

Intel® Threading Building Blocks

Tutorial

Document Number US

World Wide Web: http://www.intel.com

Intel® Threading Building Blocks

ii 2US

Legal Information

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR
IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT
AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY
WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL
PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY,
OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY
APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR
DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the
absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future
definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The
information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to
deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained
by calling 1-800-548-4725, or by visiting Intel's Web Site.

Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor
family, not across different processor families. See http://www.intel.com/products/processor_number for details.

BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino Atom, Centrino Atom Inside, Centrino Inside, Centrino logo, Core
Inside, FlashFile, i960, InstantIP, Intel, Intel logo, Intel386, Intel486, IntelDX2, IntelDX4, IntelSX2, Intel Atom, Intel Atom
Inside, Intel Core, Intel Inside, Intel Inside logo, Intel. Leap ahead., Intel. Leap ahead. logo, Intel NetBurst, Intel NetMerge, Intel
NetStructure, Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel Viiv, Intel vPro, Intel XScale, Itanium, Itanium Inside,
MCS, MMX, Oplus, OverDrive, PDCharm, Pentium, Pentium Inside, skoool, Sound Mark, The Journey Inside, Viiv Inside, vPro
Inside, VTune, Xeon, and Xeon Inside are trademarks of Intel Corporation in the U.S. and other countries.

* Other names and brands may be claimed as the property of others.

Copyright (C) 2005 - 2010, Intel Corporation. All rights reserved.

Revision History

Version Version Information Date

1.17 Revise chunking discussion. Revise examples to eliminate parameters
that are superfluous because task::spawn and task::destroy
are now static methods. Now have different directory structure. Update
pipeline section to use squaring example. Update pipeline example to
use strongly-typed parallel_pipeline interface.

2010-Apr-4

1.16 Remove section about lazy copying. 2009-Nov-23

1.15 Remove mention of task depth attribute. Revise chapter on tasks. Step
parameter for parallel_for is now optional.

2009-Aug-28

1.14 Type atomic<T> now allows T to be an enumeration type. Clarify zero-
initialization of atomic<T>. Default partitioner changed from
simple_partitioner to auto_partitioner. Instance of
task_scheduler_init is optional. Discuss cancellation and exception
handling. Describe tbb_hash_compare and tbb_hasher.

2009-Jun-25

http://www.intel.com/

Introduction

Tutorial iii

Contents

1 Introduction ...1
1.1 Document Structure ...1
1.2 Benefits ..1

2 Package Contents ...3
2.1 Debug Versus Release Libraries ..3
2.2 Scalable Memory Allocator ...4
2.3 Windows* OS ..4

2.3.1 Microsoft Visual Studio* Code Examples6
2.3.2 Integration Plug-In for Microsoft Visual Studio* Projects6

2.4 Linux* OS ...8
2.5 Mac OS* X Systems..9
2.6 Open Source Version ..10

3 Parallelizing Simple Loops ..12
3.1 Initializing and Terminating the Library..12
3.2 parallel_for..13

3.2.1 Lambda Expressions ..14
3.2.2 Automatic Chunking ..16
3.2.3 Controlling Chunking ...16
3.2.4 Bandwidth and Cache Affinity..19
3.2.5 Partitioner Summary..20

3.3 parallel_reduce ..21
3.3.1 Advanced Example ..24

3.4 Advanced Topic: Other Kinds of Iteration Spaces26
3.4.1 Code Samples...26

4 Parallelizing Complex Loops..28
4.1 Cook Until Done: parallel_do..28

4.1.1 Code Sample ..29
4.2 Working on the Assembly Line: pipeline...29

4.2.1 Using Circular Buffers ..34
4.2.2 Throughput of pipeline ...35
4.2.3 Non-Linear Pipelines ..35

4.3 Summary of Loops and Pipelines ..36
5 Exceptions and Cancellation ...37

5.1 Cancellation Without An Exception ..38
5.2 Cancellation and Nested Parallelism ..39

6 Containers ...41
6.1 concurrent_hash_map ..41

6.1.1 More on HashCompare ...43
6.2 concurrent_vector ..45

6.2.1 Clearing is Not Concurrency Safe...46
6.3 Concurrent Queue Classes ...46

6.3.1 Iterating Over a Concurrent Queue for Debugging........................47
6.3.2 When Not to Use Queues..48

6.4 Summary of Containers...48

Intel® Threading Building Blocks

iv 2US

7 Mutual Exclusion...49
7.1.1 Mutex Flavors ...50
7.1.2 Reader Writer Mutexes...52
7.1.3 Upgrade/Downgrade..53
7.1.4 Lock Pathologies ...53

8 Atomic Operations ..55
8.1.1 Why atomic<T> Has No Constructors...57
8.1.2 Memory Consistency..57

9 Timing ..59
10 Memory Allocation...60

10.1 Which Dynamic Libraries to Use..61
10.2 Automically Replacing malloc and Other C/C++ Functions for Dynamic Memory

Allocation..61
10.2.1 Linux C/C++ Dynamic Memory Interface Replacement61
10.2.2 Windows C/C++ Dynamic Memory Interface Replacement.............62

11 The Task Scheduler ...64
11.1 Task-Based Programming..64
11.2 When Task-Based Programming Is Inappropriate65
11.3 Simple Example: Fibonacci Numbers ...66
11.4 How Task Scheduling Works ..68
11.5 Useful Task Techniques ...71

11.5.1 Recursive Chain Reaction ...71
11.5.2 Continuation Passing ...71
11.5.3 Scheduler Bypass ..73
11.5.4 Recycling ...74
11.5.5 Empty Tasks...76

11.6 General Acyclic Graphs of Tasks ...77
11.7 Task Scheduler Summary ..78

Appendix A Costs of Time Slicing ...80
Appendix B Mixing With Other Threading Packages...81
References 83

Introduction

Tutorial 1

1 Introduction
This tutorial teaches you how to use Intel® Threading Building Blocks (Intel® TBB), a
library that helps you leverage multi-core performance without having to be a
threading expert. The subject may seem daunting at first, but usually you only need
to know a few key points to improve your code for multi-core processors. For
example, you can successfully thread some programs by reading only up to Section
 3.4 of this document. As your expertise grows, you may want to dive into more
complex subjects that are covered in advanced sections.

1.1 Document Structure
This tutorial is organized to cover the high-level features first, then the low-level
features, and finally the mid-level task scheduler. This tutorial contains the following
sections:

Table 1 Document Organization

Section Description

Chapter 1 Introduces the document.

Chapter 2 Describes how to install the library.

Chapters 2.6-
4

Describe templates for parallel loops.

Chapter 5 Describes exception handling and cancellation.

Chapter 6 Describes templates for concurrent containers.

Chapters 7- 10 Describes low-level features for mutual exclusion, atomic operations, timing,
and memory allocation.

Chapter 11 Explains the task scheduler.

1.2 Benefits
There are a variety of approaches to parallel programming, ranging from using
platform-dependent threading primitives to exotic new languages. The advantage of
Intel® Threading Building Blocks is that it works at a higher level than raw threads,
yet does not require exotic languages or compilers. You can use it with any compiler
supporting ISO C++. The library differs from typical threading packages in the
following ways:

Intel® Threading Building Blocks

2 2US

• Intel® Threading Building Blocks enables you to specify logical paralleism
instead of threads. Most threading packages require you to specify threads.
Programming directly in terms of threads can be tedious and lead to inefficient
programs, because threads are low-level, heavy constructs that are close to the
hardware. Direct programming with threads forces you to efficiently map logical
tasks onto threads. In contrast, the Intel® Threading Building Blocks run-time
library automatically maps logical parallelism onto threads in a way that makes
efficient use of processor resources.

• Intel® Threading Building Blocks targets threading for performance. Most
general-purpose threading packages support many different kinds of threading,
such as threading for asynchronous events in graphical user interfaces. As a
result, general-purpose packages tend to be low-level tools that provide a
foundation, not a solution. Instead, Intel® Threading Building Blocks focuses on
the particular goal of parallelizing computationally intensive work, delivering
higher-level, simpler solutions.

• Intel® Threading Building Blocks is compatible with other threading
packages. Because the library is not designed to address all threading problems,
it can coexist seamlessly with other threading packages.

• Intel® Threading Building Blocks emphasizes scalable, data parallel
programming. Breaking a program up into separate functional blocks, and
assigning a separate thread to each block is a solution that typically does not scale
well since typically the number of functional blocks is fixed. In contrast, Intel®
Threading Building Blocks emphasizes data-parallel programming, enabling
multiple threads to work on different parts of a collection. Data-parallel
programming scales well to larger numbers of processors by dividing the collection
into smaller pieces. With data-parallel programming, program performance
increases as you add processors.

• Intel® Threading Building Blocks relies on generic programming.
Traditional libraries specify interfaces in terms of specific types or base classes.
Instead, Intel® Threading Building Blocks uses generic programming. The essence
of generic programming is writing the best possible algorithms with the fewest
constraints. The C++ Standard Template Library (STL) is a good example of
generic programming in which the interfaces are specified by requirements on
types. For example, C++ STL has a template function sort that sorts a sequence
abstractly defined in terms of iterators on the sequence. The requirements on the
iterators are:

• Provide random access

• The expression *i<*j is true if the item pointed to by iterator i should
precede the item pointed to by iterator j, and false otherwise.

• The expression swap(*i,*j) swaps two elements.

Specification in terms of requirements on types enables the template to sort many
different representations of sequences, such as vectors and deques. Similarly, the
Intel® Threading Building Blocks templates specify requirements on types, not
particular types, and thus adapt to different data representations. Generic
programming enables Intel® Threading Building Blocks to deliver high performance
algorithms with broad applicability.

Package Contents

Tutorial 3

2 Package Contents
Intel® Threading Building Blocks (Intel® TBB) includes dynamic shared library files,
header files, and code examples for Windows*, Linux*, and Mac OS* X operating
systems that you can compile and run as described in this chapter.

2.1 Debug Versus Release Libraries
Intel® TBB includes dynamic shared libraries that come in debug and release
versions, as described in Table 2.

Table 2: Dynamic Shared Libraries Included in Intel® Threading Building Blocks

Library

(*.dll, lib*.so, or
lib*.dylib)

Description When to Use

tbb_debug

tbbmalloc_debug

tbbmalloc_proxy_debug

These versions have extensive
internal checking for correct
use of the library.

Use with code that is
compiled with the macro
TBB_USE_DEBUG set to 1.

tbb

tbbmalloc

tbbmalloc_proxy

These versions deliver top
performance. They eliminate
most checking for correct use
of the library.

Use with code compiled with
TBB_USE_DEBUG undefined
or set to zero.

TIP: Test your programs with the debug versions of the libraries first, to assure that you
are using the library correctly. With the release versions, incorrect usage may result
in unpredictable program behavior.

Intel® TBB supports Intel® Parallel Inspector and Intel® Parallel Amplifier. Full
support of these tools requires compiling with macro TBB_USE_THREADING_TOOLS=1.
That symbol defaults to 1 in the following conditions:

• When TBB_USE_DEBUG=1.

• On the Microsoft Windows* operating system, when _DEBUG=1.

The Intel® Threading Building Blocks Reference manual explains the default values in
more detail.

CAUTION: The instrumentation support for Intel® Parallel Inspector becomes live after the first
initialization of the task library (3.1). If the library components are used before this

Intel® Threading Building Blocks

4 2US

initialization occurs, Intel® Parallel Inspector may falsely report race conditions that
are not really races.

2.2 Scalable Memory Allocator
Both the debug and release versions of Intel® Threading Building Blocks (Intel® TBB)
consists of two dynamic shared libraries, one with general support and the other with
a scalable memory allocator. The latter is distinguished by malloc in its name. For
example, the release versions for Windows* OS are tbb.dll and tbbmalloc.dll
respectively. Applications may choose to use only the general library, or only the
scalable memory allocator, or both. Section 10.1 describes which parts of Intel® TBB
depend upon which libraries. For Windows* OS and Linux* OS, Intel® TBB provides a
third optional shared library that substitutes memory management routines, as
described in Section 10.2.

2.3 Windows* OS
The installation location for Windows* operating systems depends upon the installer.
This section uses <install-dir> to indicate the top-level installation directory. Table 3
describes the subdirectory structure for Windows*OS, relative to <install-dir>.

