catalog offers a nice alternative. Fully written in
Python, it is easy to use and deploy; able to index anything; actively maintained
and fast enough for small to medium applications.

2.1 Quick Start

To illustrate the usage of itools.catalog, we are going to index and search
the Web! I mean, a couple of pages.

1. Create a catalog object (in memory) with just two fields:

>>> from itools.catalog.Catalog import Catalog

>>> catalog = Catalog(fields=[(’url’, ’keyword’, True, True)])

... (’body’, ’text’, True, False)])

2. Index a couple of pages:
1http://XXX
2http://XXX
3http://XXX
4XXX
5XXX
6XXX
7XXX

13

14 CHAPTER 2. CATALOG

>>> from itools.handlers import get_handler

>>> import itools.html

>>>

>>> for url in [’http://www.slashdot.org’, ’http://www.XXX’]:

... page = get_handler(url)

... document = {’url’: url, ’body’: page.to_text()}

... catalog.index_document(document)

3. Search now:

>>> for document in catalog.search(body=’python’):

... print document.url

XXX

2.2 Architecture

It is good to have the big picture in the head when working with an index and
search engine, and it is pretty simple actually. A catalog is made up of four
things:

reverse indexes The internal data structure used to perform the searches. In
our example there are two reversed indexes, one for the url of the web
page, the other for its text body.

stored fields This is actually a cache, it keeps the original values for quick
access. In our example only the title is stored (we don’t store the body to
keep the size of the catalog small).

internal document identifier When a document is indexed it is assigned a
unique id (a number). From the point of view of the public API the
internal unique id is only used when unindexing an object.

external document identifier Actually, the Catalog knows nothing about an
external id; but you must, because the external id will be the way you will
reach the original object after a search. In our example the external id is
the URL. The external id must be both indexed and stored.

Operations

The operations that can be done with a catalog are:

Index/Unindex As well as indexing an object we may want to remove it from
the catalog (unindex). To update a document first it must be unindexed,
and then indexed again.

Search Of course the primary goal to index something is to be able to search
it later. The result of a search operation will be a sequence of objects; not
the original documents that were indexed, but a special object that offers
the stored fields for quick access, and also the unique id (number).

2.3. INDEXING 15

2.3 Indexing

2.3.1 The Catalog object

The fields that are indexed and stored are defined at creation time. The Catalog
object expects as parameter a list where each element is a four-elements tuple
defining a field to be indexed or stored, or both. The four elements are:

field name The name of the field.

field type An string defining the type of the field; the way a field is indexed
depends on its type. Possible values are: text, bool, keyword and path.

indexed A boolean value that specifies wether the field will be indexed or not
(to be able to search for a field it must be indexed).

stored A boolen value that specifies wether the field will be stored or not. The
value of an stored field can be quickly retrieved on search.

In our example we have two fields, the url and the body. The first is a keyword
field, the last is a text field. Both are indexed, only the url is stored:

>>> catalog = Catalog(fields=[(’url’, ’keyword’, True, True)])

... (’body’, ’text’, True, False)])

2.3.2 Analysers

What the type of a field defines is the analyser that will be used to process the
field value for indexing.

What an analyser expects as input is the field value, what it returns is a
sequence of two-element tuples, where the first element is a “word” and the
second is the position of that word within the original value. For example, the
Text analyser works this way:

>>> from itools.catalog.Analysers import Text

>>> value = u"Indexing and searching, that’s a point."

>>> for word, position in Text(value):

... print position, word

...

0 indexing

1 and

2 searching

3 that

4 s

5 a

6 point

There are four analysers included in itools.catalog.Analysers (you may
define your own):

• The most powerful is the Text analyser, which splits a text into words.

• Another very important is the Keyword analyser, because it will be the
one that you will probably use for the external id. It is also the most
simple, since it interprets the value literally.

16 CHAPTER 2. CATALOG

• The Bool analyser is like the keyword one, except that it expects a boolean
value.

• Finally there is the Path analyser, which expects a path as value, and will
split the path into its segments (uses itools.uri).

The analysers are also important because you may want to use them when
searching, to process the user entered search criterias.

2.3.3 Index/Unindex

The index operation, we have already seen it. Implemented by the index document
method, it expects a mapping from field name to field value (which is the source
of the data to be indexed, the catalog does not cares about). Lets review the
example code:

>>> for url in [’http://www.slashdot.org’, ’http://www.XXX’]:

... page = get_handler(url)

... document = {’url’: url, ’body’: page.to_text()}

... catalog.index_document(document)

The unindexing operation is slighly more complex:

>>> for document in catalog.search(url=’http://www.slashdot.org’):

... catalog.unindex_document(document.__number__)

To update an index first remove it from the catalog with unindex document
and then add it again to the catalog with index document.

2.4 Searching

2.4.1 The search method (introduction to queries)

The search method can be called two ways, with a query object as the only
parameter, or with one or more keyword parameters (as we have seen so far).

The example used before:

>>> catalog.search(body=’python’)

May also be written:

>>> from itools.catalog import Query

>>>

>>> query = Query.Equal(’body’, ’python’)

>>> catalog.search(query)

The module itools.catalog.Query provides a number of classes to perform
basic and advanced searches. The most simple is the Equal query, that simple
checks for fields that match a value.

The use of keyword parameters is a shorthand to perform a boolean search
with the and operator. The hypothetical example:

>>> catalog.search(state=’public’, body=’python’)

Would return only the public documents that talk about Python (here of
course we need another field, the workflow state).

2.5. API 17

2.4.2 Boolean queries

But sometimes we want to search using the or operator, to find out objects
that match either one criteria or another. Or we may even want to create more
complex boolean searches. An example explains itself:

>>> python = Query.Equal(’body’, ’python’)

>>> perl = Query.Equal(’body’, ’perl’)

>>> ruby = Query.Equal(’body’, ’ruby’)

>>> public = Query.Equal(’state’, ’public’)

>>>

>>> python_or_perl_or_ruby = Query.Or(python, perl, ruby)

>>> query = Query.And(public, python_or_perl_or_ruby)

>>>

>>> for document in catalog.search(query):

...

The boolean queries (And, Or) accept n sub-queries as parameters, and will
search for documents that either match all the sub-queries (And) or at least one
of them (Or).

2.4.3 Phrase searches

To build a query to search phrases is straightforward:

>>> query = Query.Phrase(’body’, ’Python is better than Perl’)

2.4.4 Range searches

Now imagine we want to search for documents that have been modified since
the last week (with a field mtime):

>>> from datetime import date, timedelta

>>>

>>> today = datetime.today()

>>> last_week = today - timedelta(7)

>>>

>>> today = today.strftime(’%Y-%M-%d’)

>>> last_week = last_week.strftime(’%Y-%M-%d’)

>>> query = Query.Range(’mtime’, last_week, today)

Since we don’t have an specific analyser for dates we will just index the
mtime field as a keyword, with the format YYYY-MM-DD.

It is possible to do range searches not only for dates, but for whatever values
where an order relationship can be stablished.

2.5 API

2.5.1 The Catalog

• Catalog(fields=[])

18 CHAPTER 2. CATALOG

Creates a new catalog object (in memory). The parameter fields is a
list of tuples, each tuple defining a field that must be indexed, stored or
both.

The tuple has four elements: the field name, the field type (either ’text’,
’keyword’, ’bool’ or ’path’), wether the field is indexed or not (a
boolean value) and wether the field is stored or not (another boolean
value).

Example:

>>> Catalog(fields=[(’url’, ’keyword’, True, True)])

(’body’, ’text’, True, False)])

• Catalog(resource)

Loads a catalog object from a resource (see itools.handlers).

• Catalog.index document(document)

Where document is a mapping from field name to field value. The method
returns the internal document identifier.

• Catalog.unindex document(document id)

Removes from the catalog the document identified by document id, the
internal document identifier.

• Catalog.search(query)

Returns a sequence with all the documents that match the given query.
The sequence is ordered by weight. Each element of the sequence pro-
vides access to the stored fields, and to the internal document identifier
(number). This method is a generator.

Example:

>>> for document in catalog.search(query):

... print document.__number__

... print document.url

• Catalog.search(**kw)

Builds a boolean query from the given keyword parameters. It uses the
and operator: it returns the documents that match all the given search
criterias. This is a shorthand for a commonly used search.

2.5.2 Queries

• Query.Equal(name, value)

Builds a simple query that will match documents whose field name contains
the at least once the given value.

• Query.Phrase(name, value)

Builds a phrase query that will match documents whose field name contains
at least once all the words in value, in the same relative position.

2.5. API 19

• Query.Range(name, start, end)

Builds a range query that will match documents whose field name contains
a word greater than the value start and smaller than end.

• Query.And(*args)

Builds a boolean query that will match documents that match all of the
given subqueries.

• Query.Or(*args)

Builds a boolean query that will match documents that match any of the
given subqueries.

20 CHAPTER 2. CATALOG

Chapter 3

CMS (a.k.a. iKaaro)

The package itools.cms is also known as iKaaro. But, what is it?

A Content Management System

It is an application, specifically, a Content Management System. It is very easy
to deploy with the icms scripts (we will see them later).

And it is very simple too; its funcitonal scope, what it is able to do out-of-
the-box, is quite narrow. But, don’t underestimate its power, what you see is
only the tip of an iceberg.

A Web Application Framework

Altogether with the rest of itools, iKaaro is a web application framework. Per-
sonalization and extension is achieved through programming. It is the purpose
of this chapter to uncover its power.

To be honest, what makes it different is not its “power”, you can do with
itools.cms as much as you can do with any other web framework. What makes
it different is how low it keeps costs of building a web application, even when it
scales up.

3.1 Requirements

So far itools.cms has been tested only in Unix environments (GNU/Linux,
MacOS X, etc.), probably it won’t work on the Windows platform. If you are
interested in running itools.cms on Windows please report any problems you
encounter to our bug tracker, http://bugs.lleu.org.

The command line tools rsync and tidy are required to run itools.cms. To
have support for indexing and preview of office documents (PDF, OpenOffice,
etc.) some other commands must be installed: xlhtml, pdftotext, catdoc,
ppthtml, iconv, links, unzip, pdftohtml and wvHtml. Also, if the Python
package PIL1 is installed, it will be used to draw thumbnails.

That’s all what you need. At least for testing and developing. In production
it is highly recommended to have the Apache2 web server, but we will talk about

1http://XXX
2http://http.apache.org

21

22 CHAPTER 3. CMS (A.K.A. IKAARO)

that later.

3.2 Deploy and manage with icms

When you install itools, you install the package itools.cms and also a col-
lection of scripts:

icms-init to create a new instance of itools.cms
icms-start to start a web server (publishes the instance)
icms-stop to stop the web server
icms-update to update the instance, after a software upgrade
icms-restore to recover the instance (in case of a crash)

All the scripts provide on-line documentation, just run any of them with the
option --help, for example:

$ icms-init --help

usage: icms-init [OPTIONS] TARGET

Creates a new instance of itools.cms with the name TARGET.

options:

--version show program’s version number and exit

-h, --help show this help message and exit

-p PORT, --port=PORT listen to port number

-r ROOT, --root=ROOT use the ROOT handler class to init the instance

-s SOURCE, --source=SOURCE

use the SOURCE directory to init the instance

-w PASSWORD, --password=PASSWORD

use the given PASSWORD for the admin user

Now, let’s see the five scripts in detail.

icms-init

This is the command to start with, it will create a new instance of itools.cms
everytime you type it. This is the way I use it:

$ cd ikaaro-servers

$ icms-init my_instance

*

* Welcome to itools.cms

* A user with administration rights has been created for you:

* username: admin

* password: VLHiUgKr

*

* To start the new instance type:

* icms-start my_instance

*

$ ls -1 my_instance

config.ini

database

database.bak

state

3.2. DEPLOY AND MANAGE WITH ICMS 23

Several things to note about the code above:

• First that I like to put all my instances in a dedicated folder, ikaaro-servers
in the example. Of course, you can create it wherever you want.

• Second, the script creates a user called admin with administrative rights,
and a random password is generated. You will use this user to login for
the first time and configure your iKaaro instance.

A good idea is to change the password to something you can remember.

• Third, a directory named my instance is created. It contains a configu-
ration file and the database. Later on, when you start working with your
new instance other files will be created, most notably the log files.

Some of the options that the icms-init command accepts are --password,
--port and --root.

icms-start/icms-stop

Time to run our new shiny instance:

$ icms-start my_instance

Listen port 8080

$ ls -1 my_instance

access_log

config.ini

database

database.bak

error_log

pid

state

This runs a web server (itools.web.server) listening at the port 8080.
So, what we do?, we start our favorite web browser3 and we open the URL
http://localhost:8080. Figure 3.1 shows what our amazed eyes will see.

To stop the server we type:

$ icms-stop my_instance

Stopped.

If we want to run the server without detaching from the console (in debug
mode) we type:

$ icms-start --debug my_instance

Listen port 8080

If we want the server to listen on another port than 8080, we can either
modify the configuration file (we will see it later) or use the --port option:

$ icms-start --port 6666 my_instance

Listen port 6666

The command icms-stop does not accepts any option.
3Hopefully it will be a Gecko browser, like Firefox (http://www.mozilla.org).

24 CHAPTER 3. CMS (A.K.A. IKAARO)

Figure 3.1: The iKaaro back-office.

icms-update

Sometimes there is a new version of itools.cms that changes the layout or the
format of the information it stores. When this happens the update command
must be run:

$ icms-stop my_instance

Stopped.

$ icms-update my_instance

The instance is up-to-date (version: 20060205).

$ icms-start my_instance

Listen port 8080

In this example the data is up-to-date, so the command does nothing. It is
highly advised to run icms-update with the server stopped.

icms-restore

Now imagine that your server is running fine, but then there is a failure in the
power supply... If the crash happened in the midlle of a transaction (a write
operation in the database), you may find you can not start again the server:

$ icms-start my_instance

The database is not in a consistent state, to fix it up type:

$ icms-restore <instance>

Don’t worry, our little server is crash-proof. Just do as the script suggests
and run the command icms-restore:

$ icms-restore my_instance

Restore database from backup (y/N)? y

* Restoring... DONE

3.3. A TOUR THROUGH IKAARO 25

3.2.1 The configuration file

The configuration file within the instance, called config.ini, follows the format
of the INI files that can be found in MS Windows.