Table 3: Intel® Threading Building Blocks Subdirectories on Windows OS

Item Location Environment
Variable

Include files include\tbb*.h INCLUDE

.lib files lib\<arch>\vc<vcversion>\<lib><variant>.lib LIB

.dll files bin\<arch>\vc<vcversion>\<lib><variant>.dll

where:

<arch> Processor

ia32 Intel® IA-32 processors

intel64 Intel® 64 architecture processors

<vcversion> Environment

8 Microsoft Visual Studio* 2005

9 Microsoft Visual Studio* 2008

10 Microsoft Visual Studio* 2010

_mt Independent of Microsoft Visual
Studio* version.

PATH

Package Contents

Tutorial 5

Item Location Environment
Variable

<lib> Version

tbb General library

tbbmalloc Memory allocator

tbbmalloc_proxy Substitution for default
memory allocator

<variant> Version

(none) Release version

_debug Debug version

.pdb files Same as corresponding .dll file.

Examples examples\<class>*\.

Microsoft Visual
Studio Solution
File for
Example

examples\<class>*\msvs*<compiler>.sln

where:

class describes the class being demonstrated.

<compiler> Version

cl Microsoft* Visual C++*

icl Intel® C++ Compiler

The last column shows which environment variables are used by the Microsoft or Intel
compilers to find these subdirectories.

CAUTION: Ensure that the relevant product directories are mentioned by the environment
variables; otherwise the compiler might not find the required files.

CAUTION: Windows* OS run-time libraries come in thread-safe and thread-unsafe forms. Using
non-thread-safe versions with Intel® TBB may cause undefined results. When using
Intel® TBB, be sure to link with the thread-safe versions. Table 4 shows the required
options when using cl or icl:

Intel® Threading Building Blocks

6 2US

Table 4: Compiler Options for Linking with Thread-safe Versions of C/C++ Run-time

Option Linking Version of Windows* OS Run-Time Library

/MDd dynamic

/MTd static
Debug version of thread-safe run-time library

/MD dynamic

/MT static
Release version of thread-safe run-time library

Not using one of these options causes Intel® TBB to report an error during
compilation. In all cases, linking to the Intel® TBB library is dynamic.

2.3.1 Microsoft Visual Studio* Code Examples

The solution files in the package are for Microsoft Visual Studio* 2005. Later versions
of Microsoft* Visual Studio can convert them. Each example has two solution files, one
for the Microsoft compiler (*_cl.sln) and one for the Intel compiler (*_icl.sln).

To run one of the solution files in examples**\msvs\.:

1. Start Microsoft Visual Studio*.

2. Open a solution file in the msvs directory.

3. In Microsoft Visual Studio*, press Ctrl-F5 to compile and run the example. Use
Ctrl-F5, not Shift-F5, so that you can inspect the console window after the
example finishes.

The Microsoft Visual Studio* solution files for the examples require that an
environment variable specify where the library is installed. The installer sets this
variable.

The makefiles for the examples require that INCLUDE, LIB, and PATH be set as
indicated in Table 3. The recommended way to set INCLUDE, LIB, and PATH is to do

one of the following:

TIP: Check the Register environment variables box when running the installer.

Otherwise, go to the library's <arch>\vc<vcversion>\bin\ directory and run the
batch file tbbvars.bat from there, where <arch> and <vcversion> are described in

Table 3.

2.3.2 Integration Plug-In for Microsoft Visual Studio* Projects
The plug-in simplifies integration of Intel® TBB into Microsoft Visual Studio* projects. It can
be downloaded from http://threadingbuildingblocks.org > Downloads > Extras. The
plug-in enables you to quickly add the following to Microsoft Visual C++* projects:

 The path to the Intel® TBB header files

Package Contents

Tutorial 7

 The path to the Intel® TBB libraries

 The specific Intel® TBB libraries to link with

 The specific Intel® TBB settings

The plug-in works with C++ projects created in Microsoft Visual Studio* 2003, 2005
and 2008 (except Express editions).

To use this functionality unzip the downloaded package msvs_plugin.zip, open it,
and follow the instructions in README.txt to install it.

Intel® Threading Building Blocks

8 2US

2.4 Linux* OS
On Linux* operating systems, the default installation location is
/opt/intel/tbb/<version>/. Table 5 describes the subdirectories.

Table 5: Intel® Threading Building Blocks Subdirectories on Linux* Systems

Item Location Environment
Variable

Include files include/tbb/*.h CPATH

Shared
libraries

lib/<arch>/cc<gccversion>_libc<glibcversion>_kernel<k
ernelversion>/lib<lib><variant>.so

where

<arch> Processor

ia32 Intel® IA-32 processors

intel64 Intel® 64 architecture processors

ia64 Intel® IA-64 architecture
(Itanium®) processors

<*version>
strings

Linux configuration

<gccversion> gcc* version number

<glibcversion> glibc.so version number

<kernelversion> Linux kernel version number

<lib> Version

tbb General library

tbbmalloc Memory allocator

tbbmalloc_proxy Substitution for default memory
allocator

<variant> Version

(none) Release version

_debug Debug version

LIBRARY_PATH

LD_LIBRARY_PATH

Examples examples/<class>/*/.

Package Contents

Tutorial 9

Item Location Environment
Variable

GNU Makefile
for example

examples/<class>/*/Makefile

where class describes the class being demonstrated.

2.5 Mac OS* X Systems
For Mac OS* X operating systems, the default installation location for the library is
/Library/Frameworks/Intel_TBB.framework/Versions/<version>/. Table 6

describes the subdirectories.

Table 6: Intel® Threading Building Blocks Subdirectories on Mac OS* X Systems

Item Location Environment
Variable

Include files include/tbb/*.h CPATH

Shared libraries lib/ia32/cc<gccversion>_os<osversion>/
<lib><variant>.dylib

where:

<*version>
string

Mac OS/X configuration

<gccversion> gcc version number

<osversion> Mac OS* X version number

<lib> Version

libtbb General library

libtbbmalloc Memory allocator

<variant> Version

(none) Release version

_debug Debug version

LIBRARY_PATH

DYLD_LIBRARY_PATH

Examples examples/<class>/*/.

GNU Makefile
for example

examples/<class>/*/Makefile

where class describes the class being demonstrated.

Xcode* Project examples/<class>/*/xcode/

Intel® Threading Building Blocks

10 2US

2.6 Open Source Version
Table 8 describes typical subdirectories of an open source version of the library.

Table 7: Typical Intel® Threading Building Blocks Subdirectories in Open Source
Release

Include files include/tbb/*.h

Source files src/

Documentation doc/

Environment
scripts

bin/*.{sh,csh,bat}

Binaries lib/<arch>/<version>/<lib><variant>.{lib,so,dylib}

bin/<arch>/<version>/<lib><variant>.{dll,pdb}

where:

<arch> Processor

ia32 Intel® IA-32 processors

intel64 Intel® 64 architecture processors

<version> OS Environment

8, 9, _mt Microsoft
Windows*

See <vcversion>
in Table 3

cc<gccversion>_libc<gli
bcversion>_kernel<kern
elversion>

Linux* See Table 5.

cc<gccversion>_os<osv
ersion>

MacOS* See Table 6

<lib> Version

tbb General library

tbbmalloc Memory allocator

tbbmalloc_proxy Substitution for default
memory allocator

<variant> Version

(none) Release version

_debug Debug version

Package Contents

Tutorial 11

Examples examples\<class>*\.

Intel® Threading Building Blocks

12 2US

3 Parallelizing Simple Loops
The simplest form of scalable parallelism is a loop of iterations that can each run
simultaneously without interfering with each other. The following sections
demonstrate how to parallelize simple loops.

NOTE: Intel® Threading Building Blocks (Intel® TBB) components are defined in namespace
tbb. For brevity’s sake, the namespace is explicit in the first mention of a component,
but implicit afterwards.

When compiling Intel® TBB programs, be sure to link in the Intel® TBB shared
library, otherwise undefined references will occur. Table 8 shows compilation
commands that use the debug version of the library. Remove the “_debug” portion to
link against the production version of the library. Section 2.1 explains the difference.
See doc/Getting_Started.pdf for other command line possibilities. Section 10.1
describes when the memory allocator library should be linked in explicitly.

Table 8: Sample command lines for simple debug builds

Windows* OS icl /MD example.cpp tbb_debug.lib

Linux* OS icc example.cpp -ltbb_debug

Mac OS* X Systems icc example.cpp -ltbb_debug

3.1 Initializing and Terminating the Library
Intel® TBB 2.2 automatically initializes the task scheduler. The Reference document
(doc/Reference.pdf) describes how to use class task_scheduler_init to explicitly
initialize the task scheduler, which can be useful for doing any of the following:

o Control when the task scheduler is constructed and destroyed.

o Specify the number of threads used by the task scheduler.

o Specify the stack size for worker threads.

Parallelizing Simple Loops

Tutorial 13

3.2 parallel_for
Suppose you want to apply a function Foo to each element of an array, and it is safe
to process each element concurrently. Here is the sequential code to do this:
void SerialApplyFoo(float a[], size_t n) {
 for(size_t i=0; i!=n; ++i)
 Foo(a[i]);
}

The iteration space here is of type size_t, and goes from 0 to n−1. The template
function tbb::parallel_for breaks this iteration space into chunks, and runs each
chunk on a separate thread. The first step in parallelizing this loop is to convert the
loop body into a form that operates on a chunk. The form is an STL-style function
object, called the body object, in which operator() processes a chunk. The following
code declares the body object. The extra code required for Intel® Threading Building
Blocks is shown in blue.
#include "tbb/tbb.h"

using namespace tbb;

class ApplyFoo {
 float *const my_a;
public:
 void operator()(const blocked_range<size_t>& r) const {
 float *a = my_a;
 for(size_t i=r.begin(); i!=r.end(); ++i)
 Foo(a[i]);
 }
 ApplyFoo(float a[]) :
 my_a(a)
 {}
};

The using directive in the example enables you to use the library identifiers without
having to write out the namespace prefix tbb before each identifier. The rest of the
examples assume that such a using directive is present.

Note the argument to operator(). A blocked_range<T> is a template class provided
by the library. It describes a one-dimensional iteration space over type T. Class
parallel_for works with other kinds of iteration spaces too. The library provides
blocked_range2d for two-dimensional spaces. You can define your own spaces as
explained in section 3.4.

An instance of ApplyFoo needs member fields that remember all the local variables
that were defined outside the original loop but used inside it. Usually, the constructor
for the body object will initialize these fields, though parallel_for does not care how
the body object is created. Template function parallel_for requires that the body
object have a copy constructor, which is invoked to create a separate copy (or copies)
for each worker thread. It also invokes the destructor to destroy these copies. In most

Intel® Threading Building Blocks

14 2US

cases, the implicitly generated copy constructor and destructor work correctly. If they
do not, it is almost always the case (as usual in C++) that you must define both to be
consistent.

Because the body object might be copied, its operator() should not modify the body.

Otherwise the modification might or might not become visible to the thread that
invoked parallel_for, depending upon whether operator() is acting on the original
or a copy. As a reminder of this nuance, parallel_for requires that the body object's
operator() be declared const.

The example operator() loads my_a into a local variable a. Though not necessary,

there are two reasons for doing this in the example:

• Style. It makes the loop body look more like the original.

• Performance. Sometimes putting frequently accessed values into local variables
helps the compiler optimize the loop better, because local variables are often
easier for the compiler to track.

Once you have the loop body written as a body object, invoke the template function
parallel_for, as follows:

#include "tbb/tbb.h"

void ParallelApplyFoo(float a[], size_t n) {
 parallel_for(blocked_range<size_t>(0,n), ApplyFoo(a));
}

The blocked_range constructed here represents the entire iteration space from 0 to
n-1, which parallel_for divides into subspaces for each processor. The general form
of the constructor is blocked_range<T>(begin,end,grainsize). The T specifies the
value type. The arguments begin and end specify the iteration space STL-style as a
half-open interval [begin,end). The argument grainsize is explained in Section 3.2.3.

The example uses the default grainsize of 1 because by default parallel_for applies
a heuristic that works well with the default grainsize.

3.2.1 Lambda Expressions

Version 11.0 of the Intel® C++ Compiler implements C++0x lambda expressions,
which make TBB's parallel_for much easier to use. A lambda expression lets the
compiler do the tedious work of creating a function object.