It has a single section, instance, which may contain two parameters:

• port

The number of the port the server will listen to. By default it is 8080.

• modules

A blank-separated list of Python package names to be imported on start-
up time; its purpose is to load extensions to itools.cms. By default the
list is empty.

An example using both parameters would look like:

[instance]

port = 9080

modules = portal1

3.3 A tour through iKaaro

XXX

3.4 The URL interface

Even if most users don’t type the URL directly in the navigation bar, the URL
remains the first and most important user interface. An itools.cms URL looks
like this:

http://localhost:8080/users/admin/;profile

Lets highlight the path component:

/users/admin/;profile

One thing that makes this URL look different is the use of the semicolon
character, which has an especial meaning4. Actually the path is divided in two
parts:

The handler path The path from the root of the handler tree to the a resource
handler we want to reach (in our example it is /users/admin).

The handler method The method (a view or an action) that we want to call
on the resource handler (in our example it is profile).

The use of the semicolon maybe controversial, but it has a very interesting
property, it makes URLs unambiguous.

4Note that the semicolon makes part of the URI standard (RFC 2396), specifically it
separates the segment name from the segment parameters.

26 CHAPTER 3. CMS (A.K.A. IKAARO)

Software versus Data

We have talked about resource handlers, but we have not explained what they
are. Resources are documented in Chapter 11 and resource handlers are docu-
mented in Chapter 7.

Here it will be enough to say that an itools.cms application is organized
as a tree of resource handlers, and that it is these handlers are which define the
semantics of our application.

XXX

3.5 Inspecting the data

With itools.cms the data is stored in the filesystem, within the directory
database:

$ ls -1a my_instance/database

.

..

admins

.admins.metadata

.archive

.catalog

en.po

.en.po.metadata

.metadata

reviewers

.reviewers.metadata

users

.users

.users.metadata

This is extremely useful for instrospection and manipulation purposes, since
we can use the old good Unix tools: grep, vi, etc. But of course, don’t make
any changes unless you know what you are doing!

Special resources start by a dot

Some resources are hidden and not appear (explicitly) in the back-office, these
are the special resources, and they start by a dot: .admins.metadata, .archive,
.catalog, .metadata, etc.

These special resources contain important information. A summary follows:

.*.metadata These resources contain information that describes another re-
source. They’re important enough to be explained with more detail (see
below).

.archive Where the versioning info is stored.

.catalog Where the indexes are stored.

.users All user groups contain this resource, it lists the names of the users that
belong to the group. Though, for the root group, the file is empty, as all
the users that belong to the root are all the users that exist in the users
folder.

3.6. EXTENDING AND CUSTOMIZING IKAARO 27

Metadata

The metadata is a central concept in iKaaro. Every resource within iKaaro,
both files and folders (except those that start by a dot), have a metadata file
that describes them, which is at the same level than the resource, and whose
name is .<resource name>.metadata. For example, if the name of the resource
is home.html, the name of the metadata resource is .home.html.metadata.

There is one exception though, the metadata resource that describes the
root, it is named .metadata; and is within the described resource, not at the
same level.

Metadata resources are XML files. We will see exactly what information
they provide, and how to work with them, later in another chapter.

Reserved names

As maybe you have already guessed, resource names that start by a dot are
reserved. This means that you can not add a resource whose name starts by a
dot.

3.6 Extending and customizing ikaaro

The central point of itools.cms is not to use it as it is, but to build appli-
cations based on it, that extend its functional scope and adapt to the specific
requirements of whatever web application.

And this is done through programming.
The configurability of itools.cms is limited, on purpuse. All the back-office

interfaces are addressed to end users, and they are as complex as they should
be for an end user.

The programmer will modify the iKaaro behaviour to build a custom appli-
cation with standard tools: a text editor like emacs or vi to write the code; a
source code management tool like git or tla to maintain the source, etc.

The explanation on how to build your own application will follow a top-down
approach, explaining how to modify different aspects of itools.cms, from the
most basic to the most advanced.

3.6.1 Bootstrap: Portal 0

Here we explain how to build the skeleton of an application: it will do noth-
ing beyoid a vanilla iKaaro instance, but will serve as the foundation for our
application.

The example code can be found in the examples/portal0 directory, the
content of our naked application will be:

portal0

|-- __init__.py

|-- root.py

|-- setup.py

28 CHAPTER 3. CMS (A.K.A. IKAARO)

A Python package

First, the portal is a Python package, hence it must be built, distributed and
installed as such, with the standard distutils tools.

This means that we need two files, init .py and setup.py. The first
makes our directory into a Python package, even if empty. The last is required
by distutils.

It is not our purpose of to explain how distutils work, for that refer to the
Python’s documentation. But it is worth to see a fragment of our example’s
setup.py file:

Import from itools

from itools import build_py_fixed

setup(name = "portal0",

version = "0.1",

...

cmdclass={’build_py’: build_py_fixed})

We can not use distutils.command.build py.build py because of a bug5

in distutils, instead we have to use itools.build py fixed.

The root

An itools.cms application is organized as a tree of resource handlers. The first
thing we will want to do is to take control of the root of this tree.

To do so we will define a handler class named Root in the file root.py:

Import from itools

from itools.cms.Root import Root as ikaaroRoot

class Root(ikaaroRoot):

class_id = ’portal’

class_title = u’Portal 0’

class_description = u’A portal to learn iKaaro’

ikaaroRoot.register_handler_class(Root)

Several things to remark from this code:

• The handler class inherits from the iKaaaro’s root handler class, so we
inherit its behaviour.

• We define several class variables: class id is mandatory, and must be a
unique identifier for our handler class; class title and class description
are optional but highly recommended.

There are other class variables like class icon16 and class icon48, we
will see all them later.

• We register our handler class.

5http://XXX

3.6. EXTENDING AND CUSTOMIZING IKAARO 29

There is one last detail for our portal to work. The root handler class must
be imported in the init .py:

from root import Root

Testing

To check that what we have done so far works, start installing the portal:

$ python setup.py build install

Now run the Python interpreter and check everything is fine:

>>> from portal0 import Root

>>> print Root.class_id

portal

Deployment

Ok, so the software is installed. Now we are going to build an instance for our
portal:

$ cd ikaaro-servers/

$ icms-init --root=portal0 my_portal

*

* Welcome to itools.cms

* A user with administration rights has been created for you:

* username: admin

* password: TCr0oqmr

*

* To start the new instance type:

* icms-start my_portal

*

What makes this process different from the process of creating a vanilla
itools.cms instance is that we have used the --root parameter, whose value
must be the name of a Python package following the conventions we have de-
scribed before.

If everything went fine you will be able to run the instance with icms-start,
exactly the same as with a vanilla itools.cms instance. Then if you go to the
web browser you will be able to verify that our Portal 0 is undistinguishable
from a vanilla itools.cms instance.

Now we are going to start start adding features to our portal, to customize
its appearance, etc.

3.6.2 Customize the graphic design (skins): Portal 1

3.6.3 Defining views: Portal 2

30 CHAPTER 3. CMS (A.K.A. IKAARO)

Chapter 4

CSV

In this chapter you will learn how to work with CSV files using the itools.csv
handler. The explanation will be driven by an example.

4.1 What we want to do

Let’s assume that you are the owner of a small ISP (Internet Service Provider)
company. You have about 250 clients and all information about your clients is
stored in a file named clients.csv.

In this file you have the client’s personal data as name, surname and address
and his business data: when the last payment was, how many computers the
client connects to the network and when the client was registered. In the file
there is also the client’s discount rate. Its value depends on the number of
computers, the registration date and it is change after payment.

You need an small system to store/change/remove the clients information
and to generate some reports (for example to send the payment email remainders
to the clients). We will build that system from scratch with itools.csv.

Take a closer look at the structure of the clients.csv file. The column
names (defined in handler schema, more info about it later) and its type. The
types are defined in itools.datatypes module.

Column name Data type Description
client id Integer client ID
surname Unicode client’s surname
name Unicode client’s name
address Unicode client’s address
email Unicode clients’s email address
last pay date Date the date of the last pay
num of computers Integer how many computers are connected
register date Date the registration date
discount Integer discount rate

The system should allow us to:

• get the list of clients

• add a new clients

31

32 CHAPTER 4. CSV

• remove clients

• modify the information about clients

• get info about sending payment reminders

4.2 Building the system

How to do this task with itools.csv? To work with the database we should
create the csv file handler:

>>> from itools.csv import CSV

>>> from itools.resources import get_resource

>>> resource = get_resource(’clients.csv’)

>>> clients = CSV(resource)

How can we view the client from the first file row?

>>> clients.get_row(0)

[u’1’, u’Piotr’, u’Macuk’, u’Starowiejska 25/2 81-465 Gdynia’,

u’piotr@macuk.pl’, u’2004-11-30’, u’2’, u’2001-01-05’, u’35’]

We can add a new client to the clients.csv database:

>>> clients.add_row([4, ’Hanna’, ’Nowak’, ’Dlugi Targ 32 80-112 Gdansk’,

’hanka@onet.pl’, ’2005-11-12’, 1, ’2005-11-12’, 0])

To remove the client from the third row (indexes start with 0) lest’s try:

>>> clients.del_row(2)

As you can realize to do the above tasks, we should know the row index which
the client’s data are stored in the clients.csv file database. We have the
client id, but the csv handler has no idea about that. We should inform the
handler about the structure of the database. To do that we define the columns
and the schema of our clients’ data and load the file content again. The csv
file schema is dictionary mapping from column name to datatype. We can also
define columns to index. Indexed columns can be used to search data by the
column values.

>>> from itools.datatypes import Integer, Unicode, Date

>>> class MyClients(CSV):

... columns = [’client_id’, ’surname’, ’name’, ’address’, ’email’,

... ’last_pay_date’, ’num_of_computers’, ’register_date’,

... ’discount’]

... schema = {’client_id’: Integer(index=True),

... ’surname’: Unicode(index=True),

... ’name’: Unicode, ’address’: Unicode,

... ’email’: Unicode(index=True),

... ’last_pay_date’: Date(index=True),

... ’num_of_computers’: Integer,

... ’register_date’: Date, ’discount’: Integer}

>>> my_clients = MyClients(resource)

And now when we get the first row from our database, the data will have the
appropriate types (the above get row(0) function call returned data as unicode
strings).

4.2. BUILDING THE SYSTEM 33

>>> my_clients.get_row(0)

[1, u’Piotr’, u’Macuk’, u’Starowiejska 25/2 81-465 Gdynia’,

u’piotr@macuk.pl’, datetime.date(2004, 11, 30), 2,

datetime.date(2001, 1, 5), 35]

The index parameter (for example: ’client id’: Integer(index=True))
will tell the handler to index that column. We want to index client id, surname,
email and last pay date.

Now, when we have the indexed client id column we can get the client by
the ID. We should find the row index with the appropriate client id, and get
that row from clients.csv file.

>>> indexes = my_clients.search(client_id=1)

>>> my_clients.get_row(indexes[0])

[1, u’Piotr’, u’Macuk’, u’Starowiejska 25/2 81-465 Gdynia’,

u’piotr@macuk.pl’, datetime.date(2004, 11, 30), 2,

datetime.date(2001, 1, 5), 35]

The search method returns the list of rows which include client id = 1. That
column is our unique client ID number thus we have to get the first element
from that list (indexes[0]).

How we can find clients to send the payment reminder? Let’s try:

>>> from itools.catalog import Query

>>> query = Query.LessOrEqual(’last_pay_date’,

... Date.decode(’2004-11-30’))

>>> indexes = my_clients.search(query)

>>> my_clients.get_rows(indexes)

[[1, u’Piotr’, u’Macuk’, u’Starowiejska 25/2 81-465 Gdynia’,

u’piotr@macuk.pl’, datetime.date(2004, 11, 30), 2,

datetime.date(2001, 1, 5), 35], [2, u’Adam’, u’Nowak’,

u’Grunwaldzka 117/3 80-334 Sopot’, u’adam.nowak@yahoo.com’,

datetime.date(2004, 11, 30), 1, datetime.date(2002, 8, 2), 25]]

To build mentioned system you should define the class which will use the
itools.csv module and give you some simple API to your problem. After that
you should write some scripts that use defined class.

You can find the example system in the examples/csv handler/my clients.py
and examples/csv handler/my system.py files. The first file is the class defi-
nition with: get, add, delete, modify, reminders and save method. All methods
use the client id column to indicate the client. The second one is the exam-
ple system script. It uses the MyClients class. The source code has a lot of
comments and you shuold analyze it.

Of course the above example system is not complete. System should register
payments and change the last payment date value and probably modify the
discount rate accordingly. It is simple enhancement and you could do it by
yourself if you need the system for small ISP company.

The source code used in that chapter is placed in
examples/csv handler/example.py file.

34 CHAPTER 4. CSV

4.3 CSV handler API

get row(index)
- Return row indexed by index.

get rows(indexes)
- Return rows indexed by indexes.

get nrows()
- Return number of rows in csv file.

get all rows()
- Return all csv file rows.

add row(row)
- Append the new row.

del row(index)
- Delete row indexed by index.

del rows(indexes)
- Delete rows indexed by indexes.

get columns by names(columns)
- Return only selected columns by its names (names in self.columns).

get columns by indexes(columns)
- Return only selected columns by numerical indexes.

search(query)
- Return list of row indexes returned by executing the query or
None when one or more query items is None (query item is None
when the query item column is not indexed). The query item can
be:

• the (column name, value) tuple

• the operator: ’or’ or ’and’

• the list of the previous advanced search result.

The query parameter is list of query items for example:

- [(’name’, ’dde’)]

- [(’name’, ’dde’), ’and’, (’country’, ’Sweden’)]

- [(’name’, ’dde’), ’or’, (’name’, ’fse’),

’and’, (’country’, ’France’)]

- [result1, ’and’, result2, ’or’, result3]

Chapter 5

Datatypes

Introduction

Information stored in a file or sent through a network appears as a chain of
bytes, but it represents high level information. For example we may want to
keep some basic data about a master piece book:

<metadata xmlns:dc="http://purl.org/dc/elements/1.1/">

<dc:title>100 a~nos de soledad</dc:title>

<dc:creator>Gabriel Garcia Marquez</dc:creator>

<dc:date>1999-07-02</dc:date>

<dc:language>es</dc:language>

</metadata>

Above we have used the XML language to keep the title, author, date of
publication and language of our book; but we may prefer a different file format:

BEGIN:RECORD

TITLE:100 a~nos de soledad

CREATOR:Gabriel Garcia Marquez

DATE:1999-07-02

LANGUAGE:es

END:RECORD

Indepently of the format used, one thing is sure, we would like to load the
information with a type:

’100 a~nos de soledad’ -(unicode)-> u’100 a~nos de soledad’

’Gabriel Garcia Marquez’ -(unicode)-> u’Gabriel Garcia Marquez’

’1999-07-02’ ----(date)-> datetime.date(1999, 7, 2)

’es’ --(string)-> ’es’

This process called deserialization. The opposite operation, which we are
also interested in, is called serialization: to transform a value to a chain of
bytes.

Other operations we may be interested include:

• To check wether a string value is correct; for example, to check wether the
date respects the ISO 8601 standard.

35

36 CHAPTER 5. DATATYPES

• To provide a default value when a field is missing; for example we may
assume the language is English if not specified otherwise.

The packages itools.datatypes and itools.schema provide an infrastruc-
ture to do all this and more. What is useful not only to serialize and deserialize
files, but also for other purposes, like validating user input data.

5.1 Datatypes

In Python there are basic types like unicode, integer or float. And the there
are more complex types like dates.

The module itools.datatypes provides an infrastructure orthogonal to the
Python types. The basic service provided by this infrastructure is the deserial-
ization and serialization of values; which is implemented as the couple of class
methods decode and encode, for example:

>>> from itools.datatypes import DateTime

>>> datetime = DateTime.decode(’2005-05-02 16:47’)

>>> datetime

datetime.datetime(2005, 5, 2, 16, 47)

>>> DateTime.encode(datetime)

’2005-05-02 16:47’

This approach, to implement the serialization/deserialization code separate
from the type itself, allows to avoid subclassig built-in types, what has a per-
formance impact.

This also illustrates one of the software principles behind the itools coding,
different programming aspects should be cleary distinct in the implementation
and programming interface.

5.1.1 Out of the box

Out-of-the-box itools.datatypes provides support for the following types:

Integers (Integer) An integer number is serialized using ASCII characters.
This means a call to Integer.decode(x) is equivalent to int(x), and
Integer.encode(x) does the same than str(x).

Text (Unicode) Text strings are serialized using the UTF-8 encoding (by de-
fault).

Byte strings (String) A byte string does not needs to be serialized or dese-
rialized, the output is always equal to the input.

Booleans (Boolean) Boolean values are encoded with the “0” character for
the false value and with the “1” character for the true value.

Dates (Date) Dates are encoded following the ISO 8601 standard1: YYYY-MM-DD.

Datetimes (DateTime) Date and time is encoded with the pattern: YYYY-MM-DD
hh:mm.

1http://www.iso.org/iso/en/prods-services/popstds/datesandtime.html

5.1. DATATYPES 37

URIs (URI) The URI decoder will build and return one of the URI reference
objects defined in the itools.uri package, usually it will be an instance
of the class itools.uri.generic.Reference.

Filenames (FileName) Usually filenames include extensions to indicate the file
type, and sometimes other information like the language. The filename
decoder will parse a filename and return a tuple where the first element is
the filename, the second element is the file type, and the last element is
the language. For example:

>>> from itools.datatypes import FileName

>>> FileName.decode(’index.html.en’)

(’index’, ’html’, ’en’)

>>> FileName.decode(’index.html’)

(’index’, ’html’, None)

>>> FileName.decode(’index’)

(’index’, None, None)

XML qualified names (QName) An XML qualified name has two parts, the
prefix and the local name, so our decoder will return a tuple with these
two elements:

>>> from itools.datatypes import QName

>>> QName.decode(’dc:title’)

(’dc’, ’title’)

>>> QName.decode(’href’)

(None, ’href’)

The encoder expects a two element tuple:

>>> QName.encode((’dc’, ’title’))

’dc:title’

>>> QName.encode((None, ’href’))

’href’

5.1.2 Defining new datatypes

There are two ways to define a new datatype: subclassing and instanciating.

Subclassing

All datatytpes inherit from the abstract class DataType. To define a new
datatype either subclass directly from DateType, or from any other subclass
of it.

As an example we are going to define a datatype that loads mimetypes as a
two elements tuple:

import mimetypes

from itools.datatypes import DateType

class MimeType(DateType):

38 CHAPTER 5. DATATYPES

default = None

@staticmethod

def decode(data):

return tuple(data.split(’/’))

@staticmethod

def encode(value)

return ’%s/%s’ % value

@staticmethod

def is_valid(data):

return mimetypes.guess_extension(data) is not None

Two things to highligth:

• We have set the default value to None, though this is not really needed
since the DataType class already defines this variable to None.

Another good default value maybe (’application’, ’octet-stream’).

• We have added the method is valid, which is not defined by any other
datatype included in itools. This illustrates that the datatypes can be
extended with whatever logic, which we could use later in the application
code.

5.1.3 Instanciating

This is a more compact way to specialize a datatype, when the changes are
small. For example:

from itools.datatypes import String

WorkflowState = String(default=’private’)

Here we have defined a workflow state as an string, whose default value is
private.

Note that a shortcoming of this approach is that, unlike subclassing, it is
not possible to instanciate a datatype that already is an instance.

Chapter 6

Gettext

39

40 CHAPTER 6. GETTEXT

Chapter 7

Handlers

Here we use the term handlers as a shorthand for resource handlers; as this ex-
pression suggests the package itools.handlers is closely related to the package
itools.resouces (see Chapter 11).

For remembering purposes, itools.resources provides an abstraction layer
for files and folders, regardless of where these files and folders are stored (in the
filesystem, in a Web or FTP server, etc.).

Now we can define a resource handler as:

an object consisting of (1) a data structure that represents the re-
source it handles, and (2) a programming interface to access and
modify this data structure

In other words: resources provide persistence to our data, while handlers
provide semantics. So for example we have handler classes to manage XML or
CSV files, and we can write our own handler classes not only to implement other
file formats, but also to specialize the behaviour of our handlers for whatever
purpose.

As happens with resources, there are two kinds of handlers, one for files, the
other for folders.

7.1 File handlers

To get a feeling, let’s start with an example:

1. First we load a resource:

>>> from itools.resources import get_resource

>>> resource = get_resource(’http://example.com’)

2. Now we build a handler for the resource:

>>> from itools.html import HTML

>>> handler = HTML.Document(resource)

>>> print handler

<itools.html.HTML.Document object at 0x40647b4c>

>>> print handler.to_str()

41

42 CHAPTER 7. HANDLERS

<HTML>

<HEAD>

<TITLE>Example Web Page</TITLE>

</HEAD>

<body>

<p>You have reached this web page by typing

...

There are several things to highlight here. First the way we have built our
handler instance, passing a resource to a handler class (HTML.Document),
later we will see other ways to build handler instances.

Second the to str method (all the file handlers have this method), which
serializes the handler, i.e. transforms the handler to a sequence of bytes.
This is a key concept to which we will come back later.

3. Now we can start working with the handler:

>>> from itools.xml import XML

>>> for node in handler.traverse():

... if isinstance(node, XML.Element) and node.name == ’title’:

... print node.children

Example Web Page

Unlike to str, the method traverse is specific to XML documents. Every
handler class provides its own API.

One resource, many handlers

The relationship between resources to handlers is 1 to n. While there may
be several different handlers associated to the same resource (though it is not
obvious how this is useful), a handler is only associated to one resource.

The resource associated to a handler is accessible through the resource
attribute. Following the example above, the code below checks that the resource
we loaded in the first place is exactly the same our handler is associated to:

>>> resource

<itools.resources.http.File instance at 0x404aadec>

>>> handler.resource

<itools.resources.http.File instance at 0x404aadec>

>>> resource is handler.resource

True

7.1.1 Handler’s state

A handler is a non-persitent object, it stores in volatile memory a data structure
that represents the resource’s content. For example, the Figure 7.1 shows at the
left an XML file, and at the right the state of the handler as a tree of XML
elements.

The state of a handler is stored within the instance variable state, what
this variable contains depends on the handler class; e.g. an element tree for
XML documents, a mapping from message to translation for PO files, or just a
unicode string for plain text files. For example:

7.1. FILE HANDLERS 43

Figure 7.1: Handler’s state

>>> from itools.xhtml import XHTML

>>> handler = XHTML.Document()

>>> print handler

<itools.xhtml.XHTML.Document object at 0xb7cae8ac>

>>> print handler.state

<itools.handlers.Handler.State object at 0xb7cae92c>

>>>

>>> from pprint import pprint

>>> pprint(handler.state.__dict__.keys())

[’xml_version’,

’source_encoding’,

’document_type’,

’root_element’,

’standalone’]

The state variable should never be accessed directly, instead the API each
handler provides should be used.

We call load to the process of building the handler state from the data
stored in the resource. And viceversa, we call save to the process of updating
the resource with the changes made to the handler state.

So, while the handler and the resource are synced inmediately after the
handler is loaded, this is to say, they contain the same information, one or
the other may change, hence becoming desynchronized. There are a couple of
scenarios we want to deal with:

• Once the handler is loaded, the resource is modified by other means, for
example you open the file with an editor and modify it.

Then the handler is outdated, its state represents an older version of the
resource.

• After loading the handler, its state is modified through the API it provides.

Then the resource is outdated, as the handler contains a newer version of
the information.

44 CHAPTER 7. HANDLERS

Load

It may happen that the resource (a web page in our example) gets updated,
then the handler will keep a data structure on memory that does not correspond
anymore to the content of the resource, in other words, the handler would be
out-of-date. We can check this by comparing the last modification time of the
resource with the timestamp every handler always keeps:

>>> print handler.resource.get_mtime()

2004-11-28 19:53:57

>>> print handler.timestamp

2004-12-29 19:31:39.055367

>>> handler.resource.get_mtime() > handler.timestamp

False

Ok, the example above shows everything is alright. But what to do if it
was not? then we would need to reload the resource, this is done with the
load state method:

>>> print handler.timestamp

2004-12-29 19:31:39.055367

>>> handler.load_state()

>>> print handler.timestamp

2004-12-29 19:51:50.152499

You should try it yourself with a resource in the filesystem: start the Python
interpreter, build a handler for a resource in the filesystem, modify the resource
with another program, see how the resource modification time is more recent
than the handler’s timestamp, then reload the handler and verify the handler is
up-to-date now.

The full prototype of the method load state follows:

load state(resource=None)
- Loads the data from the given resource into the handler, if no
resource is given, the one the handler is attached to will be used.

As you see the load state method accepts an optional parameter, a re-
source. If it is not given the handler will be reloaded from the resource it
handles. But if other resource is passed it will be loaded from the given re-
source. Then we would reach a situation opposite to the one seen before: the
resource would be outdated, as the handler would keep a newer version.

Save

Another way to get a handler more recent than the resource it is associated
with, is to modify the handler through the API it offers, which depends on the
handler class (e.g. the API of an XML handler is different from the API of an
image handler).

To update the resource so both resource and handler are in sync again we
use the save state method:

save state()
- Saves the handler into the resource.

7.1. FILE HANDLERS 45

So load state and save state are two sides of the same coin. The first one
reloads the handler with the resource, the second one saves the handler state in
the resource.

Serialization and de-serialization

A file resource represents a sequence of bytes. A handler keeps a data structure
in memory, and offers an API to inspect and modify this data structure.

Two key concepts in computer science will help to clarify what we have seen
up to now:

serialization is the process by which a sequence of bytes is transformed into a
data structure.

de-serialization is the process by which a data structure is transformed to a
sequence of bytes.

Now it becomes obvious that the load state method what actually does is to
de-serialize the resource and update the handler. And viceversa, the save state
method serializes the handler and updates the resource.

Remember the method to str we saw at the beginning? it is the one re-
sponsible for the serialization process. The save state method calls to str
first, and then updates the resource.

7.1.2 The skeleton

As we have seen the handler constructor expects one parameter: the resource it
is meant to handle (and once the handler is built the resource is always accessible
with handler.resource).

However, it is also possible to build a handler without passing it any pa-
rameter; in this case a memory resource will be built on the fly, let’s see an
example:

>>> from itools.html import HTML

>>> handler = HTML.Document()

>>> handler

<itools.handlers.HTML.Document object at 0x403ee12c>

>>> handler.resource

<itools.resources.memory.File instance at 0x40638e4c>

>>> print handler.to_str()

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<meta content="text/html; charset=UTF-8" http-equiv="Content-Type">

<title></title>

<body></body>

</head></html>

The default content of the resource depends on the handler, and it is called
the handler skeleton. The constructor also accepts arbitrary keyword parame-
ters:

46 CHAPTER 7. HANDLERS

>>> handler = HTML.Document(title=’Hello World’)

>>> print handler.to_str()

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<html>

<head>

<meta content="text/html; charset=UTF-8" http-equiv="Content-Type">

<title>Hello World</title>

</head>

<body></body>

</html>

The keyword parameters are used to initialize the skeleton; in the example
above the title parameter defines the HTML document title, which by default
is empty. The parameters accepted depend on the handler.

7.1.3 Text and binary handlers

File handlers split into text and binary handlers. The class Text is the base
class for all the text handlers.

The key difference is that text handlers represent the resource’s content in
memory as a unicode string, instead of just a byte string.

When the resource is loaded the text handler tries to guess the character
encoding of the resource’s content. For some file formats this information is
stored within the content itself; for example an XML document starts by an
XML declaration that specifies the encoding, if the declaration is missing it
is assumed the encoding is UTF-8. When this information is not explicitly
indicated, the text handler tries to guess the encoding by brute force.

With the character encoding the text handler decodes and loads the re-
source’s content.

The API of binary and text handlers also differs, compare the one offered
by the File handler class:

to str()
- Returns the resource data as a byte string (this is similar to the
method handler.resource.read()).

set data(data)
- Updates the handler state with the given data.

with the one offered by the Text handler class:

to str(encoding=’UTF-8’)
- Returns the resource data as a byte string, using the given en-
coding (defaults to UTF-8). Note that this will be different than
the string returned by handler.resource.read() if the resource
data is not encoded in UTF-8 in the source.

to unicode(encoding=’UTF-8’)
- Returns the resource data as an unicode string.