Below is the example from the previous section, rewritten with a lambda expression.
The lambda expression, shown in blue ink, replaces both the declaration and
construction of function object ApplyFoo in the example of the previous section.
#include "tbb/tbb.h"

using namespace tbb;

#pragma warning(disable: 588)

Parallelizing Simple Loops

Tutorial 15

void ParallelApplyFoo(float* a, size_t n) {
 parallel_for(blocked_range<size_t>(0,n),
 [=](const blocked_range<size_t>& r) {
 for(size_t i=r.begin(); i!=r.end(); ++i)
 Foo(a[i]);
 }
);
}

The pragma turns off warnings from the Intel compiler about "use of a local type to
declare a function". The warning, which is for C++98, does not pertain to C++0x.

The [=] introduces the lambda expression. The expression creates a function object
very similar to ApplyFoo. When local variables like a and n are declared outside the
lambda expression, but used inside it, they are "captured" as fields inside the function
object. The [=] specifies that capture is by value. Writing [&] instead would capture
the values by reference. After the [=] is the parameter list and definition for the
operator() of the generated function object. The compiler documentation says more
about lambda expressions and other implemented C++0x features. It is worth reading
more complete descriptions of lambda expressions than can fit here, because lambda
expressions are a powerful feature for using template libraries in general.

C++0x support is off by default in the compiler. Table 9 shows the option for turning
it on.

Table 9: Sample Compilation Commands for Using Lambda Expressions

Environment Intel® C++ Compiler (Version 11.0)

Compilation Command and Option

Windows* systems icl /Qstd:c++0x foo.cpp

Linux* systems

Mac OS* X systems

icc -std=c++0x foo.cpp

For further compactness, TBB has a form of parallel_for expressly for parallel
looping over a consecutive range of integers. The expression
parallel_for(first,last,step,f) is like writing for(auto i=first; i<last; i+=step) f(i)
except that each f(i) can be evaluated in parallel if resources permit. The step
parameter is optional. Here is the previous example rewritten in the compact form:
#include "tbb/tbb.h"

using namespace tbb;

#pragma warning(disable: 588)

void ParallelApplyFoo(float a[], size_t n) {
 parallel_for(size_t(0), n, [=](size_t i) {Foo(a[i]);});
}

Intel® Threading Building Blocks

16 2US

The compact form supports only unidimensional iteration spaces of integers and the
automatic chunking feature detailed on the following section.

3.2.2 Automatic Chunking

A parallel loop construct incurs overhead cost for every chunk of work that it
schedules. Since version 2.2, Intel® TBB chooses chunk sizes automatically,
depending upon load balancing needs.1 The heuristic attempts to limit overheads
while still providing ample opportunities for load balancing.

CAUTION: Typically a loop needs to take at least a million clock cycles for parallel_for to
improve its performance. For example, a loop that takes at least 500 microseconds
on a 2 GHz processor might benefit from parallel_for.

The default automatic chunking is recommended for most uses. As with most
heuristics, however, there are situations where controlling the chunk size more
precisely might yield better performance, as explained in the next section.

3.2.3 Controlling Chunking

Chunking is controlled by a partitioner and a grainsize. To gain the most control over
chunking, you specify both.

• Specify simple_partitioner() as the third argument to parallel_for. Doing so
turns off automatic chunking.

• Specify the grainsize when constructing the range. The thread argument form of
the constructor is blocked_range<T>(begin,end,grainsize). The default value
of grainsize is 1. It is in units of loop iterations per chunk.

If the chunks are too small, the overhead may exceed the useful work.

The following code is the last example from Section 3.2, modified to use an explicit
grainsize G. Additions are colored blue.
#include "tbb/tbb.h"

void ParallelApplyFoo(float a[], size_t n) {
 parallel_for(blocked_range<size_t>(0,n,G), ApplyFoo(a),
 simple_partitioner());
}

The grainsize sets a minimum threshold for parallelization. The parallel_for in the
example invokes ApplyFoo::operator() on chunks, possibly of different sizes. Let

1 In Intel® TBB 2.1, the default was not automatic. Compile with
TBB_DEPRECATED=1 to get the old default behavior.

Parallelizing Simple Loops

Tutorial 17

chunksize be the number of iterations in a chunk. Using simple_partitioner
guarantees that ⎡G/2⎤ ≤ chunksize ≤ G.

There is also an intermediate level of control where you specify the grainsize for the
range, but use an auto_partitioner and affinity_partitioner. An
auto_partitioner is the default partitioner. Both partitioners implement the
automatic grainsize heuristic described in Section 3.2.2. An affinity_partitioner
implies an additional hint, as explained later in Section 3.2.4. Though these
partitioners may cause chunks to have more than G iterations, they never generate
chunks with less than ⎡G/2⎤ iterations. Specifying a range with an explicit grainsize
may occasionally be useful to prevent these partitioners from generating wastefully
small chunks if their heuristics fail.

Because of the impact of grainsize on parallel loops, it is worth reading the following
material even if you rely on auto_partitioner and affinity_partitioner to choose
the grainsize automatically.

Case A Case B

Figure 1: Packaging Overhead Versus Grainsize

Figure 1 illustrates the impact of grainsize by showing the useful work as the gray
area inside a brown border that represents overhead. Both Case A and Case B have
the same total gray area. Case A shows how too small a grainsize leads to a relatively
high proportion of overhead. Case B shows how a large grainsize reduces this
proportion, at the cost of reducing potential parallelism. The overhead as a fraction of
useful work depends upon the grainsize, not on the number of grains. Consider this
relationship and not the total number of iterations or number of processors when
setting a grainsize.

A rule of thumb is that grainsize iterations of operator() should take at least

100,000 clock cycles to execute. For example, if a single iteration takes 100 clocks,
then the grainsize needs to be at least 1000 iterations. When in doubt, do the

following experiment:

Intel® Threading Building Blocks

18 2US

1. Set the grainsize parameter higher than necessary. The grainsize is specified in
units of loop iterations. If you have no idea of how many clock cycles an iteration
might take, start with grainsize=100,000. The rationale is that each iteration
normally requires at least one clock per iteration. In most cases, step 3 will guide
you to a much smaller value.

2. Run your algorithm.

3. Iteratively halve the grainsize parameter and see how much the algorithm slows
down or speeds up as the value decreases.

A drawback of setting a grainsize too high is that it can reduce parallelism. For
example, if the grainsize is 1000 and the loop has 2000 iterations, the parallel_for

distributes the loop across only two processors, even if more are available. However,
if you are unsure, err on the side of being a little too high instead of a little too low,
because too low a value hurts serial performance, which in turns hurts parallel
performance if there is other parallelism available higher up in the call tree.

TIP: You do not have to set the grainsize too precisely.

Figure 2 shows the typical "bathtub curve" for execution time versus grainsize, based
on the floating point a[i]=b[i]*c computation over a million indices. There is little

work per iteration. The times were collected on a four-socket machine with eight
hardware threads.

1

10

100

1 10 100 1000 10000 100000 1000000

grainsize

tim
e

(m
ill

is
ec

on
ds

)

Figure 2: Wall Clock Time Versus Grainsize

The scale is logarithmic. The downward slope on the left side indicates that with a
grainsize of one, most of the overhead is parallel scheduling overhead, not useful
work. An increase in grainsize brings a proportional decrease in parallel overhead.
Then the curve flattens out because the parallel overhead becomes insignificant for a
sufficiently large grainsize. At the end on the right, the curve turns up because the
chunks are so large that there are fewer chunks than available hardware threads.
Notice that a grainsize over the wide range 100-100,000 works quite well.

Parallelizing Simple Loops

Tutorial 19

TIP: A general rule of thumb for parallelizing loop nests is to parallelize the outermost one
possible. The reason is that each iteration of an outer loop is likely to provide a bigger
grain of work than an iteration of an inner loop.

3.2.4 Bandwidth and Cache Affinity
For a sufficiently simple function Foo, the examples might not show good speedup
when written as parallel loops. The cause could be insufficient system bandwidth
between the processors and memory. In that case, you may have to rethink your
algorithm to take better advantage of cache. Restructuring to better utilize the cache
usually benefits the parallel program as well as the serial program.

An alternative to restructuring that works in some cases is affinity_partitioner. It

not only automatically chooses the grainsize, but also optimizes for cache affinity.
Using affinity_partitioner can significantly improve performance when:

• The computation does a few operations per data access.

• The data acted upon by the loop fits in cache.

• The loop, or a similar loop, is re-executed over the same data.

• There are more than two hardware threads available. If only two threads are
available, the default scheduling in Intel® TBB usually provides sufficient cache
affinity.

The following code shows how to use affinity_partitioner.

#include "tbb/tbb.h"

void ParallelApplyFoo(float a[], size_t n) {
 static affinity_partitioner ap;
 parallel_for(blocked_range<size_t>(0,n), ApplyFoo(a), ap);
}

void TimeStepFoo(float a[], size_t n, int steps) {
 for(int t=0; t<steps; ++t)
 ParallelApplyFoo(a, n);
}

In the example, the affinity_partitioner object ap lives between loop iterations.
It remembers where iterations of the loop ran, so that each iteration can be handed to
the same thread that executed it before. The example code gets the lifetime of the
partitioner right by declaring the affinity_partitioner as a local static object.
Another approach would be to declare it at a scope outside the iterative loop in
TimeStepFoo, and hand it down the call chain to parallel_for.

If the data does not fit across the system’s caches, there may be little benefit. Figure
3 contrasts the situations.

Intel® Threading Building Blocks

20 2US

die 3 die 2 die 1 die 0

die 3 die 2 die 1 die 0

Benefit from affinity.

No benefit from affinity.

data set

data set

Figure 3: Benefit of Affinity Determined by Relative Size of Data Set and Cache

Figure 4 shows how parallel speedup might vary with the size of a data set. The
computation for the example is A[i]+=B[i] for i in the range [0,N). It was chosen for
dramatic effect. You are unlikely to see quite this much variation in your code. The
graph shows not much improvement at the extremes. For small N, parallel scheduling
overhead dominates, resulting in little speedup. For large N, the data set is too large
to be carried in cache between loop invocations. The peak in the middle is the sweet
spot for affinity. Hence affinity_partitioner should be considered a tool, not a
cure-all, when there is a low ratio of computations to memory accesses.

0

4
8

12
16

20

1.E+04 1.E+05 1.E+06 1.E+07 1.E+08

N (number of array elements)

Sp
ee

du
p

affinity_partitioner
auto_partitioner

s

Figure 4: Improvement from Affinity Dependent on Array Size

3.2.5 Partitioner Summary
The parallel loop templates parallel_for (3.2) and parallel_reduce (3.3) take an
optional partitioner argument, which specifies a strategy for executing the loop. Table
10 summarizes the three partitioners and their effect when used in conjunction with
blocked_range.

Parallelizing Simple Loops

Tutorial 21

Table 10: Partitioners

Partitioner Description When Used with
blocked_range(i,j,g)

simple_partitioner Chunksize bounded by
grain size.

⎡g/2⎤ ≤ chunksize ≤ g

auto_partitioner (default) 2 Automatic chunk size.

affinity_partitioner Automatic chunk size and
cache affinity.

⎡g/2⎤ ≤ chunksize

An auto_partitioner is used when no partitioner is specified. In general, the
auto_partitioner or affinity_partitioner should be used, because these tailor
the number of chunks based on available execution resources. However,
simple_partitioner can be useful in the following situations:

• The subrange size for operator() must not exceed a limit. That might be
advantageous, for example, if your operator() needs a temporary array
proportional to the size of the range. With a limited subrange size, you can use an
automatic variable for the array instead of having to use dynamic memory
allocation.

• A large subrange might use cache inefficiently. For example, suppose the
processing of a subrange involves repeated sweeps over the same memory
locations. Keeping the subrange below a limit might enable the repeated
referenced memory locations to fit in cache. See the use of parallel_reduce in
examples/parallel_reduce/primes/primes.cpp for an example of this scenario.

• You want to tune to a specific machine.