Note the to str method for text handlers accepts the encoding as an optional
parameter. This not only will return a byte string in the given charater encoding,

7.1. FILE HANDLERS 47

Figure 7.2: The handler tree

it will also specify the encoding in the byte string for file formats that should
include it.

There is also the new method to unicode, which returns the content as a uni-
code string. This method accepts the encoding parameter too. For file formats
that do not include the encoding within the content, the result of to unicode
will be the same regardless of the given encoding. But for file formats like XML
that should specify the encoding within the content, the returned unicode string
will include it.

7.1.4 Overview of the available handlers

Out of the box itools comes with several handlers for different standard file
formats. The Figure 7.2 shows an excerpt of the tree of the available handler
classes, which express the inheritance relationship between them.

We are not going to see folder handlers here, as they will be studied in the
next chapter.

We have already seen the difference between binary and text handlers. Now

48 CHAPTER 7. HANDLERS

we are going to present some of the higher level file handler classes itools
includes.

XML.Document This is the default handler for XML documents, which in-
ternally are represented as a tree. The API includes the methods already de-
scribed for the Text handler; specific methods of XML.Document are:

cmp (other)
- Lets to compare two XML documents.

get root element()
- Returns the root element of this XML document.

traverse()
- This method allows to traverse the XML document, as it has a
tree structure. It is a generator which returns a node at a time,
starting by the document instance.

traverse2()
- As traverse, this method allows to traverse the XML document,
though it is more powerful, and complex. It will be explained in
the XML chapter.

XHTML.Document The handler for XHTML documents, it extends the
API provided by XML.Document API with the methods:

get head()
- Returns the head element.

get body()
- Returns the body element.

to text()
- Strips all the XML markup and returns the text content of the
XHTML document. This is useful, for example, to index the doc-
ument.

PO The handler to manage PO files, the message catalog of the GNU gettext
utilities.

get msgids()
- Returns the list of message ids stored in the catalog.

get messages()
- Returns the list of messages stored in the catalog, where each
message is represented as an instance of the class PO.Message.

get msgstr(msgid)
- Returns the message string for the given message id.

set message(msgid, msgstr=[u’’], comments=[u’’], references={})
- Adds a message (from the given parameters) to the catalog.

7.1. FILE HANDLERS 49

7.1.5 The handler factory

So far we have built a handler instance through a handler class:

>>> handler = HTML.Document(resource)

>>> handler

<itools.xml.HTML.Document object at 0x405740cc>

This is the standard pattern to build instances. However, if the resource
is not an HTML document this procedure would fail. In other words, this
procedure is only useful if you already know the kind of resource you are working
with.

Another option is to let itools to choose which handler class to use. This
can be done with the build handler method, which provides the factory pat-
tern.

build handler(resource)
- A class method that identifies the given resource, chooses the
available handler class that better matches it, and builds and re-
turns a handler instance for it.

For example, from the examples directory type:

>>> from itools.resources import get_resource

>>> from itools.handlers.Handler import Handler

>>> from itools import xml

>>>

>>> here = get_resource(’.’)

>>> for name in here.get_resource_names():

... resource = here.get_resource(name)

... handler = Handler.build_handler(resource)

... print name, handler

...

chapter6 <itools.handlers.Folder.Folder object at 0x40538d4c>

chapter7 <itools.handlers.Folder.Folder object at 0x4032c0cc>

hello.txt <itools.handlers.Text.Text object at 0x40536f4c>

hello.xhtml <itools.xml.XHTML.Document object at 0x4053b70c>

Note that build handler is a class method. In the example above we have
called it through the most abstract handler class: Handler, which is the root of
the inheritance tree. But it is also possible to call it with another handler class:

>>> from itools.xml import XML

>>>

>>> resource = here.get_resource(’hello.xhtml’)

>>> XML.Document.build_handler(resource)

<itools.xml.XHTML.Document object at 0x405c6ecc>

There is an important difference between calling build handler from one
or another class: the set of possible handler classes to use is restricted to all the
sub-classes of the choosen handler class. For example, if we pass a plain text
file to XML.Document.build handler, it will fail:

50 CHAPTER 7. HANDLERS

>>> resource = here.get_resource(’hello.txt’)

>>> XML.Document.build_handler(resource)

Traceback (most recent call last):

[...]

xml.parsers.expat.ExpatError: syntax error: line 1, column 0

The get handler shorthand

There is a short way to load a handler (instead of loading first the resource and
then building the handler explicitly), the function get handler:

get handler(uri)
- Loads the resource at the given uri, tries to guess its mimetype by
different meanings (name extension, etc.), searches for a suitable
handler class in the registry, builds and returns the handler for the
resource.

Compare the explicit way seen before:

>>> from itools.resources import get_resource

>>> from itools.handlers.Handler import Handler

>>>

>>> resource = get_resource(’http://example.com’)

>>> handler = Handler.build_handler(resource)

With the shorthand:

>>> from itools.handlers import get_handler

>>>

>>> handler = get_handler(’http://example.com’)

7.2 Writing file handler classes

The chapter before we have learnt about file handlers and how to use them, now
we are going to learn how to write our own handler classes, what by the way
will help to solidify the concepts seen before.

The explanation will be driven by an example: we are going to write a task
tracker. The code can be found in the directory examples/chapter6.

7.2.1 Functional scope

Lets start by defining the functional scope of our task tracker. It is going to
be very simple, it will be a collection of tasks where every task will have three
fields:

• title, a short sentence describing the task.

• description, a longer description detailing the task.

• state, it may be open (if the task has not been finished yet), or closed (if
the task has been finished).

The task tracker will provide an API to manipulate the collection of tasks:
create a new task, see either the open or the closed tasks, and close a task.

7.2. WRITING FILE HANDLER CLASSES 51

7.2.2 The file format

Now that we know what we want to do, we have to decide where and how the
information will be stored.

We will keep the tasks in a single text file, with a format somewhat similar
to the one used by the standards vCard and iCal, for example:

title:Re-write the chapter about writing handler classes.

description:A new chapter that explains how to write file handler

classes must be written, it should go inmediately after the chapter

that introduces file handlers.

state:closed

title:Finish the chapter about folder handlers.

description:The chapter about folder handlers needs much more work.

For example the skeleton of folder handlers must be explained.

state:open

Each task is separated from the next one by a blank line. Every field starts
by the field name follewed by the field value, both separated by a colon. If a
field value is very long it can be written in multiple lines, where the second and
next lines start by an space.

This very same file can be found in the examples directory with the name
itools.tt. Using our own filename extension (tt) will prove useful, as we will
see later.

7.2.3 De-serialization

The first draft of our handler class will be able to load (de-serialize) the resource
into a data structure on memory.

from itools.handlers.Text import Text

class Task(object):

def __init__(self, title, description, state=’open’):

self.title = title

self.description = description

self.state = state

class TaskTracker(Text):

def _load_state(self, resource=None):

Load the resource as a unicode string

Text._load_state(self, resource)

Split the raw data in lines.

state = self.state

lines = state.data.splitlines()

Append None to signal the end of the data.

lines.append(None)

Free the un-needed data structure, ’state.data’

del state.data

52 CHAPTER 7. HANDLERS

Initialize the internal data structure

state.tasks = []

Parse and load the tasks

fields = {}

for line in lines:

if line is None or line.strip() == ’’:

if fields:

task = Task(fields[’title’],

fields[’description’],

fields[’state’])

state.tasks.append(task)

fields = {}

else:

if line.startswith(’ ’):

fields[field_name] += line

else:

field_name, field_value = line.split(’:’, 1)

fields[field_name] = field_value

First, our handler class TaskTracker inherits from the handler class Text,
because it is intended to manage a text file.

The method load state is the one to implement, it is responsible to de-
serialize the resource and build a data structure on memory that represents
it.

The first thing it does is to call the parent’s load state method, which will
read the resource’s data and get a unicode string from it, which will be stored in
the self.state.data variable. This is an intermediary representation, which
will be discarded.

The rest of the method process the raw data and builds a list of instances
of the class Task into the variable self.state.tasks.

Lets try it:

>>> from pprint import pprint

>>> import textwrap

>>> from itools.resources import get_resource

>>> from TaskTracker import TaskTracker

>>>

>>> resource = get_resource(’itools.tt’)

>>> task_tracker = TaskTracker(resource)

>>>

>>> pprint(task_tracker.state.tasks)

[<TaskTracker.Task object at 0xb7aebd4c>,

<TaskTracker.Task object at 0xb7aebe6c>]

>>>

>>> task = task_tracker.state.tasks[0]

>>> print task.title

Re-write the chapter about writing handler classes.

>>> print textwrap.fill(task.description)

A new chapter that explains how to write file handler classes must be

written, it should go inmediately after the chapter that introduces

file handlers.

>>> print task.state

closed

7.2. WRITING FILE HANDLER CLASSES 53

7.2.4 Serialization

Now we are going to write the other half, the serialization process, just adding
the to unicode method to the TaskTracker class:

def to_unicode(self, encoding=’UTF-8’):

lines = []

for task in self.state.tasks:

lines.append(u’title:%s’ % task.title)

description = u’description:%s’ % task.description

description = textwrap.wrap(description)

lines.append(description[0])

for line in description[1:]:

lines.append(u’ %s’ % line)

lines.append(u’state:%s’ % task.state)

lines.append(’’)

return u’\n’.join(lines)

Note that we implement the to unicode method instead of to str because
this is a text handler. The encoding parameter is not used in our example
because the file format does not specifiy the encoding within its content, but it
must be declared anyway.

Lets try our new code:

>>> print task_tracker.to_str()

title:Re-write the chapter about writing handler classes.

description:A new chapter that explains how to write file handler

classes must be written, it should go inmediately after the chapter

that introduces file handlers.

state:closed

title:Finish the chapter about folder handlers.

description:The chapter about folder handlers needs much more work.

For example the skeleton of folder handlers must be explained.

state:open

We could have tried to unicode to get a similar output, except that then
the result would be a unicode string instead of a byte string.

7.2.5 The API

Now it is time to write the API to manage the tasks, here is an excerpt:

def add_task(self, title, description):

task = Task(title, description)

self.state.tasks.append(task)

def show_open_tasks(self):

for id, task in enumerate(self.state.tasks):

if task.state == ’open’:

print ’Task #%d: %s’ % (id, task.title)

print

print textwrap.fill(task.description)

54 CHAPTER 7. HANDLERS

print

print

def close_task(self, id):

task = self.state.tasks[id]

task.state = u’closed’

The first method, add task creates a new task, whose state will be open. The
method show open tasks prints the list of open tasks with a human readable
format (we could write a method that returns HTML instead, to use our task
tracker on the web). Finally, the method close task closes the task.

7.2.6 The skeleton

The skeleton for our task tracker should be empty, but to illustrate this feature
we are going to implement an skeleton with one dummy task:

def get_skeleton(self):

return ’title:Read the docs!\n’ \

’description:Read the itools documentation, it is\n’ \

’ so gooood.\n’ \

’state:open\n’

To exercise the whole thing we are going to create a new task tracker, we
will close the first task, add a new one, and look what we have.

>>> from TaskTracker import TaskTracker

>>>

>>> task_tracker = TaskTracker()

>>> task_tracker.show_open_tasks()

Task #0: Read the docs!

Read the itools documentation, it is so gooood.

>>> task_tracker.close_task(0)

>>> task_tracker.add_task(’Join itools!’,

... ’Subscribe to the itools mailing list.’)

>>> task_tracker.show_open_tasks()

Task #1: Join itools!

Subscribe to the itools mailing list.

Now, don’t forget to save the task tracker in the file system, so you can come
back to it later:

>>> from itools.handlers import get_handler

>>>

>>> tmp = get_handler(’/tmp’)

>>> tmp.set_handler(’most_important_things_in_live.tt’, task_tracker)

>>> tmp.save_state()

7.3. FOLDER HANDLERS 55

7.2.7 Register

However:

>>> task_tracker = tmp.get_handler(’most_important_things_in_live.tt’)

>>> print task_tracker

<itools.handlers.File.File object at 0xb7c00f0c>

It would be nice if the code above worked. To achieve it we will asso-
ciate the new mimetype text/x-task-tracker to the file extension tt, we will
tell our handler class is able to manage that mimetype with the variable class
class mimetypes, and we will register our handler class to its parent:

import mimetypes

mimetypes.add_type(’text/x-task-tracker’, ’.tt’)

class TaskTracker(Text):

class_mimetypes = [’text/x-task-tracker’]

[...]

Text.register_handler_class(TaskTracker)

And voilà:

>>> task_tracker = tmp.get_handler(’most_important_things_in_live.tt’)

>>> print task_tracker

<TaskTracker.TaskTracker object at 0xb7af084c>

The full code can be found in examples/chapter6/TaskTracker.py.

7.3 Folder handlers

A handler that deserves its particular chapter is the default handler for folders.

7.3.1 Folder’s state

If the content of a file resource is a byte string, the content of a folder resource
is a set of resources, each one identified by a name. Hence, the state of a folder
handler is a mapping fron handler name to handler instance.

But imagine a folder that contains many big files. To load its state would
mean to load all the files it contains, what is unacceptable from a performance
point of view. This is the reason the folder handler implements lazy load, this
is to say, it loads a handler only when it is needed.

The folder state is stored in the variable cache, because it behaves like a
cache. See:

>>> examples = get_handler(’examples’)

[some operations later]

56 CHAPTER 7. HANDLERS

>>> pprint(examples.state.cache)

{’.arch-ids’: None,

’chapter8’: <itools.handlers.Folder.Folder object at 0xb77b2fac>,

’chapter9’: None,

’hello.txt’: <itools.handlers.Text.Text object at 0xb77b2bcc>,

’hello.xhtml’: None,

’task_tracker0’: None,

’task_tracker1’: None,

’task_tracker2’: None}

As the code above shows, a handler that has not yet been loaded appears in
the cache with the None value.

7.3.2 The API

The programming interface for folder handlers remembers the one of folder
resources, where there we spelled get resource here we will write get handler.
Details follow:

get handler(path)
- Returns a handler for the resource at the given path. It will
use the available handler class that better matches the resource
mimetype.

get handler names(path=’.’)
- Returns a list with the names of all the handlers in the given
path.

get handlers(path=’.’)
- Returns the handlers in the given path (it is a generator).

has handler(path)
- Returns True if there is a handler in the given path, False oth-
erwise.

set handler(path, handler)
- Adds the given handler to the given path. Actually what is added
is the resource associated to the handler.

del handler(path)
- Removes the handler at the given path (i.e. the associated re-
source).

7.3.3 Example

As the proverb says, a code snippet is worth more than one thousand words:

1. First we build a handler for the temporary directory:

>>> from itools.handlers import get_handler

>>>

>>> tmp = get_handler(’/tmp’)

>>> tmp

<itools.handlers.Folder.Folder object at 0x40652dec>

7.3. FOLDER HANDLERS 57

>>> tmp.resource

<itools.resources.file.Folder instance at 0x406acacc>

2. Second, we create a new HTML handler:

>>> from itools.xml import HTML

>>> hello = HTML.Document(title=’Hello World’)

>>> hello.resource

<itools.resources.memory.File instance at 0x405e49cc>

Note that the associated resource is built on the fly and lives in memory.

3. Third, we set the HTML handler to the temporary folder:

>>> tmp.set_handler(’hello.html’, hello)

What this actually does is to add the file hello.resource (which lives in
memory) to the folder tmp.resource (which is on the file system); this is
to say, it creates a new file in the file system at /tmp/hello.html.

4. Finally, we get the handler we just added:

>>> hello = tmp.get_handler(’hello.html’)

>>> hello.resource

<itools.resources.file.File instance at 0x40638c6c>

Note that the handler hello we have built in these last lines manages a
resource that lives in the file system.

7.3.4 The handler tree

Folders allow to classify files, hence giving a tree structure to our data. Every
handler has two attributes, parent and name, they tell us where the handler is
in the handler tree:

>>> hello.parent

<itools.handlers.Folder.Folder object at 0x403ebb2c>

>>> hello.name

’hello.html’

>>> hello.parent is tmp

True

>>> print tmp.parent

None

>>> print tmp.name

>>>

Based on these two attributes handlers provide the following API:

58 CHAPTER 7. HANDLERS

get abspath()
- Returns the absolute path from the tree root to the self handler.

get root()
- Returns the handler for the root of the tree.

get pathtoroot()
- Returns a relative path from self to the tree root (e.g. ../../..).

get pathto(handler)
- Returns a relative path from self to the given handler (which is
supposed to be in the same tree), for example: ../../zoo/lion.

traverse()
- This method allows to traverse the handler tree below this folder.
It is a generator which returns a handler at a time, starting by this
folder.

acquire(name)
- If the current handler is a folder and contains a resource with
the given name, then return a handler for it; otherwise look at
the parent folder, and recursively to the root tree. This method
actually shows how to implement acquisition.

Chapter 8

HTML

59

60 CHAPTER 8. HTML

Chapter 9

Internationalization (i18n)

The task tracker from the previous chapter provides a user interface in only one
language. The purpose of this chapter is to explain how to build applications
that provide a user interface in many languages. We will illustrate this building
up on the task tracker example.

See the file layout of the already multilingual task tracker:

Makefile

TaskTracker.py

TaskTracker_view.xml.en

locale/

locale.pot

en.po

es.po

There are two things to note. First the locale directory: it is a database
which keeps the translations for the text messages of the user interface. The
translations are stored in PO1 files, one per language; in our example there is
one for English (en.po) and another for Spanish (es.po). Each PO file keeps
the source messages, usually written in English, and their translations (because
the source language is English, the en.po file will be usually empty).

The second thing to note is the Makefile, it will help us to automatize the
localization and build processes. The Figure 9.1 shows these two processes.

9.1 Internationalization

Internationalization:

the operation by which a program, or a set of programs turned into
a package, is made aware of and able to support multiple languages.

This is to say, if you have a monolingual product like the task tracker from the
previous chapter, you will need to make some changes to the code, so it becomes
able to deal with multiple languages. This process is called internationalization.
Of course, you may also write international software since the beginning.

The text messages to translate are stored in the XML templates and the
Python code, so these are the two things to internationalize.

1XXX

61

62 CHAPTER 9. INTERNATIONALIZATION (I18N)

Figure 9.1: The localization process

9.1.1 Python code

To start, our task tracker must be domain aware:

from itools.gettext.domains import DomainAware

class TaskTracker(Text, DomainAware):

class_mimetypes = [’text/x-task-tracker’]

class_domain = ’task tracker’

We use here the word domain because it is standard in the internationaliza-
tion jargon. Here by a domain we understand a database that keeps message
translations for one or more languages. A domain aware class is one that is
implicitly associated to a domain and has an API to access that domain.

Every application and library will have a unique domain name, this will
allow us to explicitly refer to a given domain to retrieve translations from it.
The domain name is specified with the class variable class domain.

By the way, we need to register the domain:

from itools import get_abspath

from itools.gettext.domains import register_domain

domain_path = get_abspath(globals(), ’../locale’)

register_domain(TaskTracker.class_domain, domain_path)

The class DomainAware provides the application programming interface we
will use within the Python code:

9.1. INTERNATIONALIZATION 63

get languages()
- Returns a list with the language codes of our application. By
default it is not implemented, so it must be overriden by subclasses.

select language(languages=None)
- Chooses and returns a language from the given list of languages.
If the languages are not given, the method get languages will be
called to get them. The default implementation uses the environ-
ment variable LANGUAGE.

gettext(message, language=None, domain=None)
- Returns the translation for the given message in the given lan-
guage, from the given domain. If there is not a translation the
input message is returned. If no language is given the method
select language will be called to choose one from the languages
available in the domain. By default the domain used is the one
specified in the class variable class domain.

Now we just need to replace every text string in the source code by a call to
gettext, e.g u’hello’ becomes self.gettext(u’hello’). In our example it
would be:

def show_open_tasks(self):

for id, task in enumerate(self.state.tasks):

if task.state == ’open’:

print self.gettext(u’Task #%(id)d: %(title)s’) \

% {’id’: id, ’title’: task.title}

...

Note that we have used named arguments for the formatted string instead
of positional arguments. This is because the position of the arguments may be
different in another language.

9.1.2 Templates

The technique we use with itools requires to have one template per language,
being English the master language. Each template must have a distinct name,
we will achieve it by appending the language code to the end of the file:

TaskTracker_view.xml.en

TaskTracker_view.xml.es

Note that only the template in English belongs to the source, the others will
be automatically built with the help of itools.

Now we are going to make some changes to the TaskTracker class. First we
must override the method get languages:

def get_languages(self):

return [’en’, ’es’]

These are the languages of our task tracker, English and Spanish. Now we
must modify the view method to choose the right template:

64 CHAPTER 9. INTERNATIONALIZATION (I18N)

def view(self):

Load the STL template

language = self.select_language()

handler = get_handler(’TaskTracker_view.xml.%s’ % language)

...

9.2 Localization

Localization:

the operation by which, in a set of programs already international-
ized, one gives the program all needed information so that it can
adapt itself to handle its input and output in a fashion which is cor-
rect for some native language and cultural habits.

The source is ready, now starts the localization process, it consists of two
steps:

1. Message extraction.

2. Human translation.

9.2.1 Message extraction

This step consists on the parsing of the source code, the extraction of the trans-
latable messages they contain, and the building of a PO file which will be the
input for the human translator.

This is done with the GNU gettext2 tools, which are the standard in the
Free Software world for software internationalization and localization; and the
script igettext.py provided by itools.

But the process is automatized by the Makefile so the only thing we need
to do is to type:

$ make po

This will parse the Python and XHTML source and update the PO files
within the locale directory. See below an excerpt:

#: TaskTracker.py:117

#, python-format

msgid "Task #%(id)d: %(title)s"

msgstr ""

#: TaskTracker_view.xml.en:0

msgid "Task Tracker"

msgstr ""

2http://www.gnu.org/software/gettext/

9.3. BUILD 65

Marking messages

The message extraction script will pick all text strings3 from the Python source,
and all text nodes from the source templates. Then it will split the messages
into sentences, a process known as segmentation, it will be these sentences which
will feed the message catalog.

This means that no explicit markup is required to signal a text string as
translatable. This way we reduce the burden on the developer, who just needs
to remember to use Python unicode strings for text, i.e. to type:

u’Hello world.’

instead of:

’Hello world.’

For the templates, the only rule is to write them properly. In particular, to
use block elements as block elements, and inline elements as inline elements.

9.2.2 Human translation

The human translator receives the PO file, and must return the same PO file,
but including the translations for every message. In our example the output
should be:

#: TaskTracker.py:117

#, python-format

msgid "Task #%(id)d: %(title)s"

msgstr "Tarea #%(id)d: %(title)s"

#: TaskTracker_view.xml.en:0

msgid "Task Tracker"

msgstr "Gestor de tareas"

To do this work the translator don’t needs to understand the file format,
there are graphical tools available to do the job like:

• KBabel, http://www.kde.org

• poedit, http://poedit.sourceforge.net

9.3 Build

To close the process, we must generate the translated templates (TaskTracker view.xml.es)
and the MO files (en.mo, es.mo) that will be used in runtime by the gettext
method.

To build the templates from the master template (TaskTracker view.xml.en)
and from the translated PO file (es.po), is done with the script igettext.py:

$ igettext.py --xhtml addressbook_view.xml.en es.po \

> addressbook_view.xml.es

3Text strings are most often known as unicode strings in Python.

66 CHAPTER 9. INTERNATIONALIZATION (I18N)

The MO file is a binary version of the PO file, and is built with the msgfmt
tool.

But, again, the process is automatized by the Makefile, so the only thing
we need to do is to type:

$ make bin

igettext.py --output=TaskTracker_view.xml.es \

--xhtml TaskTracker_view.xml.en locale/es.po

msgfmt locale/en.po -o locale/en.mo

msgfmt locale/es.po -o locale/es.mo

touch bin

And voilà.

Chapter 10

iCalendar

67

68 CHAPTER 10. ICALENDAR

Chapter 11

Resources

A resource is much like a Python file, except for two key differences:

• It may be stored anywhere, not just in the filesystem. For example, it
may be in the Web, or in some FTP server, or somewhere else.

• It may not be a file, it may be a folder.

Basically, itools.resources provides:

a universal API to manage resources wherever they are stored; and
by resources we mean files (a sequence of bytes) and folders (a con-
tainer for other resources).

11.1 Quick Start

There are resources that live in some well known places, they are accessed with
get resource:

>>> from itools.resources import get_resource

>>>

>>> get_resource(’examples/hello.txt’)

<itools.resources.file.File instance at 0x402175ac>

>>> get_resource(’http://example.com’)

<itools.resources.http.File instance at 0x404aadec>

There are resources that live in hidden places. We can build them, but we
cannot reach them from the outside:

>>> from itools.resources import memory

>>>

>>> memory.File(’hello’)

<itools.resources.memory.File object at 0xb7bb528c>

There are files and there are folders:

>>> get_resource(’examples/hello.txt’)

<itools.resources.file.File instance at 0x402175ac>

>>> get_resource(’examples’)

<itools.resources.file.Folder instance at 0x401e568c>

69

70 CHAPTER 11. RESOURCES

11.2 File Resources (and Python Files)

A file resource is much like a Python file. Probably the most important difference
is that a resource is closed by default, so it must be opened before working with
it:

>>> resource = get_resource(’http://example.com’)

>>> resource.is_open()

False

>>> resource.open()

>>> resource.is_open()

True

And unlike a Python file a resource object can be opened and closed, and
opened again and closed again, etc.

Many packages from the Standard Library and from other sources work with
Python files. Usually they will be able to work with file resources too, since the
API is mostly the same (just remember to open the resource first).

Here there is an slightly larger example:

>>> resource = get_resource(’http://example.com’)

>>> print resource.get_mimetype()

text/html

>>> resource.open()

>>> print resource.get_size()

438

>>> print resource.read()

<HTML>

<HEAD>

<TITLE>Example Web Page</TITLE>

</HEAD>

<body>

<p>You have reached this web page by typing

...

11.2.1 Direct access

Just for comfort file resources extend the API of Python files with methods
for direct access to an arbitrary position. This is done by implementing the
sequence interface: getitem , setitem , getslice and setslice .

This is mostly useful for binary files. Below the mandatory example:

>>> import struct

>>> n = struct.pack(’>I’, 47)

>>> resource[20:24] = n

This brief example shows how to write the number 47 at the position 20 of
a given resource, encoded as a 32 bits unsigned integer.

For a real example you can look at itools.catalog, which makes extensive
and systematic use of this approach.

11.3. FOLDER RESOURCES 71

11.3 Folder Resources

A folder is a container of other resources: files and folders. To fulfill its purpose
provides a collection of methods: get resource, has resource, set resource,
etc.

Examples go:

>>> examples = get_resource(’examples’)

>>> print examples.get_resource_names()

[’hello.xhtml~’, ’hello.xhtml’, ’hello.txt’, ’.arch-ids’]

>>> hello = examples.get_resource(’hello.txt’)

>>> hello.open()

>>> print hello.read()

hello world

Copy a web page to the local file system

>>> tmp = get_resource(’/tmp’)

>>> web_page = get_resource(’http://example.com’)

>>> tmp.set_resource(’example.html’, web_page)

>>> copy_of_web_page = tmp.get_resource(’example.html’)

>>> print web_page

<itools.resources.http.File instance at 0x405e8a2c>

>>> print copy_of_web_page

<itools.resources.file.File instance at 0x405fb64c>

Copy a whole tree

>>> from pprint import pprint

>>> talks = get_resource(’/home/jdavid/talks’)

>>> tmp.set_resource(’talks’, talks)

>>> pprint(tmp.get_resource_names(’talks/EuroPython2004’))

[’itools-vfs’,

’Makefile’,

’itools-vfs.log’,

’itools-vfs.tex’,

’itools-vfs.aux’,

’itools-vfs.toc’,

’itools-vfs.dvi’,

’itools-vfs.ps’,

’itools-vfs.pdf’,

’itools-vfs.tex~’]

This is more impressive when copying a big tree from one storage to another.
For example we use it in the context of the iKaaro Content Management System
to export and import web sites from the Zope Object DataBase to the file
system, and back from the file system to the ZODB.

11.4 Resource Types

The Section 11.5 explains the general API for both files and folders. It is the
purpose of this section to exaplain the types currently supported (file, http,
etc.) and the differences regarding the general API.