3.3 parallel_reduce
A loop can do reduction, as in this summation:
float SerialSumFoo(float a[], size_t n) {
 float sum = 0;
 for(size_t i=0; i!=n; ++i)
 sum += Foo(a[i]);
 return sum;
}

If the iterations are independent, you can parallelize this loop using the template class
parallel_reduce as follows:

float ParallelSumFoo(const float a[], size_t n) {
 SumFoo sf(a);
 parallel_reduce(blocked_range<size_t>(0,n), sf);

2 Prior to Intel® TBB 2.2, the default was simple_partitioner. Compile with
TBB_DEPRECATED=1 to get the old default.

Intel® Threading Building Blocks

22 2US

 return sf.my_sum;
}

The class SumFoo specifies details of the reduction, such as how to accumulate
subsums and combine them. Here is the definition of class SumFoo:
class SumFoo {
 float* my_a;
public:
 float my_sum;
 void operator()(const blocked_range<size_t>& r) {
 float *a = my_a;
 float sum = my_sum;
 size_t end = r.end();
 for(size_t i=r.begin(); i!=end; ++i)
 sum += Foo(a[i]);
 my_sum = sum;
 }

 SumFoo(SumFoo& x, split) : my_a(x.my_a), my_sum(0) {}

 void join(const SumFoo& y) {my_sum+=y.my_sum;}

 SumFoo(float a[]) :
 my_a(a), my_sum(0)
 {}
};

Note the differences with class ApplyFoo from Section 3.2. First, operator() is not
const. This is because it must update SumFoo::my_sum. Second, SumFoo has a
splitting constructor and a method join that must be present for parallel_reduce to

work. The splitting constructor takes as arguments a reference to the original object,
and a dummy argument of type split, which is defined by the library. The dummy
argument distinguishes the splitting constructor from a copy constructor.

TIP: In the example, the definition of operator() uses local temporary variables (a, sum,
end) for scalar values accessed inside the loop. This technique can improve
performance by making it obvious to the compiler that the values can be held in
registers instead of memory. If the values are too large to fit in registers, or have
their address taken in a way the compiler cannot track, the technique might not help.
With a typical optimizing compiler, using local temporaries for only written variables
(such as sum in the example) can suffice, because then the compiler can deduce that
the loop does not write to any of the other locations, and hoist the other reads to
outside the loop.

When a worker thread is available, as decided by the task scheduler,
parallel_reduce invokes the splitting constructor to create a subtask for the worker.
When the subtask completes, parallel_reduce uses method join to accumulate the
result of the subtask. The graph at the top of Figure 5 shows the split-join sequence
that happens when a worker is available:

Parallelizing Simple Loops

Tutorial 23

split iteration space in half

wait for thief

x.join(y);

steal second half of iteration space

SumFoo y(x,split()); reduce first half of iteration space
i

reduce second half of iteration space into y

Available Worker

split iteration space in half

reduce first half of iteration space
i

reduce second half of iteration space

No Available Worker

Figure 5: Graph of the Split-join Sequence

An arc in the Figure 5 indicates order in time. The splitting constructor might run
concurrently while object x is being used for the first half of the reduction. Therefore,
all actions of the splitting constructor that creates y must be made thread safe with
respect to x. So if the splitting constructor needs to increment a reference count
shared with other objects, it should use an atomic increment.

If a worker is not available, the second half of the iteration is reduced using the same
body object that reduced the first half. That is the reduction of the second half starts
where reduction of the first half finished.

CAUTION: Because split/join are not used if workers are unavailable, parallel_reduce does not

necessarily do recursive splitting.

CAUTION: Because the same body might be used to accumulate multiple subranges, it is critical
that operator() not discard earlier accumulations. The code below shows an incorrect
definition of SumFoo::operator().

class SumFoo {
 ...

Intel® Threading Building Blocks

24 2US

public:
 float my_sum;
 void operator()(const blocked_range<size_t>& r) {
 ...
 float sum = 0; // WRONG – should be "sum = my_sum".
 ...
 for(...)
 sum += Foo(a[i]);
 my_sum = sum;
 }
 ...
};

With the mistake, the body returns a partial sum for the last subrange instead of all
subranges to which parallel_reduce applies it.

The rules for partitioners and grain sizes for parallel_reduce are the same as for
parallel_for.

parallel_reduce generalizes to any associative operation. In general, the splitting
constructor does two things:

• Copy read-only information necessary to run the loop body.

• Initialize the reduction variable(s) to the identity element of the operation(s).

The join method should do the corresponding merge(s). You can do more than one
reduction at the same time: you can gather the min and max with a single
parallel_reduce.

NOTE: The reduction operation can be non-commutative. The example still works if floating-
point addition is replaced by string concatenation.

3.3.1 Advanced Example

An example of a more advanced associative operation is to find the index where
Foo(i) is minimized. A serial version might look like this:
long SerialMinIndexFoo(const float a[], size_t n) {
 float value_of_min = FLT_MAX; // FLT_MAX from <climits>
 long index_of_min = -1;
 for(size_t i=0; i<n; ++i) {
 float value = Foo(a[i]);
 if(value<value_of_min) {
 value_of_min = value;
 index_of_min = i;
 }
 }
 return index_of_min;
}

Parallelizing Simple Loops

Tutorial 25

The loop works by keeping track of the minimum value found so far, and the index of
this value. This is the only information carried between loop iterations. To convert the
loop to use parallel_reduce, the function object must keep track of the carried

information, and how to merge this information when iterations are spread across
multiple threads. Also, the function object must record a pointer to a to provide
context.

The following code shows the complete function object.
class MinIndexFoo {
 const float *const my_a;
public:
 float value_of_min;
 long index_of_min;
 void operator()(const blocked_range<size_t>& r) {
 const float *a = my_a;
 for(size_t i=r.begin(); i!=r.end(); ++i) {
 float value = Foo(a[i]);
 if(value<value_of_min) {
 value_of_min = value;
 index_of_min = i;
 }
 }
 }

 MinIndexFoo(MinIndexFoo& x, split) :
 my_a(x.my_a),
 value_of_min(FLT_MAX), // FLT_MAX from <climits>
 index_of_min(-1)
 {}

 void join(const SumFoo& y) {
 if(y.value_of_min<x.value_of_min) {
 value_of_min = y.value_of_min;
 index_of_min = y.index_of_min;
 }
 }

 MinIndexFoo(const float a[]) :
 my_a(a),
 value_of_min(FLT_MAX), // FLT_MAX from <climits>
 index_of_min(-1),
 {}
};

Now SerialMinIndex can be rewritten using parallel_reduce as shown below:

long ParallelMinIndexFoo(float a[], size_t n) {
 MinIndexFoo mif(a);
 parallel_reduce(blocked_range<size_t>(0,n), mif);
 return mif.index_of_min;
}

The directory examples/parallel_reduce/primes contains a prime number finder
based on parallel_reduce.

Intel® Threading Building Blocks

26 2US

3.4 Advanced Topic: Other Kinds of Iteration
Spaces
The examples so far have used the class blocked_range<T> to specify ranges. This
class is useful in many situations, but it does not fit every situation. You can use
Intel® Threading Building Blocks to define your own iteration space objects. The
object must specify how it can be split into subspaces by providing two methods and a
“splitting constructor”. If your class is called R, the methods and constructor could be

as follows:
class R {
 // True if range is empty
 bool empty() const;
 // True if range can be split into non-empty subranges
 bool is_divisible() const;
 // Split r into subranges r and *this
 R(R& r, split);
 ...
};

The method empty should return true if the range is empty. The method
is_divisible should return true if the range can be split into two non-empty

subspaces, and such a split is worth the overhead. The splitting constructor should
take two arguments:

• The first of type R

• The second of type tbb::split

The second argument is not used; it serves only to distinguish the constructor from an
ordinary copy constructor. The splitting constructor should attempt to split r roughly
into two halves, and update r to be the first half, and let constructed object be the
second half. The two halves should be non-empty. The parallel algorithm templates
call the splitting constructor on r only if r.is_divisible is true.

The iteration space does not have to be linear. Look at tbb/blocked_range2d.h for an

example of a range that is two-dimensional. Its splitting constructor attempts to split
the range along its longest axis. When used with parallel_for, it causes the loop to
be “recursively blocked” in a way that improves cache usage. This nice cache behavior
means that using parallel_for over a blocked_range2d<T> can make a loop run

faster than the sequential equivalent, even on a single processor.

3.4.1 Code Samples
The directory examples/parallel_for/seismic contains a simple seismic wave
simulation based on parallel_for and blocked_range. The directory

Parallelizing Simple Loops

Tutorial 27

examples/parallel_for/tachyon contains a more complex example of a ray tracer
based on parallel_for and blocked_range2d.

Intel® Threading Building Blocks

28 2US

4 Parallelizing Complex Loops
You can successfully parallelize many applications using only the constructs in Chapter
 2.6. However, some situations call for other parallel patterns. This section describes
the support for some of these alternate patterns.

4.1 Cook Until Done: parallel_do
For some loops, the end of the iteration space is not known in advance, or the loop
body may add more iterations to do before the loop exits. You can deal with both
situations using the template class tbb::parallel_do.

A linked list is an example of an iteration space that is not known in advance. In
parallel programming, it is usually better to use dynamic arrays instead of linked lists,
because accessing items in a linked list is inherently serial. But if you are limited to
linked lists, the items can be safely processed in parallel, and processing each item
takes at least a few thousand instructions, you can use parallel_do to gain some

parallelism.

For example, consider the following serial code:
void SerialApplyFooToList(const std::list<Item>& list) {
 for(std::list<Item>::const_iterator i=list.begin() i!=list.end();
++i)
 Foo(*i);
}

If Foo takes at least a few thousand instructions to run, you can get parallel speedup
by converting the loop to use parallel_do. To do so, define an object with a const

qualified operator(). This is similar to a C++ function object from the C++ standard
header <functional>, except that operator() must be const.

class ApplyFoo {
public:
 void operator()(Item& item) const {
 Foo(item);
 }
};

The parallel form of SerialApplyFooToList is as follows:

void ParallelApplyFooToList(const std::list<Item>& list) {
 parallel_do(list.begin(), list.end(), ApplyFoo());
}

Parallelizing Complex Loops

Tutorial 29

An invocation of parallel_do never causes two threads to act on an input iterator
concurrently. Thus typical definitions of input iterators for sequential programs work
correctly. This convenience makes parallel_do unscalable, because the fetching of

work is serial. But in many situations, you still get useful speedup over doing things
sequentially.

There are two ways that parallel_do can acquire work scalably.

• The iterators can be random-access iterators.

• The body argument to parallel_do, if it takes a second argument feeder of type
parallel_do<Item>&, can add more work by calling feeder.add(item). For
example, suppose processing a node in a tree is a prerequisite to processing its
descendants. With parallel_do, after processing a node, you could use
feeder.add to add the descendant nodes. The instance of parallel_do does not
terminate until all items have been processed.

4.1.1 Code Sample
The directory examples/parallel_do/parallel_preorder contains a small
application that uses parallel_do to perform parallel preorder traversal of an acyclic
directed graph. The example shows how parallel_do_feeder can be used to add
more work.

4.2 Working on the Assembly Line: pipeline
Pipelining is a common parallel pattern that mimics a traditional manufacturing
assembly line. Data flows through a series of pipeline filters, and each filter processes
the data in some way. Given an incoming stream of data, some of these filters can
operate in parallel, and others cannot. For example, in video processing, some
operations on frames do not depend on other frames, and so can be done on multiple
frames at the same time. On the other hand, some operations on frames require
processing prior frames first.

The Intel® TBB classes pipeline and filter implement the pipeline pattern. A
simple text processing example will be used to demonstrate the usage of pipeline
and filter to perform parallel formatting. The example reads a text file, squares

each decimal numeral in the text, and writes the modified text to a new file. Below is
a picture of the pipeline.

Read chunk
from input file

Square numerals
in chunk

Write chunk
to output file

Assume that the raw file I/O is sequential. The squaring filter can be done in parallel.
That is, if you can serially read n chunks very quickly, you can transform each of the n
chunks in parallel, as long as they are written in the proper order to the output file.

Intel® Threading Building Blocks

30 2US

Though the raw I/O is sequential, the formatting of input and output can be moved to
the middle filter, and thus be parallel.