72 CHAPTER 11. RESOURCES

XXX Finish

11.4.1 Memory resources

Resources in memory are very handy. They are created passing a byte string to
the constructor:

>>> from itools.resources import memory

>>>

>>> resource = memory.File(’hello world’)

>>> resource

<itools.resources.memory.File instance at 0x405e458c>

>>> resource.read()

’hello world’

>>> tmp.set_resource(’hello.txt’, resource)

11.5 API

11.5.1 Package interface

• get resource(reference)

Creates a resource object for the given URI reference. The type of the re-
source depends on the reference (itools.resources.file, itools.resources.http,
etc.).

11.5.2 API common to Files and Folders

Information

• uri

The URI of the resource.

• get name()

Returns the name of the resource.

• get mimetype()

Returns the mimetype of the resource.

Folder’s mimetype is application/x-not-regular-file, always.

For files the method used to find out the mimetype depends on the resource
type (http, file, etc.). Returns None if it is unable to figure out the
mimetype.

• get ctime()

Returns a datetime object with the time the resource was created. Or
None if the creation time is unknown.

• get mtime()

Returns a datetime object with the last time the resource was modified.
Or None if the modification time is unknown.

11.5. API 73

• get atime()

Returns a datetime object with the last time the resource was accessed.
Or None if the access time is unknown.

Open/Close

• open()

Opens the resource.

• close()

Closes the resource.

• is open()

Returns True if the resource is open, False if it is closed.

Locking

• lock()

Locks the resource.

• unlock()

Unlocks the resource.

• is locked()

Returns True if the resource is locked, False if it is unlocked.

11.5.3 API specific to Files

• get size()

Returns the length (the number of bytes) of the resource data. Or None
if this information is not available.

• seek(offset, whence=0)

• read(size=None)

Returns the resource data as a byte string.

• readline()

• readlines()

• write(data)

Replaces the resource content by the given data (a byte string).

• truncate(size=None)

• getitem (index)

Returns the byte at the given position.

• getslice (a, b)

Returns the byte string that goes from a to b.

74 CHAPTER 11. RESOURCES

• setitem (index, value)

Sets the given value to the given position (index). Usually value will be
just a byte, but it may be a slice too.

• append(data)

Appends the given data to the resource.

11.5.4 API specific to Folders

• get resource(path)

Returns the resource in the given path (where path is either an instance
of uri.Path or a string).

• get resource names(path=’.’)

Returns a list with the names of all the resources in the given path.

• get resources(path=’.’)

Returns the resources in the given path (it is a generator).

• has resource(path)

Returns True if there is a resource in the given path, False otherwise.

• set resource(path, resource)

Adds the given resource to the given path.

• del resource(path)

Removes the resource at the given path.

• del resources(paths)

Removes the resources at the given paths (where paths is a list of paths).

• traverse()

This method allows to traverse the resource tree below this folder. It is a
generator which returns a resource at a time, starting by this folder.

• traverse2()

Chapter 12

RSS

75

76 CHAPTER 12. RSS

Chapter 13

Schemas

77

78 CHAPTER 13. SCHEMAS

Chapter 14

Simple Template Language
(STL)

There are many template languages available. The Simple Template Language
distinct attributes are:

• optimized to work with XML files1;

• very easy to learn;

• high productivy;

• fast.

I like to define STL as a descriptive language. It is amazing how many tem-
plate languages are out there that allow to put Python code inside a template,
and call it a feature.

14.1 How it works

The Figure 14.1 shows how STL works. The input for STL is a source template
and a Python namespace, the output is a new XML template.

There are solutions like htmlgen2 or XX that allow to produce the XML or
HTML output enterily from Python. While with tools like ZPT3 it is possible
to produce a complex web page only from a source template.

We think it is easier to read code when it is written in Python, and it is
easier to read XML when it is written in XML. This is the reason STL not just
allows, but enforces, the separation between logic and presentation.

The language STL don’t includes any programming constructions, the four
statements it provides only describe the transformations to be performed on the
source template.

Lets see a simple example.

1STL is implemented as an XML namespace.
2XXX
3XXX

79

80 CHAPTER 14. SIMPLE TEMPLATE LANGUAGE (STL)

Figure 14.1: The Simple Template Language (STL)

14.1.1 The template

For example, look at the template below (examples/chapter9/template.xml):

<?xml version="1.0" encoding="UTF-8"?>

<html xmlns="http://www.w3.org/1999/xhtml"

xmlns:stl="http://xml.itools.org/namespaces/stl">

<head></head>

<body>

<h1 stl:content="title" />

</body>

</html>

Note the declaration of the stl namespace, it is mandatory since STL is
implemented as an XML namespace.

When this template will be processed, the content of the <h1> tag will be
replaced by the value of the variable title. But, where will we find title?
Solution: in the namespace.

14.1.2 The namespace

The namespace is a mapping that is built from the Python side. Then with
the template and the namespace we will just call the stl function to get the
output. See:

>>> from itools.handlers import get_handler

>>> from itools.xml.stl import stl

>>>

>>> namespace = {’title’: ’hello world’} # 1. Build the namespace

>>> template = get_handler(’template.xml’) # 2. Load the template

14.2. THE LANGUAGE 81

>>> print stl(template, namespace) # 3. Go!

<?xml version="1.0" encoding="UTF-8"?>

<html xmlns:stl="http://xml.itools.org/namespaces/stl"

xmlns="http://www.w3.org/1999/xhtml">

<head></head>

<body>

<h1>hello world</h1>

</body>

</html>

As the output shows, the value of the variable title is looked within the
namespace.

14.2 The Language

14.2.1 STL attributes

There are four STL attributes:

• stl:content=“expression”

Replaces the element’s content by the result of evaluating the given ex-
pression.

• stl:attributes=“name expression[; name expression]*”

For every pair “name: expression”, replace the the value of the attribute
name by the result of evaluating expression.

• stl:if=“[not]expression”

If the given expression evaluates to True, do nothing; if evaluates to False,
remove the XML element.

• stl:repeat=“name expression”

The given expression is expected to be a sequence or an iterator. For every
item in expression, create an element and add the item to the namespace
stack before processing the element.

14.2.2 Expressions

The STL expressions are pretty simple, their syntax is:

name[/name]*

That is, a sequence of names separated by slashes. The semantics is:

1. Look the first name in the namespace stack.

2. If there are more names left, the last value found must be a namespace,
then look the next name in that namespace.

Iterate until the last name is consumed.

3. Once the end of the sequence is reached, we will have a value. If the value
is callable, then call it to get a new value.

82 CHAPTER 14. SIMPLE TEMPLATE LANGUAGE (STL)

4. Finally, we should have a value that is either a string, a boolean or a
sequence, depending on which statement (content, repeat, etc.) the
expression is being used with.

14.3 Example: Task Tracker

Now we are going to illustrate STL with a more complex example. Building up
on the Task Tracker from the Chapter 7.2, we are going to write a method that
produces an HTML page showing all the tasks.

First, the template (see examples/chapter9/TaskTracker view.xml):

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html

PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

xmlns:stl="http://xml.itools.org/namespaces/stl">

<head></head>

<body>

<h2>Task Tracker</h2>

<div stl:repeat="task tasks">

<h4>

#<stl:block content="task/id" />:

<stl:block content="task/title" />

(<em stl:content="task/state" />)

</h4>

<p stl:content="task/description" />

</div>

</body>

</html>

The first new thing this example shows is the repeat statement. While
stl:content expects a string as the value, stl:repeat expects a sequence.
When this template is processed, the XML output will contain as many <div>
elements as tasks are in the tasks variable. Within the div element, in each
iteration over the tasks sequence, the variable task will be the respective item
of the list.

The second new thing we see is the <stl:block> element. When the tem-
plate is processed the <stl:block> tags are automatically removed.

Finally, look at the expression task/id or task/title, it shows the slash
operator, which lets to traverse namespaces. So the variable task is expected
to be a mapping (e.g. a dictionary), and id a key in that mapping, whose value
is a string.

The Python side

Now let’s see the Python code (see examples/chapter9/TaskTracker.py). Ba-
sically we have added the method view to the class TaskTracker:

def view(self):

Load the STL template

handler = get_handler(’TaskTracker_view.xml’)

14.3. EXAMPLE: TASK TRACKER 83

Build the namespace

namespace = {}

namespace[’tasks’] = []

for i, task in enumerate(self.state.tasks):

namespace[’tasks’].append({’id’: i,

’title’: task.title,

’description’: task.description,

’state’: task.state,

’is_open’: task.state == ’open’})

Process the template and return the output

return stl(handler, namespace)

To try the code run the Python interpreter and type:

>>> from itools.handlers import get_handler

>>> import TaskTracker

>>>

>>> task_tracker = get_handler(’itools.tt’)

>>> print task_tracker.view()

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html

PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns:stl="http://xml.itools.org/namespaces/stl"

xmlns="http://www.w3.org/1999/xhtml">

<head></head>

<body>

<h2>Task Tracker</h2>

<div>

<h4>

#0:

Re-write the chapter about writing handler classes.

(closed)

</h4>

<p>A new chapter...

The Figure 14.2 shows how the HTML looks with a browser.

84 CHAPTER 14. SIMPLE TEMPLATE LANGUAGE (STL)

Figure 14.2: The task tracker view

Chapter 15

TMX

85

86 CHAPTER 15. TMX

Chapter 16

Uniform Resource
Identifiers

In the wild Internet, the first challenge we encounter is how to identify and
locate the numerous resources that populate it. Well, that’s what Uniform
Resource Identifiers (or just URIs) are for.

The Python Standard Library (batteries included!) provides a module named
urlparse which is able to split a generic URI into its main parts (scheme, au-
thority, path, query and fragment), to rebuild it, and to resolve relative refer-
ences.

But there are more things we would like to do with a URI. For example we
could go further in the parsing process and split the path into its segments, then
split each segment into the name and the parameters if any; we could get the
user information, host address and port number from the authority; we could
normalize URIs; we could implement other operations beyond just resolving
relative references, etc.

This is the purpose of itools.uri, to provide a complete API to parse and
work with URIs, following the standard as described by RFC2396.

The main function provided by itools.uri is get reference, a factory to
build references:

get reference(reference)
- Parses the given string and returns a reference object.

Let’s go right to the code:

>>> from itools import uri

>>> r1 = uri.get_reference(’http://www.w3.org/TR/REC-xml/#sec-intro’)

>>> r2 = uri.get_reference(’mailto:jdavid@itaapy.com’)

>>> r3 = uri.get_reference(’http://www.ietf.org/rfc/rfc2616.txt’)

>>> r4 = uri.get_reference(’http://sf.net/cvs/?group_id=5470’)

>>> r5 = uri.get_reference(’news:comp.infosystems.www.servers.unix’)

87

88 CHAPTER 16. UNIFORM RESOURCE IDENTIFIERS

16.1 Syntax

Before going further, we will give an overview of the URI syntax, something
required to understand the rest of this chapter.

A URI is divided in two parts. The first one is the scheme: http, ftp,
mailto, etc.. The syntax and semantics of the second part depends on the
scheme:

uri = <scheme>:<scheme-specific-part>

However, many schemes share a similar syntax for the second part, these
URIs are known as generic URIs.

16.1.1 Generic URIs

The syntax of a generic URI reference is:

<scheme>://<authority><absolute path>?<query>#<fragment>

Generic URIs are modeled by uri.Reference. Following the code at the
beginning, we are going to inspect the r1 object:

>>> r1

<itools.uri.Reference object at 0x403ebc4c>

>>> print r1

http://www.w3.org/TR/REC-xml/#sec-intro

>>> print r1.scheme

http

>>> print r1.authority

www.w3.org

>>> print r1.path

/TR/REC-xml/

>>> print r1.query

>>> print r1.fragment

sec-intro

Note that there is an attribute for every component: the scheme, the au-
thority, the path, the query and the fragment. Now we are going to quickly
describe each of these components:

Scheme Defines the method or protocol to access the resource.

Authority Defines the server address that hosts the resource. Its syntax is:

authority = [<userinfo>@]<hostport>

Absolute path The path identifies the resource within the scope of the scheme
and authority.

It consists of a sequence of segments. A segment has two parts, the name
and the parameters, though the parameters are optional. The syntax is:

16.2. RELATIVE REFERENCES 89

absolute path = /<relative path>
relative path = <segment>[/<relative path>]
segment = <name>[;<parameters>]

Query The query is information to be interpreted by the resource. It does not
have a pre-defined syntax.

Fragment The fragment is a reference within the resource.

Actually, the fragment does not belong to the URI, as it does not help to
identify the resource, however we include it here because it does appears
in URI references, what is what we work with.

As the query, the fragment does not have a pre-defined syntax.

16.1.2 Non Generic URIs

Other schemes do not follow the generic syntax. As an example, let’s inspect
the r2 object seen before:

>>> r2 = uri.get_reference(’mailto:jdavid@itaapy.com’)

>>> print r2

mailto:jdavi@itaapy.com

>>> r2

<itools.uri.Mailto object at 0x403f45ec>

>>> print r2.scheme

mailto

>>> print r2.username

jdavid

>>> print r2.host

itaapy.com

As you see the r2 is not an instance of uri.Reference, but an instance of
uri.Mailto.

16.2 Relative references

So far the examples we have seen show absolute URIs, but there are relative
URI references too. A relative reference is one that lacks, at least, the scheme.
There are three types of of relative references: network paths, absolute paths,
and relative paths:

Network paths Network paths only lack the scheme, they start by a double
slash and the authority, followed by the absolute path. They are rarely
used.

//www.ietf.org/rfc/rfc2396.txt

Absolute paths The absolute paths lack both the scheme and the authority.
They start by a slash.

/rfc/rfc2396.txt

90 CHAPTER 16. UNIFORM RESOURCE IDENTIFIERS

Relative paths Relative paths lack the first slash of absolute paths. They can
start by the special segment ”.”, or by one or more ”..”. Examples are:

rfc/rfc2396.txt
./rfc/rfc2396.txt
../rfc2616.txt

16.2.1 Resolving references

The most common operation with relative references is to resolve them. That is
to say, to obtain (with the help of a base reference) the absolute reference that
identifies our resource. This is achieved with the resolve method:

>>> base = uri.get_reference(’http://www.ietf.org/rfc/rfc2615.txt’)

>>> print base.resolve(’//www.ietf.org/rfc/rfc2396.txt’)

http://www.ietf.org/rfc/rfc2396.txt

>>> print base.resolve(’/rfc/rfc2396.txt’)

http://www.ietf.org/rfc/rfc2396.txt

>>> print base.resolve(’rfc2396.txt’)

http://www.ietf.org/rfc/rfc2396.txt

16.3 Paths

One component that deserves special attention is the path. The path of a generic
URI is an instance of the uri.Path class:

>>> ref = uri.get_reference(’http://www.ietf.org/rfc/rfc2616.txt’)

>>> ref.path

<itools.uri.Path at 0x403f50a4>

>>> print ref.path

/rfc/rfc2616.txt

Paths are iterable:

>>> for segment in ref.path:

... print segment

...

rfc

rfc2616.txt

Each component of the path is called a segment. Segments are instances of
the class uri.Segment. Each segment has two components, the name and the
parameter. The code below illustrates this:

>>> path = uri.Path(’/itaapy;lang=es/team’)

>>> for segment in path:

... print repr(segment)

... print ’ name:’, segment.name

... print ’ param:’, segment.param

...

<itools.uri.Segment object at 0x404c1acc>

name: itaapy

param: lang=es

16.3. PATHS 91

<itools.uri.Segment object at 0x404c1a2c>

name: team

param: None

The uri.Path class also provides an API to manipulate paths:

is absolute()
- Returns True if the path is absolute (i.e. if it starts by an slash),
False otherwise.

is relative()
- Returns True if the path is relative (i.e. if it does not start by a
slash), False otherwise.

get prefix(path)
- Returns the path that is common to self and to the given path.

resolve(path)
- Returns a new path from a base path (self) and the given path.
Follows the RFC2396 standard, i.e. takes into account the trailing
slash.

resolve2(path)
- Same as resolve, but it does not teke into account the trailing
slash.

get pathto(path)
- Returns the path needed to go from self to the given path (this
complements the resolve method).

get pathtoroot()
- Returns a relative path to the root (something like ../../..).

92 CHAPTER 16. UNIFORM RESOURCE IDENTIFIERS

Chapter 17

Web

This chapter documents the high-level, cross-protocol, programming interface
provided by itools.web to develop web applications.

17.1 The Publisher

The first and most important interface within the Web is the URI (Uniform
Resource Identifier), both from the user’s and programmer’s point of view. This
is how a URI looks like with itools.web:

http://localhost:8000/users/toto/;view

What is of most interest to us is the path, which expressed in a general form
has the structure:

<path to resource>/;<method>

It is splitted in two parts, a path to a resource, and an action or view over
that resource. The Figure 17.1 shows an excerpt of the application’s structure,
the excerpt that is relevant to our example.

So, the web application has a graph structure with a root node (an entry
point to the graph). The URI path goes from the root to another node in the
graph.

Once the node is reached, the given <method> of the resource is called.
That’s what the itools.web publisher does, follow the path to reach the node
and call the method.

The use of the semicolon to separate the method from the path makes the
URI explicit, you look at it and you know what is the path, which nodes in the
graph the path goes through, and which method is called at the end.

Note that the character semicolon has been choosen because it is defined by
the RFC 23961, which defines the URI standard. It is the character that, within
a path segment, separates the resource name from the segment parameters.

1http://www.ietf.org/rfc/rfc2396.txt

93

94 CHAPTER 17. WEB

Figure 17.1: The application tree (an excerpt).

17.2 The Context

Wherever in the code there is available a global object named the context, it
contains:

request
- The request object.

response
- The response object.

user
- The authenticated user, or None if it is an anonymous (non au-
thenticated) user.

root
- The handler for the root resource.

handler
- The handler of the resource being published (usually it is self).

path
- The path from the root handler to the published handler (an
instance of the itools.uri.Path class).

method
- The name of the method being published, or None if the url did
not specified the method.

The context can be accessed through the itools.web.get context method.
A pattern that is very often found within the ikaaro’s code is:

from itools.web import get_context

context = get_context()

request, response = context.request, context.response

17.2. THE CONTEXT 95

17.2.1 The Request

The request object is a wrapper around the Zope’s request object, it provides a
higher level API:

uri
- The requested uri (an itools.uri reference).

referer
- The referer uri (an itools.uri reference), or None if there is not
a referer.

accept language
- An instance of the itools.i18n.accept.AcceptLanguage class,
it keeps the user preferred languages.

form
- The request parameters passed either through the query or as
form values. It is mapping from key to value.

cookies
- The cookies, it is a mapping.

17.2.2 The Response

The response object is a wrapper around the Zope’s response object, it provides
a higher level API:

has header(name)
-

get header(name)
-

set header(value)
-

del cookie(name)
-

set cookie(name, value, **kw)
-

redirect(uri)
-

set status(status)
-

96 CHAPTER 17. WEB

Chapter 18

Workflow

97

98 CHAPTER 18. WORKFLOW

Chapter 19

XHTML

We are going to give a glance to the implementation of XHTML provided by
itools.xhtml.

To drive the explanation here is the document source we will use as example
(see examples/hello.xhtml):

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

<title>Hello world</title>

<!-- Changed by: , 02-Jun-2004 -->

</head>

<body>

</body>

</html>

The only two differences between this file and the example we saw at the
beginning (examples/chapter8/hello.xml) are the document type declaration
and the XML namespace declaration. The result is get handler returns an
XHTML document instead of an XML document:

>>> doc = get_handler(’examples/hello.xhtml’)

>>> doc

<itools.xhtml.XHTML.Document object at 0xb7a2ec4c>

>>>

>>> for node in doc.traverse():

... print repr(node)

...

<itools.xhtml.XHTML.BlockElement object at 0xb79884ec>

u’\n ’

<itools.xhtml.XHTML.HeadElement object at 0xb798852c>

u’\n \n ’

<itools.xhtml.XHTML.BlockElement object at 0xb79885ac>

u’Hello world’

u’\n ’

<itools.xml.XML.Comment object at 0xb798856c>

99

100 CHAPTER 19. XHTML

u’\n ’

u’\n ’

<itools.xhtml.XHTML.BlockElement object at 0xb798858c>

u’\n ’

u’\n’

Now, the element nodes are not any more instances of XML.Element, but
instances of XHTML.Element, which extends the generic API with the methods:

is inline()
- Returns True if the element is an inline element, False otherwise.

is block()
- Returns True if the element is a block element, False otherwise.

Ok, not too much1, but enough to give an idea of the power of itools.xml.
In the next chapter we will see a much more compelling example of what can
be done with itools.xml, the Simple Template Language.

1These two methods, is inline and is block, are actually really useful. They are used
by the message extraction algorithm, a fundamental brick of the internationalization and
localization services provided by itools.

Chapter 20

XLIFF

101

102 CHAPTER 20. XLIFF

Chapter 21

eXtensible Markup
Language (XML)

The purpose of this chapter is to explain the XML services provided by itools,
which can be found in the sub-package itools.xml.

21.1 The parser

The first layer is the event driven parser implemented by itools.xml.parser,
which is a wrapper around the expat1 parser.

With expat you need a function for every event you want to manage, so for
example, if you want to deal just with elements, comments and text nodes, you
will need four functions (the start element, end element, comment and character
data handlers), plus the main function that sets up the parser. State is typically
shared across event handlers through instance variables. The expat approach
makes it relatively hard to follow the program flow.

With itools.xml.parser all the code is within a single function, and state
is stored in local variables. Let’s see a dummy example:

from itools.xml import parser

for event, value, line_number in parser.parse(data):

if event == parser.START_ELEMENT:

namespace, local_name, attributes = value

print ’START ELEMENT:’, local_name

elif event == parser.END_ELEMENT:

namespace, local_name = value

print ’END ELEMENT:’, local_name

elif event == parser.TEXT:

print ’TEXT’, value

The example above just prints a message to standard output each time the
start of an element, the end of an element or a text node is found.

1http://expat.sourceforge.net/

103

104 CHAPTER 21. EXTENSIBLE MARKUP LANGUAGE (XML)

The parser returns a list of events, where every event is a tuple of three
values: the event type, the value (which depends on the event type) and the
line number. The events implemented are:

Event Value
DOCUMENT TYPE (name, system id, public id, has internal subset)
START ELEMENT (namespace uri, local name, attributes)
END ELEMENT (namespace uri, local name)
COMMENT value
TEXT value
NAMESPACE namespace uri

For the START ELEMENT event, the attributes are passed as a dictionary where
the key is a tuple of the namespace URI and the local name of the attribute,
and the value is the value of the attribute. For example:

{(’http://www.w3.org/1999/xhtml’, ’src’): <itools.uri.generic.Reference>,

(’http://www.w3.org/1999/xhtml’, ’title’): u’Google’}

Note that the attribute value may not be an string, as the example above
illustrates. Within itools.xml we use namespaces not only to check correctness
of the XML document, but also to de-serialize values and build a higher level
data structure.

Note also that the parser does not returns the prefixes used within the docu-
ment, and there is not an event for the XML declaration either. We consider this
data to be internal to the document, it does not reveal any information about
the document’s logical structure, hence it is not valuable for our purposes.

21.2 Namespaces

From the table above you can see itools.xml provides support for XML names-
paces. The event values for elements and attributes are tuples, where the first
two components are the namespace uri and the prefix. If an element or attribute
is not attached to a namespace, the uri and the prefix will be None.

The module itools.xml.namespaces provides a registry for namespace han-
dlers, and an abstract class which defines the programming interface and pro-
vides a default behaviour for subclasses. The table below defines this program-
ming interface:

class uri
- The uri that uniquely identifies this namespace.

class prefix
- The recommended prefix for the namespace. For example “dc”
for Dublin Core. By default it is None.

get element schema(name)
- Returns the schema for the given element name.

get attribute schema(name)
- Returns the schema for the given attribute name.

21.3. DOCUMENTS 105

The schema is a dictionary whose keys and values are somewhat arbitrary,
they will depend on what you need. Though, it usually includes the type of the
attribute or element, which is used to deserialize and serialize the values. For
example, consider a link within an XHTML document, like:

The href attribute should be loaded as a URI reference, and title should
be a unicode string. The excerpt below will do the job:

from itools.xml import parser, namespaces

from itools import xhtml

for event, value, line_number in parser.parse(data):

if event == parser.ATTRIBUTE:

namespace_uri, prefix, local_name, value = value

namespace = namespaces.get_namespace(namespace_uri)

schema = namespace.get_attribute_schema(local_name)

value = schema[’type’].decode(value)

print local_name, schema[’type’]

print repr(value)

print

The output when running this code is:

href <class ’itools.handlers.IO.URI’>

<itools.uri.generic.Reference object at 0xb7a8c8ac>

title <class ’itools.handlers.IO.Unicode’>

u’Example’

For examples about how to define your own namespace handlers see the
Dublin Core (itools.xml.DublinCore) and XHTML (itools.xhtml.XHTML)
implementations.

21.3 Documents

If itools.xml.parser provides an event driven parser, whose function is similar
to SAX2, we do have too an equivalent for DOM3. And of course it takes the
form of a resource handler.

The handler class itools.xml.XML.Document loads the document into mem-
ory as a tree of nodes, with some global attributes. Let’s inspect an example:

>>> from itools.handlers import get_handler

>>> import itools.xml

>>>

>>> doc = get_handler(’examples/chapter8/hello.xml’)

>>> doc

<itools.xml.XML.Document object at 0x4064466c>

>>> print doc.xml_version

2http://XXX
3http://XXX

106 CHAPTER 21. EXTENSIBLE MARKUP LANGUAGE (XML)

1.0

>>> print doc.standalone

-1

>>> print doc.document_type

None

>>> print doc.root_element

<itools.xml.XML.Element object at 0xb7a3272c>

The code above shows the four attributes that keep the document’s state:

xml version
- The XML version of the document, usually it is 1.0.

standalone
- Possible values are: 1 if the document was declared standalone,
0 if it was declared not to be standalone, or -1 if the standalone
clause was omitted.

document type
- If the document lacks a document type declaration this attribute
will be None. If the document type was specified this attribute will
be a tuple with four values: the name, the system id, the public id
and a boolean that tells wether the document contains an internal
declaration subset.

root element
- An instance of the XML.Element class, the root of the DOM-like
tree that represents the XML data, and that we will study later
with more detail.

The API for the documents is rather simple:

get root element()
- Returns the root element.

traverse()
- A generator that traverses the XML tree in pre-order, and returns
each time a node. It is a shorthand for root element.traverse().

traverse2()
- A more powerful version of traverse. It is a shorthand for
root element.traverse2().

21.3.1 Inspecting the tree

Coming back to the example, the examples/hello.xml file’s content is:

<?xml version="1.0" encoding="UTF-8"?>

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

<title>Hello world</title>

<!-- Changed by: , 02-Jun-2004 -->

</head>

<body>

21.3. DOCUMENTS 107

</body>

</html>

The method traverse lets us to easily inspect the tree nodes:

>>> for node in doc.traverse():

... print repr(node)

...

<itools.xml.XML.Element object at 0xb7a3316c>

u’\n ’

<itools.xml.XML.Element object at 0xb7a331ac>

u’\n ’

<itools.xml.XML.Element object at 0xb7a332ac>

u’\n ’

<itools.xml.XML.Element object at 0xb7a331ec>

u’Hello world’

u’\n ’

<itools.xml.XML.Comment object at 0xb7a335cc>

u’\n ’

u’\n ’

<itools.xml.XML.Element object at 0xb798574c>

u’\n ’

u’\n’

Here we see the three kind of nodes currently supported: elements, comments
and text nodes.

21.3.2 Elements

Of the three kinds of nodes, elements are the most important and complex.
Element nodes give the tree structure, as they are the only ones that may have
children. If you inspect an element you will see the following attributes:

namespace
- The XML namespace of the element (it will be None for a bare
element).

prefix
- The prefix used for the element’s XML namespace.

name
- The name of the element.

attributes
- A dictionary mapping from the tuple XML namespace and local
name to the attributes value.

prefixes
- A mapping from XML namespace to prefix (used to get the qual-
ified name of an attribute).

children
- A list with the children of the element (elements, comments and
text nodes).