To amortize parallel scheduling overheads, the filters operate on chunks of text. Each
input chunk is approximately 4000 characters. Each chunk is represented by an
instance of class TextSlice:

// Holds a slice of text.
/** Instances *must* be allocated/freed using methods herein, because the C++ declaration
 represents only the header of a much larger object in memory. */
class TextSlice {

 // Pointer to one past last character in sequence
 char* logical_end;

 // Pointer to one past last available byte in sequence.
 char* physical_end;
public:

 // Allocate a TextSlice object that can hold up to max_size characters.
 static TextSlice* allocate(size_t max_size) {

 // +1 leaves room for a terminating null character.
 TextSlice* t = (TextSlice*)tbb::tbb_allocator<char>().allocate(
sizeof(TextSlice)+max_size+1);
 t->logical_end = t->begin();
 t->physical_end = t->begin()+max_size;
 return t;
 }

 // Free this TextSlice object
 void free() {
 tbb::tbb_allocator<char>().deallocate((char*)this,
sizeof(TextSlice)+(physical_end-begin())+1);
 }

 // Pointer to beginning of sequence
 char* begin() {return (char*)(this+1);}

 // Pointer to one past last character in sequence
 char* end() {return logical_end;}

 // Length of sequence
 size_t size() const {return logical_end-(char*)(this+1);}

 // Maximum number of characters that can be appended to sequence
 size_t avail() const {return physical_end-logical_end;}

 // Append sequence [first,last) to this sequence.
 void append(char* first, char* last) {
 memcpy(logical_end, first, last-first);
 logical_end += last-first;
 }

 // Set end() to given value.
 void set_end(char* p) {logical_end=p;}
};

Below is the top-level code for building and running the pipeline. TextSlice objects
are passed between filters using pointers to avoid the overhead of copying a
TextSlice.
void RunPipeline(int ntoken, FILE* input_file, FILE* output_file) {

Parallelizing Complex Loops

Tutorial 31

 tbb::parallel_pipeline(
 ntoken,
 tbb::make_filter<void,TextSlice*>(
 tbb::filter::serial_in_order, MyInputFunc(input_file))
 &
 tbb::make_filter<TextSlice*,TextSlice*>(
 tbb::filter::parallel, MyTransformFunc())
 &
 tbb::make_filter<TextSlice*,void>(
 tbb::filter::serial_in_order, MyOutputFunc(output_file)));
}

The parameter ntoken to method parallel_pipeline controls the level of
parallelism. Conceptually, tokens flow through the pipeline. In a serial in order filter,
each token must be processed serially in order. In a parallel filter, multiple tokens can
by processed in parallel by the filter. If the number of tokens were unlimited, there
might be a problem where the unordered filter in the middle keeps gaining tokens
because the output filter cannot keep up. This situation typically leads to undesirable
resource consumption by the middle filter. The parameter to method
parallel_pipeline specifies the maximum number of tokens that can be in flight.

Once this limit is reached, the pipeline never creates a new token at the input filter
until another token is destroyed at the output filter.

The second parameter specifies the sequence of filters. Each filter is constructed by
function make_filter<inputType,outputType>(mode,functor).

• The inputType specifies the type of values input by a filter. For the input filter, the
type is void.

• The outputType specifies the type of values output by a filter. For the output filter,
the type is void.

• The mode specifies whether the filter processes items in parallel, serial in order, or
serial out of order.

• The functor specifies how to produce an output value from an input value.

The filters are concatenated with operator&. When concatenating two filters, the
outputType of the first filter must match the inputType of the second filter.

The filters can be constructed and concatenated ahead of time. An equivalent version
of the previous example that does this follows:
void RunPipeline(int ntoken, FILE* input_file, FILE* output_file) {
 tbb::filter_t<void,TextSlice*> f1(tbb::filter::serial_in_order,
 MyInputFunc(input_file));

 tbb::filter_t<TextSlice*,TextSlice*> f2(tbb::filter::parallel,
 MyTransformFunc());

 tbb::filter_t<TextSlice*,void> f3(tbb::filter::serial_in_order,
 MyOutputFunc(output_file));

 tbb::filter_t<void,void> f = f1 & f2 & f3;

 tbb::parallel_pipeline(ntoken,f);
}

Intel® Threading Building Blocks

32 2US

The input filter must be serial_in_order in this example because the filter reads
chunks from a sequential file and the output filter must write the chunks in the same
order. All serial_in_order filters process items in the same order. Thus if an item
arrives at MyOutputFilter out of the order established by MyInputFilter, the
pipeline automatically delays invoking MyOutputFilter::operator() on the item until
its predecessors are processed. There is another kind of serial filter,
serial_out_of_order, that does not preserve order.

The middle filter operates on purely local data. Thus any number of invocations of its
functor can run concurrently. Hence it is specified as a parallel filter.

The functors for each filter are explained in detail now. The output functor is the
simplest. All it has to do is write a TextSlice to a file and free the TextSlice.

// Functor that writes a TextSlice to a file.
class MyOutputFunc {
 FILE* my_output_file;
public:
 MyOutputFunc(FILE* output_file);
 void operator()(TextSlice* item);
};

MyOutputFunc::MyOutputFunc(FILE* output_file) :
 my_output_file(output_file)
{
}

void MyOutputFunc::operator()(TextSlice* out) {
 size_t n = fwrite(out->begin(), 1, out->size(), my_output_file);
 if(n!=out->size()) {
 fprintf(stderr,"Can't write into file '%s'\n", OutputFileName);
 exit(1);
 }
 out->free();
}

Method operator() processes a TextSlice. The parameter out points to the
TextSlice to be processed. Since it is used for the last filter of the pipeline, it returns
void.

The functor for the middle filter is similar, but a bit more complex. It returns a pointer
to the TextSlice that it produces.

// Functor that changes each decimal number to its square.
class MyTransformFunc {
public:
 TextSlice* operator()(TextSlice* input) const;
};

TextSlice* MyTransformFunc::operator()(TextSlice* input) const {

 // Add terminating null so that strtol works right even if number is at end of the input.
 *input->end() = '\0';
 char* p = input->begin();

Parallelizing Complex Loops

Tutorial 33

 TextSlice* out = TextSlice::allocate(2*MAX_CHAR_PER_INPUT_SLICE);
 char* q = out->begin();
 for(;;) {
 while(p<input->end() && !isdigit(*p))
 *q++ = *p++;
 if(p==input->end())
 break;
 long x = strtol(p, &p, 10);

 // Note: no overflow checking is needed here, as we have twice the
 // input string length, but the square of a non-negative integer n
 // cannot have more than twice as many digits as n.
 long y = x*x;
 sprintf(q,"%ld",y);
 q = strchr(q,0);
 }
 out->set_end(q);
 input->free();
 return out;
}

The input functor is the most complicated, because it has to ensure that no numeral
crosses a boundary. When it finds what could be a numeral crossing into the next
slice, it copies the partial numeral to the next slice. Furthermore, it has to indicate
when the end of input is reached. It does this by invoking method stop() on a special
argument of type flow_control. This idiom is required for any functor used for the
first filter of a pipline. It is shown in bold in the following code for the functor:
class MyInputFunc {
public:
 MyInputFunc(FILE* input_file_);
 MyInputFunc(const MyInputFunc& f) : input_file(f.input_file),
next_slice(f.next_slice) {

 // Copying allowed only if filter has not started processing.
 assert(!f.next_slice);
 }
 ~MyInputFunc();
 TextSlice* operator()(tbb::flow_control& fc);
private:
 FILE* input_file;
 TextSlice* next_slice;
};

MyInputFunc::MyInputFunc(FILE* input_file_) :
 input_file(input_file_),
 next_slice(NULL)
{
}

MyInputFunc::~MyInputFunc() {
 if(next_slice)
 next_slice->free();
}

TextSlice* MyInputFunc::operator()(tbb::flow_control& fc) {

Intel® Threading Building Blocks

34 2US

 // Read characters into space that is available in the next slice.
 if(!next_slice)
 next_slice = TextSlice::allocate(MAX_CHAR_PER_INPUT_SLICE);
 size_t m = next_slice->avail();
 size_t n = fread(next_slice->end(), 1, m, input_file);
 if(!n && next_slice->size()==0) {

 // No more characters to process
 fc.stop();
 return NULL;
 } else {

 // Have more characters to process.
 TextSlice* t = next_slice;
 next_slice = TextSlice::allocate(MAX_CHAR_PER_INPUT_SLICE);
 char* p = t->end()+n;
 if(n==m) {

 // Might have read partial number.
 // If so, transfer characters of partial number to next slice.
 while(p>t->begin() && isdigit(p[-1]))
 --p;
 next_slice->append(p, t->end()+n);
 }
 t->set_end(p);
 return t;
 }
}

The copy constructor must be defined because the functor is copied when the filter_t
is built from the functor, and again when the pipeline runs. i

The parallel_pipeline syntax is new in TBB 3.0. The directory
examples/pipeline/square contains the complete code for the squaring example in

an older lower-level syntax where the filters are defined via inheritance. The
Reference manual describes both syntaxes.

4.2.1 Using Circular Buffers

Circular buffers can sometimes be used to minimize the overhead of allocating and
freeing the items passed between pipeline filters. If the first filter to create an item
and last filter to consume an item are both serial_in_order, the items can allocated
and freed via a circular buffer of size at least ntoken, where ntoken is the first
parameter to parallel_pipeline. Under these conditions, no checking of whether an
item is still in use is necessary.

The reason this works is that at most ntoken items can be in flight, and items will be
freed in the order that they were allocated. Hence by the time the circular buffer
wraps around to reallocate an item, the item must have been freed from its previous
use in the pipeline. If the first and last filter are not serial_in_order, then you have
to keep track of which buffers are currently in use, because buffers might not be
retired in the same order they were allocated.

Parallelizing Complex Loops

Tutorial 35

4.2.2 Throughput of pipeline

The throughput of a pipeline is the rate at which tokens flow through it, and is limited
by two constraints. First, if a pipeline is run with N tokens, then obviously there
cannot be more than N operations running in parallel. Selecting the right value of N
may involve some experimentation. Too low a value limits parallelism; too high a
value may demand too many resources (for example, more buffers). Second, the
throughput of a pipeline is limited by the throughput of the slowest sequential filter.
This is true even for a pipeline with no parallel filters. No matter how fast the other
filters are, the slowest sequential filter is the bottleneck. So in general you should try
to keep the sequential filters fast, and when possible, shift work to the parallel filters.

The text processing example has relatively poor speedup, because the serial filters are
limited by the I/O speed of the system. Indeed, even with files are on a local disk, you
are unlikely to see a speedup much more than 2. To really benefit from a pipeline, the
parallel filters need to be doing some heavy lifting compared to the serial filters.

The window size, or sub-problem size for each token, can also limit throughput.
Making windows too small may cause overheads to dominate the useful work. Making
windows too large may cause them to spill out of cache. A good guideline is to try for
a large window size that still fits in cache. You may have to experiment a bit to find a
good window size.

4.2.3 Non-Linear Pipelines
Template function parallel_pipeline supports only linear pipelines. It does not
directly handle more baroque plumbing, such as in the diagram below.

However, you can still use a pipeline for this. Just topologically sort the filters into a
linear order, like this:

A

B

C

D

E

A

B

C

D

E

Intel® Threading Building Blocks

36 2US

The light gray arrows are the original arrows that are now implied by transitive closure
of the other arrows. It might seem that lot of parallelism is lost by forcing a linear
order on the filters, but in fact the only loss is in the latency of the pipeline, not the
throughput. The latency is the time it takes a token to flow from the beginning to the
end of the pipeline. Given a sufficient number of processors, the latency of the original
non-linear pipeline is three filters. This is because filters A and B could process the
token concurrently, and likewise filters D and E could process the token concurrently.
In the linear pipeline, the latency is five filters. The behavior of filters A, B, D and E
above may need to be modified in order to properly handle objects that don’t need to
be acted upon by the filter other than to be passed along to the next filter in the
pipeline.

The throughput remains the same, because regardless of the topology, the throughput
is still limited by the throughput of the slowest serial filter. If parallel_pipeline
supported non-linear pipelines, it would add a lot of programming complexity, and not
improve throughput. The linear limitation of parallel_pipeline is a good tradeoff of
gain versus pain.

4.3 Summary of Loops and Pipelines
The high-level loop and pipeline templates in Intel® Threading Building Blocks give
you efficient scalable ways to exploit the power of multi-core chips without having to
start from scratch. They let you design your software at a high task-pattern level and
not worry about low-level manipulation of threads. Because they are generic, you can
customize them to your specific needs. Have fun using these templates to unlock the
power of multi-core.

Exceptions and Cancellation

Tutorial 37

5 Exceptions and Cancellation
Intel® Threading Building Blocks (Intel® TBB) supports exceptions and cancellation.
When code inside an Intel® TBB algorithm throws an exception, the following steps
generally occur:

1. The exception is captured. Any further exceptions inside the algorithm are
ignored.

2. The algorithm is cancelled. Pending iterations are not executed. If there is Intel®
TBB parallelism nested inside, it might be cancelled, depending upon details
explained in Section 5.2.