And here is the API:

108 CHAPTER 21. EXTENSIBLE MARKUP LANGUAGE (XML)

get qname()
- Returns the qualified name of the element.

copy()
- Returns a clone of the element.

set attribute(namespace, local name, value, prefix=None)
- Sets the given attribute.

get attribute(namespace, local name)
- Returns the attribute value for the given XML namespace and
local name.

has attribute(namespace, local name)
- Returns a boolean value, true if the element contains a value for
the given XML namespace and local name, false otherwise.

get attributes() - Is a generator that returns a three value tuple
each time, the values are: XML namespace uri, local name, value.

get attribute qname(namespace, local name)
- Returns the qualified name for the given XML namespace and
local name.

set element(element)
- Appends the given element to the list of children.

set comment(comment)
- Appends the given comment to the list of children.

set text(text)
- Appends the given text node (a unicode value) to the list of
children.

get elements(name=None)
- Returns a list with all the element nodes whose name is the given
name; if the parameter name is not given, then return all the ele-
ment nodes.

traverse()
- A generator that traverses the element’s children in pre-order,
and returns each time a node.

traverse2()
- A more powerful version of traverse.

Appendix A

Coding style guide

This chapter describes the coding conventions used to write itools. If you ever
contribute a patch to itools, be sure your code adheres to these rules.

Sometimes this guide contradicts the PEP 81 recommendations; in these
cases this guide applies, in the context of itools.

A.1 Language and encoding

Code must be written in english. The preferred encoding is UTF-8, though
others encodings are allowed.

A.2 Module structure

Each module is splitted in six sections:

1. encoding statement;

2. copyright notice;

3. license reference;

4. the module documentation string;

5. import statements;

6. the code itself.

Here we are going to describe the module’s header, made up of the first five
sections. The style for the code itself will described in the rest of this chapter.

The encoding

It is only requiered if it is any other encoding than ASCII. Example:

-*- coding: UTF-8 -*-

1http://www.python.org/peps/pep-0008.html

109

110 APPENDIX A. CODING STYLE GUIDE

The Copyright

After the encoding comes the copyright, whose structure is:

Copyright (C) <years> <author name> <email>

<years> <author name> <email>

...

The License

Right after the copyright statement comes a reference to the license. For itools
it is the LGPL.

The module’s documentation string

There should be a documentation string explaining what the module does
(though it is better to have none than a dummy one).

The explanation about how to write a documentation string is out of the
scope of this chapter, it is covered by the PEP 2572.

Imports

The imports statements are at the top of the file (just after the legal statements
and the module docstrings), though there may be imports within a function or
method to avoid circular references.

Imports should be grouped, with the order being:

1. standard library imports

2. itools imports

3. other package package imports

Every group should be preceded by an introductory comment, like:

Import from the Standard Library

...

Import from itools

...

A.2.1 Example

For example, at the time of this writting the module itools.handlers.Handler
starts by:

-*- coding: ISO-8859-1 -*-

Copyright (C) 2003-2004 Juan David Ibá~nez Palomar <jdavid@itaapy.com>

#

This library is free software; you can redistribute it and/or

modify it under the terms of the GNU Lesser General Public

License as published by the Free Software Foundation; either

version 2.1 of the License, or (at your option) any later version.

2http://www.python.org/peps/pep-0257.html

A.3. FORMAT RULES 111

#

This library is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

Lesser General Public License for more details.

#

You should have received a copy of the GNU Lesser General Public

License along with this library; if not, write to the Free Software

Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA

"""

This module provides the abstract class which is the root in the

handler class hierarchy.

"""

Import from the Standard Library

import datetime

Import from itools

from itools import uri

from itools.resources import base

A.3 Format rules

Indentation: 4 spaces

Each indentation level must have four (4) spaces. Never use tabs.

Maximum line length: 80 characters

Lines should be 80 characters wide at most.
The preferred way of wrapping long lines is by using Python’s implied line

continuation inside parentheses, brackets and braces. If necessary, you can add
an extra pair of parentheses around an expression, but usually using a backslash
looks better. Make sure to indent the continued line appropriately.

One line, one statement

Don’t put more than one statement on the same line:

Good Bad
1 if x is True: if x is True: do something()

do something()

2 do one() do one(); do two(); do three()
do two()
do three()

3 def get area(x, y): def get area(x, y): return x * y
return x * y

112 APPENDIX A. CODING STYLE GUIDE

Blank lines

Separate classes with three blank lines. Separate methods and functions with
two blank lines. There is also a blank line between the class definition and the
first method definition.

Use blank lines in functions, sparingly, to indicate logical sections.

Whitespace in expressions and statements

Surround operators with one white space. Arithmetics operators may be the
exception, for them it is possible to use either one space or none, whatever reads
better. But never use more than one space.

Well, there is another exception, the sign “=” used in keyword arguments
should not be surrounded by spaces. Type Document(title="hello") instead
of Document(title = "hello").

Never add spaces neither before nor after parentheses, brackets or braces.
The only exception is for list comprehensions, where it is allowed to add a space
after the opening bracket, and another space before the closing bracket.

The comma and colon must be followed by a space (or a new line), but
never put a space before. The only exception is for one element tuples, where the
comma must be immediately followed by the closing parentheses. The semicolon
should never be used.

A.4 Comments

Comments must describe the code that follows them, and must be indented to
the same level of that code. Inline comments are not allowed; this is to say, a
comment always starts a new line.

A comment starts by a single # character followed by a space.
Comments must be written in good english (as good as the developer can

write it). This means, for example, that the first letter must be capitalized.

A.5 Naming conventions

The names of variables, classes, functions, methods and constants are written
with one or more english words. Most of the words used are nouns, verbs, and
adjectives.

Abbreviations may be used, but in general it is preferred the complete word,
for example, language instead of lang. When an abbreviation is not obvious,
its meaning should be explained with a comment.

The allowed naming conventions are three:

lower case with underscores All words are in lowercase and separated by an
underscore. This convention is used for variables, functions and methods.

UPPER CASE WITH UNDERSCORES All words are in uppercase and
separated by an underscore. Used only for constants.

CapitalizedWords All words start by an uppercase, with the rest of the word
in lowercase. Words are not separated by any character, the uppercase

A.5. NAMING CONVENTIONS 113

letters serve to visually distinguish when a new word starts. Used only for
classes.

A.5.1 Class names

Class names are written in capitalized words. Typically they are made of nouns
and/or adjectives.

A.5.2 Functions and methods

Functions and methods are written in lowercase with underscores.
They must start by a verb, and they should be followed by a complenent that

clearifies what the funciont does. For example, it is better to spell set object
than just set.

A.5.3 Variables

Variables are written in lowercase with underscores. Most of the time they are
nouns with or without adjectives.

One letter variables may be used in mathematical expressions, for sequence
indexes, or in comprehensive lists:

>>> public_handlers = [x for x in handlers if x.state == ’public’]

A.5.4 Constants

Constants are written in uppercase with underscores.

114 APPENDIX A. CODING STYLE GUIDE

Appendix B

GNU arch

A control version system is a tool that keeps track of changes made in the code,
when a change was made, by whom. It helps multiple developers to work on
the same project, to merge the different changes they made in the same code
base.

GNU arch1 (also known as tla) is a modern and advanced control version
system. It is the one we use to manage the itools source code.

There are many ways to work with tla, this appendix explains the one we
use for itools.

The exposition is organized in three sections that detail:

1. How to keep track of the development of itools.

2. How to maintain private changes.

3. How to contribute your changes back to the main development tree.

B.1 Keeping track of itools

You may want to have the last bleeding edge features from itools in your
system as soon as they are written, or to track how the development is going
on. Then this section is for you.

B.1.1 Browsing the sources

To browse the itools archive tree through the web, just go the url below:

http://in-girum.net/cgi-bin/archzoom.cgi/jdavid@itaapy.com--public

B.1.2 Check out

To check out itools from the archive you need to install tla. Most distributions
include it, for example, if you use Gentoo2 just type:

$ sudo emerge tla

Once tla is installed, follow the steps described below.
1http://www.gnu.org/software/gnu-arch/
2http://www.gentoo.org

115

116 APPENDIX B. GNU ARCH

Set your id

$ tla my-id "Toto Bonaparte <toto@example.com>"

$ tla my-id

Toto Bonaparte <toto@example.com>

Register the official itools archive

$ tla register-archive jdavid@itaapy.com--public \

http://in-girum.net/~jdavid/archives/public

$ tla archives

jdavid@itaapy.com--public

http://in-girum.net/~jdavid/archives/public

Check out itools

$ cd ~/sandboxes

$ tla get jdavid@itaapy.com--public/itools--main--0.6 itools-0.6

$ cd itools-0.6

$ tla tree-version

jdavid@itaapy.com--public/itools--main--0.6

B.1.3 A session with tla and itools

Now, whenever you want to see if something has changed in itools, just type:

$ cd ~/sandboxes/itools-0.6

$ tla missing --summary

patch-80

use Python’s documentation to profile the catalog

patch-81

fix XML error handling (hence better STL message errors)

The output shows the new patches available (if your code is up-to-date the
output will be empty). Say you want to apply the patches, type:

$ tla update

[...]

B.1.4 Help

The Table B.1 summarizes the tla commands seen in this section. To learn
about other commands use tla help, and for details about a command type:

$ tla <command> --help

B.2 Maintaining private changes

Now maybe you want to make some changes to itools. The wisest to do in
this situation is to create a branch of itools, this will let you to easily update
to the last version while keeping your changes.

The first step is to setup an archive (if you have already one you can skip to
the next subsection).

B.2. MAINTAINING PRIVATE CHANGES 117

tla my-id
- Print or change your id.

tla register-archive
- Change an archive location registration.

tla archives
- Report registered archives and their locations.

tla get
- Construct a project tree for a revision.

tla tree-version
- Print the default version for a project tree.

tla missing
- Print patches missing from a project tree.

tla update
- Update a project tree to reflect recent archived changes.

tla help
- Provide help with arch.

Table B.1: Basic tla commands

B.2.1 Create an archive

$ mkdir ~/{archives}

$ mkdir ~/{archives}/public

$ tla make-archive toto@example.com--public ~/{archives}/public

$ tla archives

jdavid@itaapy.com--public

http://in-girum.net/~jdavid/archives/public

toto@example.com--public

/home/toto/{archives}/public

Make it your default archive:

$ tla my-default-archive toto@example.com--public

$ tla my-default-archive

toto@example.com--public

B.2.2 Create a branch

With your own archive, it is time to create a branch of itools:

$ tla tag -S jdavid@itaapy.com--public/itools--main--0.6 itools--toto--0.6

* creating category toto@example.com--public/itools

* creating branch toto@example.com--public/itools--toto

* creating version toto@example.com--public/itools--toto--0.6

* Archive caching revision

So now you can replace the check-out from the main tree with a one from
your own branch:

118 APPENDIX B. GNU ARCH

$ cd ~/sandboxes

$ rm -rf itools-0.6

$ tla get toto@example.com--public/itools--toto--0.6 itools-0.6

$ cd itools-0.6

$ tla tree-version

toto@example.com--public/itools--toto--0.6

B.2.3 Working with your branch

So, now you modify itools to add a new feature. Every change made to a
file will be automatically detected by tla, but if your work includes new files or
directories, or you have removed, renamed or moved a file or a directory, then
you must tell tla about these changes, to do so use the commands below:

$ tla add <filename>

[...]

$ tla delete <filename>

[...]

$ tla move <old filename> <new filename>

[...]

Maybe you forgot to add a file, before committing is a very good idea to
verify it with the command tree-lint:

$ tla tree-lint

[...]

This command looks at your project tree and tells you about files suspected
to be source code that have non been added yet.

Ok, so you have finished working on this new cool feature and are willing to
check it in your branch of itools. First, verify what you have changed:

$ tla changes

[...]

This command shows which files (and folders) have been modified, removed,
added or moved. For a more detailed description, try:

$ tla changes --diffs | less

Take your time to examine the changes, maybe you forgot to remove a print
statement? a close look at the output of tla changes --diffs will tell you.

Once you are sure everything is alright, it came the time to commit. First
you have to write a log message:

$ vi ‘tla make-log‘

Within the editor, you should introduce a title that describes the changes
you have done, and optionally a longer description. Once you are done, left the
editor and type:

$ tla commit

$ tla revisions

[...]

patch-1

add feature XXX

B.3. CONTRIBUTING YOUR WORK TO THE MAIN TREE 119

B.2.4 Merging from the main branch

Ok, so now the upstream version of itools is modified, how to merge the
changes in your tree? easy:

$ cd ~/sandboxes/itools-0.6

$ tla star-merge -t jdavid@itaapy.com--public/itools--main--0.6

[...]

Beware, there may be conflicts that you must resolve.
Now, your project tree contains the changes from the upstream archive, you

must commit them in your own archive. The log is written automatically by
typing:

$ tla log-for-merge >> ‘tla make-log‘

$ vi ‘tla make-log‘

Within the editor there will be a description detailing the patchs that have
been applied. So you just have to add the subject, something like “merging
from the main tree”. Once this is done just commit as usual:

$ tla commit

Summary

See the Table B.2 for a summary of the tla commands seen in this section.

B.3 Contributing your work to the main tree

To contribute your changes back to the main development branch you must
make your branch available through internet. We assume the archive you have
set-up is your local computer, so you have to create a mirror of your archive
from your local computer to an internet server:

$ tla make-archive --listing --mirror toto@example.com--public \

sftp://example.com/home/toto/{archives}/public

You must be sure your mirror can be accessed through an internet protocol,
like HTTP or FTP. So other developers will be able to merge from your branch.

Now, whenever you make and commit a change, to share that change with
the community, you have to synchronize your mirror:

$ tla archive-mirror

[...]

See the Table B.3 for a summary of the commands seen in this section.

120 APPENDIX B. GNU ARCH

tla make-archive
- Create a new archive directory.

tla my-default-archive
- Print or change your default archive.

tla tag
- Create a continuation revision (aka tag or branch).

tla add
- Add an explicit inventory id.

tla delete
- Remove an explicit inventory id.

tla move
- Move an explicit inventory id.

tla tree-lint
- Audit a source tree.

tla changes
- Report about local changes in a project tree.

tla make-log
- Initialize a new log file entry.

tla commit
- Archive a changeset-based revision.

tla revisions
- List the revisions in an archive version.

tla star-merge
- Merge mutually merged branches.

tla log-for-merge
- Generate a log entry body for a merge.

Table B.2: Maintaining private changes: summary

tla archive-mirror
- Update an archive mirror.

Table B.3: Maintaining private changes: summary

Index

CSV, 31

URI, 87

121