3. Once all parts of the algorithm stop, an exception is thrown on the thread that
invoked the algorithm.

The exception thrown in step 3 might be the original exception, or might merely be a
summary of type captured_exception. The latter usually occurs on current systems
because propagating exceptions between threads requires support for the C++
std::exception_ptr functionality. As compilers evolve to support this functionality,
future versions of Intel® TBB might throw the original exception. So be sure your
code can catch either type of exception. The following example demonstrates
exception handling.
#include "tbb/tbb.h"
#include <vector>
#include <iostream>

using namespace tbb;
using namespace std;

vector<int> Data;

struct Update {
 void operator()(const blocked_range<int>& r) const {
 for(int i=r.begin(); i!=r.end(); ++i)
 Data.at(i) += 1;
 }
};

int main() {
 Data.resize(1000);
 try {
 parallel_for(blocked_range<int>(0, 2000), Update());
 } catch(captured_exception& ex) {
 cout << "captured_exception: " << ex.what() << endl;
 } catch(out_of_range& ex) {
 cout << "out_of_range: " << ex.what() << endl;
 }
 return 0;

Intel® Threading Building Blocks

38 2US

}

The parallel_for attempts to iterate over 2000 elements of a vector with only 1000
elements. Hence the expression Data.at(i) sometimes throws an exception
std::out_of_range during execution of the algorithm. When the exception happens,
the algorithm is cancelled and an exception thrown at the call site to parallel_for.

5.1 Cancellation Without An Exception
To cancel an algorithm but not throw an exception, use the expression
task::self().cancel_group_execution(). The part task::self() references the
innermost Intel® TBB task on the current thread. Calling cancel_group_execution()
cancels all tasks in its task_group_context, which the next section explains in more
detail. The method returns true if it actually causes cancellation, false if the
task_group_context was already cancelled.

The example below shows how to use task::self().cancel_group_execution().
#include "tbb/tbb.h"
#include <vector>
#include <iostream>

using namespace tbb;
using namespace std;

vector<int> Data;

struct Update {
 void operator()(const blocked_range<int>& r) const {
 for(int i=r.begin(); i!=r.end(); ++i)
 if(i<Data.size()) {
 ++Data[i];
 } else {
 // Cancel related tasks.
 if(task::self().cancel_group_execution())
 cout << "Index " << i << " caused cancellation\n";
 return;
 }
 }
};

int main() {
 Data.resize(1000);
 parallel_for(blocked_range<int>(0, 2000), Update());
 return 0;
}

Exceptions and Cancellation

Tutorial 39

5.2 Cancellation and Nested Parallelism
The discussion so far was simplified by assuming non-nested parallelism and skipping
details of task_group_context. This section explains both.

An Intel® TBB algorithm executes by creating task objects (Chapter 11) that execute
the snippets of code that you supply to the algorithm template. By default, these task
objects are associated with a task_group_context created by the algorithm. Nested
Intel® TBB algorithms create a tree of these task_group_context objects. Cancelling
a task_group_context cancels all of its child task_group_context objects, and
transitively all its descendants. Hence an algorithm and all algorithms it called can be
cancelled with a single request.

Exceptions propagate upwards. Cancellation propagates downwards. The opposition
interplays to cleanly stop a nested computation when an exception occurs. For
example, consider the tree in Figure 6. Imagine that each node represents an
algorithm and its task_group_context.

C D

B

F G

E

A

Figure 6: Tree of task_group_context

Suppose that the algorithm in C throws an exception and no node catches the
exception. Intel® TBB propagates the exception upwards, cancelling related subtrees
downwards, as follows:

1. Handle exception in C:

a. Capture exception in C.

b. Cancel tasks in C.

c. Throw exception from C to B.

2. Handle exception in B:

a. Capture exception in B.

b. Cancel tasks in B and, by downwards propagation, in D.

c. Throw an exception out of B to A.

3. Handle exception in A:

Intel® Threading Building Blocks

40 2US

a. Capture exception in A.

b. Cancel tasks in A and, by downwards propagation, in E, F, and G.

c. Throw an exception upwards out of A.

If your code catches the exception at any level, then Intel® TBB does not propagate it
any further. For example, an exception that does not escape outside the body of a
parallel_for does not cause cancellation of other iterations.

To prevent downwards propagation of cancellation into an algorithm, construct an
"isolated" task_group_context on the stack and pass it to the algorithm explicitly.
The blue color in the following example shows how. The example uses C++0x lambda
expressions (3.2.1) for brevity.

#include "tbb/tbb.h"

bool Data[1000][1000];

int main() {
 try {
 parallel_for(0, 1000, 1,
 [](int i) {
 task_group_context root(task_group_context::isolated);
 parallel_for(0, 1000, 1,
 [](int j) {
 Data[i][j] = true;
 },
 root);
 throw "oops";
 });
 } catch(...) {
 }
 return 0;
}

The example performs two parallel loops: an outer loop over i and inner loop over j.
The creation of the isolated task_group_context root protects the inner loop from
downwards propagation of cancellation from the i loop. When the exception
propagates to the outer loop, any pending outer iterations are cancelled, but not
inner iterations for an outer iteration that started. Hence when the program
completes, each row of Data may be different, depending upon whether its iteration i
ran at all, but within a row, the elements will be homogenously false or true, not a
mixture.

Removing the blue text would permit cancellation to propagate down into the inner
loop. In that case, a row of Data might end up with both true and false values.

Containers

Tutorial 41

6 Containers
Intel® Threading Building Blocks (Intel® TBB) provides highly concurrent container
classes. These containers can be used with raw Windows* or Linux* threads, or in
conjunction with task-based programming (11.1).

A concurrent container allows multiple threads to concurrently access and update
items in the container. Typical C++ STL containers do not permit concurrent update;
attempts to modify them concurrently often result in corrupting the container. STL
containers can be wrapped in a mutex to make them safe for concurrent access, by
letting only one thread operate on the container at a time, but that approach
eliminates concurrency, thus restricting parallel speedup.

Containers provided by Intel® TBB offer a much higher level of concurrency, via one
or both of the following methods:

• Fine-grained locking: Multiple threads operate on the container by locking only
those portions they really need to lock. As long as different threads access
different portions, they can proceed concurrently.

• Lock-free techniques: Different threads account and correct for the effects of
other interfering threads.

Notice that highly-concurrent containers are come at a cost. They typically have
higher overheads than regular STL containers. Operations on highly-concurrent
containers may take longer than for STL containers. Therefore, use highly-concurrent
containers when the speedup from the additional concurrency that they enable
outweighs their slower sequential performance.

CAUTION: As with most objects in C++, the constructor or destructor of a container object must
not be invoked concurrently with another operation on the same object. Otherwise the
resulting race may cause the operation to be executed on an undefined object.

6.1 concurrent_hash_map
A concurrent_hash_map<Key, T, HashCompare > is a hash table that permits

concurrent accesses. The table is a map from a key to a type T. The traits type
HashCompare defines how to hash a key and how to compare two keys.

The following example builds a concurrent_hash_map where the keys are strings and
the corresponding data is the number of times each string occurs in the array Data.

#include "tbb/concurrent_hash_map.h"
#include "tbb/blocked_range.h"
#include "tbb/parallel_for.h"

Intel® Threading Building Blocks

42 2US

#include <string>

using namespace tbb;
using namespace std;

// Structure that defines hashing and comparison operations for user's
type.
struct MyHashCompare {
 static size_t hash(const string& x) {
 size_t h = 0;
 for(const char* s = x.c_str(); *s; ++s)
 h = (h*17)^*s;
 return h;
 }
 //! True if strings are equal
 static bool equal(const string& x, const string& y) {
 return x==y;
 }
};

// A concurrent hash table that maps strings to ints.
typedef concurrent_hash_map<string,int,MyHashCompare> StringTable;

// Function object for counting occurrences of strings.
struct Tally {
 StringTable& table;
 Tally(StringTable& table_) : table(table_) {}
 void operator()(const blocked_range<string*> range) const {
 for(string* p=range.begin(); p!=range.end(); ++p) {
 StringTable::accessor a;
 table.insert(a, *p);
 a->second += 1;
 }
 }
};

const size_t N = 1000000;

string Data[N];

void CountOccurrences() {
 // Construct empty table.
 StringTable table;

 // Put occurrences into the table
 parallel_for(blocked_range<string*>(Data, Data+N, 1000),
 Tally(table));

 // Display the occurrences
 for(StringTable::iterator i=table.begin(); i!=table.end(); ++i)
 printf("%s %d\n",i->first.c_str(),i->second);
}

A concurrent_hash_map acts as a container of elements of type std::pair<const
Key,T>. Typically, when accessing a container element, you are interested in either

Containers

Tutorial 43

updating it or reading it. The template class concurrent_hash_map supports these two
purposes respectively with the classes accessor and const_accessor that act as

smart pointers. An accessor represents update (write) access. As long as it points to
an element, all other attempts to look up that key in the table block until the
accessor is done. A const_accessor is similar, except that is represents read-only
access. Multiple const_accessors can point to the same element at the same time.

This feature can greatly improve concurrency in situations where elements are
frequently read and infrequently updated.

The methods find and insert take an accessor or const_accessor as an argument.
The choice tells concurrent_hash_map whether you are asking for update or read-only
access. Once the method returns, the access lasts until the accessor or
const_accessor is destroyed. Because having access to an element can block other
threads, try to shorten the lifetime of the accessor or const_accessor. To do so,

declare it in the innermost block possible. To release access even sooner than the end
of the block, use method release. The following example is a rework of the loop body
that uses release instead of depending upon destruction to end thread lifetime:

 StringTable accessor a;
 for(string* p=range.begin(); p!=range.end(); ++p) {
 table.insert(a, *p);
 a->second += 1;
 a.release();
 }

The method remove(key) can also operate concurrently. It implicitly requests write
access. Therefore before removing the key, it waits on any other extant accesses on
key.

6.1.1 More on HashCompare

There are several ways to make the HashCompare argument for
concurrent_hash_map work for your own types.

• Specify the HashCompare argument explicitly

• Let the HashCompare default to tbb_hash_compare<Key> and do one of the
following:

o Define a specialization of template tbb_hash_compare<Key>.

o Define an overload of function tbb_hasher(Key).

o Rely on the definitions of tbb_hasher(Key) provided by the library.

Function tbb_hasher is predefined for the following types:

• Types convertible to size_t, such as integral types.

• Pointer types.

• Instances of std::basic_string.

Intel® Threading Building Blocks

44 2US

• std::pair<Key1,Key2>, where tbb_hasher(Key) and tbb_hasher(Key2) are
defined.

For example, if you have keys of type Foo, and operator== is defined for Foo, you
just have to provide a definition of tbb_hasher as shown below:
size_t tbb_hasher(const Foo& f) {

 size_t h = ...compute hash code for f...
 return h;
};

In general, the definition of tbb_hash_compare<Key> or HashCompare must provide
two signatures:

• A method hash that maps a Key to a size_t

• A method equal that determines if two keys are equal

The signatures go together in a single class because if two keys are equal, then they
must hash to the same value, otherwise the hash table might not work. You could
trivially meet this requirement by always hashing to 0, but that would cause
tremendous inefficiency. Ideally, each key should hash to a different value, or at least
the probability of two distinct keys hashing to the same value should be kept low.

The methods of HashCompare should be static unless you need to have them
behave differently for different instances. If so, then you should construct the
concurrent_hash_map using the constructor that takes a HashCompare as a

parameter. The following example is a variation on an earlier example with instance-
dependent methods. The instance performs both case-sensitive or case-insensitive
hashing, and comparison, depending upon an internal flag ignore_case.

// Structure that defines hashing and comparison operations
class VariantHashCompare {
 // If true, then case of letters is ignored.
 bool ignore_case;
public:
 size_t hash(const string& x) const {
 size_t h = 0;
 for(const char* s = x.c_str(); *s; s++)
 h = (h*16777179)^*(ignore_case?tolower(*s):*s);
 return h;
 }
 // True if strings are equal
 bool equal(const string& x, const string& y) const {
 if(ignore_case)
 strcasecmp(x.c_str(), y.c_str())==0;
 else
 return x==y;
 }
 VariantHashCompare(bool ignore_case_) : ignore_case(ignore_case_) {}
};

typedef concurrent_hash_map<string,int, VariantHashCompare>
VariantStringTable;

Containers

Tutorial 45

VariantStringTable CaseSensitiveTable(VariantHashCompare(false));
VariantStringTable CaseInsensitiveTable(VariantHashCompare(true));

The directory examples/concurrent_hash_map/count_strings contains a complete
example that uses concurrent_hash_map to enable multiple processors to
cooperatively build a histogram.

6.2 concurrent_vector
A concurrent_vector<T> is a dynamically growable array of T. It is safe to grow a
concurrent_vector while other threads are also operating on elements of it, or even
growing it themselves. For safe concurrent growing, concurrent_vector has three
methods that support common uses of dynamic arrays: push_back, grow_by, and
grow_to_at_least.

Method push_back(x) safely appends x to the array. Method grow_by(n) safely
appends n consecutive elements initialized with T(). Both methods return an iterator
pointing to the first appended element. Each element is initialized with T(). So for

example, the following routine safely appends a C string to a shared vector:
void Append(concurrent_vector<char>& vector, const char* string) {
 size_t n = strlen(string)+1;
 std::copy(string, string+n, vector.grow_by(n));
}

The related method grow_to_at_least(n)grows a vector to size n if it is shorter.
Concurrent calls to the growth methods do not necessarily return in the order that
elements are appended to the vector.

Method size() returns the number of elements in the vector, which may include
elements that are still undergoing concurrent construction by methods push_back,
grow_by, or grow_to_at_least. The example uses std::copy and iterators, not
strcpy and pointers, because elements in a concurrent_vector might not be at
consecutive addresses. It is safe to use the iterators while the concurrent_vector is
being grown, as long as the iterators never go past the current value of end().
However, the iterator may reference an element undergoing concurrent construction.
You must synchronize construction and access.

A concurrent_vector<T> never moves an element until the array is cleared, which
can be an advantage over the STL std::vector even for single-threaded code.
However, concurrent_vector does have more overhead than std::vector. Use
concurrent_vector only if you really need the ability to dynamically resize it while

other accesses are (or might be) in flight, or require that an element never move.

Intel® Threading Building Blocks

46 2US

6.2.1 Clearing is Not Concurrency Safe

CAUTION: Operations on concurrent_vector are concurrency safe with respect to growing, not
for clearing or destroying a vector. Never invoke method clear() if there are other
operations in flight on the concurrent_vector.

6.3 Concurrent Queue Classes
Template class concurrent_queue<T,Alloc> implements a concurrent queue with

values of type T. Multiple threads may simultaneously push and pop elements from
the queue. The queue is unbounded and has no blocking operations. The fundamental
operations on it are push and try_pop. The push operation works just like push for an
std::queue. The operation try_pop pops an item if it is available. The check and
popping have to be done in a single operation for sake of thread safety.

For example, consider the following serial code:
 extern std::queue<T> MySerialQueue;
 T item;
 if(!MySerialQueue.empty()) {
 item = MySerialQueue.front();
 MySerialQueue.pop_front();

 ... process item...
 }

Even if each std::queue method were implemented in a thread-safe manner, the
composition of those methods as shown in the example would not be thread safe if
there were other threads also popping from the same queue. For example,
MySerialQueue.empty() might return true just before another thread snatches the
last item from MySerialQueue.

The equivalent thread-safe Intel® TBB code is:
 extern concurrent_queue<T> MyQueue;
 T item;
 if(MyQueue.try_pop(item)) {

 ...process item...
 }

In a single-threaded program, a queue is a first-in first-out structure. But if multiple
threads are pushing and popping concurrently, the definition of “first” is uncertain.
Use of concurrent_queue guarantees is that if a thread pushes two values, and

another thread pops those two values, they will be popped in the same order that
they were pushed.

Template class concurrent_queue is unbounded and has no methods that wait. It is
up to the user to provide synchronization to avoid overflow, or to wait for the queue to
become non-empty. Typically this is appropriate when the synchronization has to be
done at a higher level.

Containers

Tutorial 47

Template class concurrent_bounded_queue<T,Alloc> is a variant that adds blocking
operations and the ability to specify a capacity. The methods of particular interest on
it are:

o pop(item) waits until it can succeed.

o push(item) waits until it can succeed without exceeding the queue's capacity.

o try_push(item) pushes item only if it would not exceed the queue's capacity.

o size() returns a signed integer.

The value of concurrent_queue::size() is defined as the number of push operations
started minus the number of pop operations started. If pops outnumber pushes,
size() becomes negative. For example, if a concurrent_queue is empty, and there
are n pending pop operations, size() returns −n. This provides an easy way for
producers to know how many consumers are waiting on the queue. Method empty() is
defined to be true if and only if size() is not positive.

By default, a concurrent_bounded_queue is unbounded. It may hold any number of

values, until memory runs out. It can be bounded by setting the queue capacity with
method set_capacity. Setting the capacity causes push to block until there is room
in the queue. Bounded queues are slower than unbounded queues, so if there is a
constraint elsewhere in your program that prevents the queue from becoming too
large, it is better not to set the capacity. If you do not need the bounds or the
blocking pop, consider using concurrent_queue instead.

6.3.1 Iterating Over a Concurrent Queue for Debugging
The template classes concurrent_queue and concurrent_bounded_queue support
STL-style iteration. This support is intended only for debugging, when you need to
dump a queue. The iterators go forwards only, and are too slow to be very useful in
production code. If a queue is modified, all iterators pointing to it become invalid and
unsafe to use. The following snippet dumps a queue. The operator<< is defined for a
Foo.

concurrent_queue<Foo> q;
...
typedef concurrent_queue<Foo>::const_iterator iter;
for(iter i(q.unsafe_begin()); i!=q.unsafe_end(); ++i) {
 cout << *i;
}

The prefix usafe_ on the methods is a reminder that they are not concurrency safe.

Intel® Threading Building Blocks

48 2US

6.3.2 When Not to Use Queues

Queues are widely used in parallel programs to buffer consumers from producers.
Before using an explicit queue, however, consider using parallel_do (4.1) or
pipeline (4.2) instead. These options are often more efficient than queues for the
following reasons:

• A queue is inherently a bottle neck, because it must maintain first-in first-out
order.

• A thread that is popping a value may have to wait idly until the value is pushed.

• A queue is a passive data structure. If a thread pushes a value, it could take time
until it pops the value, and in the meantime the value (and whatever it
references) becomes “cold” in cache. Or worse yet, another thread pops the value,
and the value (and whatever it references) must be moved to the other processor.

In contrast, parallel_do and pipeline avoid these bottlenecks. Because their
threading is implicit, they optimize use of worker threads so that they do other work
until a value shows up. They also try to keep items hot in cache. For example, when
another work item is added to a parallel_do, it is kept local to the thread that added
it unless another idle thread can steal it before the “hot” thread processes it. This
way, items are more often processed by the hot thread.

6.4 Summary of Containers
The high-level containers in Intel® Threading Building Blocks enable common idioms
for concurrent access. They are suitable for scenarios where the alternative would be
a serial container with a lock around it.

Mutual Exclusion

Tutorial 49

7 Mutual Exclusion
Mutual exclusion controls how many threads can simultaneously run a region of code.
In Intel® Threading Building Blocks (Intel® TBB), mutual exclusion is implemented by
mutexes and locks. A mutex is an object on which a thread can acquire a lock. Only
one thread at a time can have a lock on a mutex; other threads have to wait their
turn.

The simplest mutex is spin_mutex. A thread trying to acquire a lock on a spin_mutex
busy waits until it can acquire the lock. A spin_mutex is appropriate when the lock is
held for only a few instructions. For example, the following code uses a mutex
FreeListMutex to protect a shared variable FreeList. It checks that only a single
thread has access to FreeList at a time. The black font shows the usual sequential
code. The blue text shows code added to make the code thread-safe.
Node* FreeList;
typedef spin_mutex FreeListMutexType;
FreeListMutexType FreeListMutex;

Node* AllocateNode() {
 Node* n;
 {
 FreeListMutexType::scoped_lock lock(FreeListMutex);
 n = FreeList;
 if(n)
 FreeList = n->next;
 }
 if(!n)
 n = new Node();
 return n;
}

void FreeNode(Node* n) {
 FreeListMutexType::scoped_lock lock(FreeListMutex);
 n->next = FreeList;
 FreeList = n;
}

The constructor for scoped_lock waits until there are no other locks on
FreeListMutex. The destructor releases the lock. The braces inside routine
AllocateNode may look unusual. Their role is to keep the lifetime of the lock as short

as possible, so that other waiting threads can get their chance as soon as possible.

CAUTION: Be sure to name the lock object, otherwise it will be destroyed too soon. For example,
if the creation of the scoped_lock object in the example is changed to

FreeListMutexType::scoped_lock (FreeListMutex);

Intel® Threading Building Blocks

50 2US

then the scoped_lock is destroyed when execution reaches the semicolon, which
releases the lock before FreeList is accessed.

An alternative way to write AllocateNode is as follows:

Node* AllocateNode() {
 Node* n;
 FreeListMutexType::scoped_lock lock;
 lock.acquire(FreeListMutex);
 n = FreeList;
 if(n)
 FreeList = n->next;
 lock.release();
 if(!n)
 n = new Node();
 return n;
}

Method acquire waits until it can acquire a lock on the mutex; method release
releases the lock.

It is recommended that you add extra braces where possible, to clarify to maintainers
which code is protected by the lock.

If you are familiar with C interfaces for locks, you may be wondering why there are
not simply acquire and release methods on the mutex object itself. The reason is that
the C interface would not be exception safe, because if the protected region threw an
exception, control would skip over the release. With the object-oriented interface,
destruction of the scoped_lock object causes the lock to be released, no matter

whether the protected region was exited by normal control flow or an exception. This
is true even for our version of AllocateNode that used methods acquire and release
– the explicit release causes the lock to be released earlier, and the destructor then

sees that the lock was released and does nothing.

All mutexes in Intel® TBB have a similar interface, which not only makes them easier
to learn, but enables generic programming. For example, all of the mutexes have a
nested scoped_lock type, so given a mutex of type M, the corresponding lock type is
M::scoped_lock.

TIP: It is recommended that you always use a typedef for the mutex type, as shown in the

previous examples. That way, you can change the type of the lock later without
having to edit the rest of the code. In the examples, you could replace the typedef
with typedef queuing_mutex FreeListMutexType, and the code would still be

correct.

7.1.1 Mutex Flavors

Connoisseurs of mutexes distinguish various attributes of mutexes. It helps to know
some of these, because they involve tradeoffs of generality and efficiency. Picking the

Mutual Exclusion

Tutorial 51

right one often helps performance. Mutexes can be described by the following
qualities, also summarized in Table 11

• Scalable. Some mutexes are called scalable. In a strict sense, this is not an
accurate name, because a mutex limits execution to one thread at a time. A
scalable mutex is one that does not do worse than this. A mutex can do worse
than serialize execution if the waiting threads consume excessive processor cycles
and memory bandwidth, reducing the speed of threads trying to do real work.
Scalable mutexes are often slower than non-scalable mutexes under light
contention, so a non-scalable mutex may be better. When in doubt, use a scalable
mutex.

• Fair. Mutexes can be fair or unfair. A fair mutex lets threads through in the order
they arrived. Fair mutexes avoid starving threads. Each thread gets its turn.
However, unfair mutexes can be faster, because they let threads that are running
go through first, instead of the thread that is next in line which may be sleeping
on account of an interrupt.

• Recursive. Mutexes can be recursive or non-recursive. A recursive mutex allows
a thread that is already holding a lock on the mutex to acquire another lock on the
mutex. This is useful in some recursive algorithms, but typically adds overhead to
the lock implementation.

• Yield or Block. This is an implementation detail that impacts performance. On
long waits, an Intel® TBB mutex either yields or blocks. Here yields means to
repeatedly poll whether progress can be made, and if not, temporarily yield3 the
processor. To block means to yield the processor until the mutex permits
progress. Use the yielding mutexes if waits are typically short and blocking
mutexes if waits are typically long.

The following is a summary of mutex behaviors:

• spin_mutex is non-scalable, unfair, non-recursive, and spins in user space. It
would seem to be the worst of all possible worlds, except that it is very fast in
lightly contended situations. If you can design your program so that contention is
somehow spread out among many spin_mutex objects, you can improve
performance over using other kinds of mutexes. If a mutex is heavily contended,
your algorithm will not scale anyway. Consider redesigning the algorithm instead
of looking for a more efficient lock.

• queuing_mutex is scalable, fair, non-recursive, and spins in user space. Use it
when scalability and fairness are important.

• spin_rw_mutex and queuing_rw_mutex are similar to spin_mutex and
queuing_mutex, but additionally support reader locks.

• mutex and recursive_mutex are wrappers around the system’s “native” mutual
exclusion. On Windows* operating systems it is implemented on top of
CRITICAL_SECTION. On Linux* and Mac OS* X operating systems it is
implemented on top of pthread mutex. The advantages of using the wrapper are
that it adds an exception-safe interface and it provides an interface identical to the
other mutexes in Intel® TBB, which makes it easy to swap in a different kind of
mutex later if warranted by performance measurements.

3 The yielding is implemented via SwitchToThread() on Microsoft Windows*
operating systems and by sched_yield() on other systems.

Intel® Threading Building Blocks

52 2US

• null_mutex and null_rw_mutex do nothing. They can be useful as template
arguments. For example, suppose you are defining a container template and know
that some instantiations will be shared by multiple threads and need internal
locking, but others will be private to a thread and not need locking. You can define
the template to take a Mutex type parameter. The parameter can be one of the
real mutex types when locking is necessary, and null_mutex when locking is
unnecessary.

Table 11: Traits and Behaviors of Mutexes

Mutex Scalable Fair Recursive Long
Wait

Size

mutex OS dependent OS dependent no blocks ≥ 3
words

recursive_mutex OS dependent OS dependent yes blocks ≥ 3
words

spin_mutex no no no yields 1 byte

queuing_mutex no yields 1 word

spin_rw_mutex no no no yields 1 word

queuing_rw_mutex no yields 1 word

null_mutex4 moot never empty

null_rw_mutex moot never empty

7.1.2 Reader Writer Mutexes

Mutual exclusion is necessary when at least one thread writes to a shared variable.
But it does no harm to permit multiple readers into a protected region. The reader-
writer variants of the mutexes, denoted by _rw_ in the class names, enable multiple

readers by distinguishing reader locks from writer locks. There can be more than one
reader lock on a given mutex.

Requests for a reader lock are distinguished from requests for a writer lock via an
extra boolean parameter in the constructor for scoped_lock. The parameter is false to
request a reader lock and true to request a writer lock. It defaults to true so that
when omitted, a spin_rw_mutex or queuing_rw_mutex behaves like its non-_rw_
counterpart. The next section shows an example where the parameter is explicitly
false in order to obtain a reader lock.

4 Null mutexes are considered fair by Intel® TBB because they cannot cause
starvation. They lack any non-static data members.

Mutual Exclusion

Tutorial 53

7.1.3 Upgrade/Downgrade

It is possible to upgrade a reader lock to a writer lock, by using the method
upgrade_to_writer. Here is an example.

std::vector<string> MyVector;
typedef spin_rw_mutex MyVectorMutexType;
MyVectorMutexType MyVectorMutex;

void AddKeyIfMissing(const string& key) {
 // Obtain a reader lock on MyVectorMutex
 MyVectorMutexType::scoped_lock
lock(MyVectorMutex,/*is_writer=*/false);
 size_t n = MyVector.size();
 for(size_t i=0; i<n; ++i)
 if(MyVector[i]==key) return;
 if(!MyVectorMutex.upgrade_to_writer())
 // Check if key was added while lock was temporarily released
 for(int i=n; i<MyVector.size(); ++i)
 if(MyVector[i]==key) return;
 vector.push_back(key);
}

Note that the vector must sometimes be searched again. This is necessary because
upgrade_to_writer might have to temporarily release the lock before it can upgrade.
Otherwise, deadlock might ensue, as discussed in Section 7.1.4. Method
upgrade_to_writer returns a bool that is true if it successfully upgraded the lock

without releasing it, and false if the lock was released temporarily. Thus when
upgrade_to_writer returns false, the code must rerun the search to check that the

key was not inserted by another writer. The example presumes that keys are always
added to the end of the vector, and that keys are never removed. Because of these
assumptions, it does not have to re-search the entire vector, but only the elements
beyond those originally searched. The key point to remember is that when
upgrade_to_writer returns false, any assumptions established while holding a reader
lock may have been invalidated, and must be rechecked.

For symmetry, there is a corresponding method downgrade_to_reader, though in
practice there are few reasons to use it.

7.1.4 Lock Pathologies

Locks can introduce performance and correctness problems. If you are new to locking,
here are some of the problems to avoid:

7.1.4.1 Deadlock

Deadlock happens when threads are trying to acquire more than one lock, and each
holds some of the locks the other threads need to proceed. More precisely, deadlock
happens when:

Intel® Threading Building Blocks

54 2US

• There is a cycle of threads

• Each thread holds at least one lock on a mutex, and is waiting on a mutex for
which the next thread in the cycle already has a lock.

• No thread is willing to give up its lock.

Think of classic gridlock at an intersection – each car has “acquired” part of the road,
but needs to “acquire” the road under another car to get through. Two common ways
to avoid deadlock are:

• Avoid needing to hold two locks at the same time. Break your program into small
actions in which each can be accomplished while holding a single lock.

• Always acquire locks in the same order. For example, if you have “outer
container” and “inner container” mutexes, and need to acquire a lock on one of
each, you could always acquire the “outer sanctum” one first. Another example is
“acquire locks in alphabetical order” in a situation where the locks have names. Or
if the locks are unnamed, acquire locks in order of the mutex’s numerical
addresses.

• Use atomic operations instead of locks, as discussed in the following section.

7.1.4.2 Convoying

Another common problem with locks is convoying. Convoying occurs when the
operating system interrupts a thread that is holding a lock. All other threads must wait
until the interrupted thread resumes and releases the lock. Fair mutexes can make
the situation even worse, because if a waiting thread is interrupted, all the threads
behind it must wait for it to resume.

To minimize convoying, try to hold the lock as briefly as possible. Precompute
whatever you can before acquiring the lock.

To avoid convoying, use atomic operations instead of locks where possible.

Atomic Operations

Tutorial 55

8 Atomic Operations
You can avoid mutual exclusion using atomic operations. When a thread performs an
atomic operation, the other threads see it as happening instantaneously. The
advantage of atomic operations is that they are relatively quick compared to locks,
and do not suffer from deadlock and convoying. The disadvantage is that they only do
a limited set of operations, and often these are not enough to synthesize more
complicate operations efficiently. But nonetheless you should not pass up an
opportunity to use an atomic operation in place of mutual exclusion. Class atomic<T>
implements atomic operations with C++ style.

A classic use of atomic operations is for thread-safe reference counting. Suppose x is
a reference count of type int, and the program needs to take some action when the
reference count becomes zero. In single-threaded code, you could use a plain int for
x, and write --x; if(x==0) action(). But this method might fail for multithreaded
code, because two threads might interleave their operations as shown in the following
table, where ta and tb represent machine registers, and time progresses downwards:

Table 12: Interleaving of Machine Instructions

Thread A Thread B

t
a
 = x

 t
b
 = x

x = t
a
 -

1

 x = t
b
 –

1

if(x==0)

 if(x==0)

Though the code intended for x to be decremented twice, it ends up with only one less
than its original value. Also, another problem results because the test of x is separate
from the decrement: If x starts out as two, and both threads decrement x before
either thread evaluates the if condition, both threads would call action(). To correct

this problem, you need to ensure that only one thread at a time does the decrement
and ensure that the value checked by the “if” is the result of the decrement. You can
do this by introducing a mutex, but it is much faster and simpler to declare x as
atomic<int> and write “if(--x==0) action()”. The method
atomic<int>::operator-- acts atomically; no other thread can interfere.

atomic<T> supports atomic operations on type T, which must be an integral,

enumeration, or pointer type. There are five fundamental operations supported, with
additional interfaces in the form of overloaded operators for syntactic convenience.
For example, ++, --, -=, and +=operations on atomic<T> are all forms of the

Intel® Threading Building Blocks

56 2US

fundamental operation fetch-and-add. The following are the five fundamental
operations on a variable x of type atomic<T>.

Table 13: Fundamental Operations on a Variable x of Type atomic<T>

= x read the value of x

x = write the value of x, and return it

x.fetch_and_store(y) do y=x and return the old value of x

x.fetch_and_add(y) do x+=y and return the old value of x

x.compare_and_swap(y,z) if x equals z, then do x=y. In either case, return old value of
x.

Because these operations happen atomically, they can be used safely without mutual
exclusion. Consider the following example:
atomic<unsigned> counter;

unsigned GetUniqueInteger() {
 return counter.fetch_and_add(1);
}

The routine GetUniqueInteger returns a different integer each time it is called, until
the counter wraps around. This is true no matter how many threads call
GetUniqueInteger simultaneously.

The operation compare_and_swap is fundamental operation to many non-blocking
algorithms. A problem with mutual exclusion is that if a thread holding a lock is
suspended, all other threads are blocked until the holding thread resumes. Non-
blocking algorithms avoid this problem by using atomic operations instead of locking.
They are generally complicated and require sophisticated analysis to verify. However,
the following idiom is straightforward and worth knowing. It updates a shared variable
globalx in a way that is somehow based on its old value:

atomic<int> globalx;

int UpdateX() { // Update x and return old value of x.
 do {
 // Read globalX
 oldx = globalx;
 // Compute new value
 newx = ...expression involving oldx....
 // Store new value if another thread has not changed globalX.
 } while(globalx.compare_and_swap(newx,oldx)!=oldx);
 return oldx;
}

Worse, some threads iterate the loop until no other thread interferes. Typically, if the
update takes only a few instructions, the idiom is faster than the corresponding
mutual-exclusion solution.

Atomic Operations

Tutorial 57

CAUTION: If the following sequence thwarts your intent, then the update idiom is inappropriate:

1. A thread reads a value A from globalx
2. Other threads change globalx from A to B to A

3. The thread in step 1 does its compare_and_swap, reading A and thus not detecting
the intervening change to B.

The problem is called the ABA problem. It is frequently a problem in designing non-
blocking algorithms for linked data structures. See the Internet for more information.

8.1.1 Why atomic<T> Has No Constructors
Template class atomic<T> deliberately has no declared constructors, because
examples like GetUniqueInteger in Chapter 8 are commonly required to work
correctly even before all file-scope constructors have been called. If atomic<T>

declared a constructor, a file-scope instance might be initialized after it had been
referenced.

As for any C++ class with no declared constructors, an object X of type atomic<T> is
automatically initialized to zero in the following contexts:

o X is declared as a file-scope variable or as a static data member of a class.

o x is a member of a class and explicitly listed in the constructor's initializer list.

The code below illustrates these points.
atomic<int> x; // zero-initialized because it is at file scope

class Foo {
 atomic<int> y;
 atomic<int> notzeroed;
 static atomic<int> z;
public:
 Foo() :
 y() // zero-initializes y.
 {
 // notzeroed has unspecified value here.
 }
};

atomic<int> Foo::z; // zero-initialized because it is a static member

8.1.2 Memory Consistency

Some architectures, such as Intel® IA-64 (Itanium®), have “weak memory
consistency”, in which memory operations on different addresses may be reordered by
the hardware for sake of efficiency. The subject is complex, and it is recommended
that the interested reader consult other works (Intel 2002, Robison 2003) on the

Intel® Threading Building Blocks

58 2US

subject. If you are programming only for IA-32 and Intel® 64 architecture platforms,
you can skip this section.

Class atomic<T> permits you to enforce certain ordering of memory operations as
described in Table 14:

Table 14: Ordering Constraints

Kind Description Default For

acquire Operations after the atomic operation never
move over it.

read

release Operations before the atomic operation never
move over it.

write

sequentially
consistent

Operations on either side never move over the
atomic operation and the sequentially
consistent atomic operations have a global
order.

fetch_and_store

fetch_and_add

compare_and_swap

The rightmost column lists the operations that default to a particular constraint. Use
these defaults to avoid unexpected surprises. For read and write, the defaults are the
only constraints available. However, if you are familiar with weak memory
consistency, you might want to change the default sequential consistency for the
other operations to weaker constraints. To do this, use variants that take a template
argument. The argument can be acquire or release, which are values of the enum
type memory_semantics.

For example, suppose various threads are producing parts of a data structure, and
you want to signal a consuming thread when the data structure is ready. One way to
do this is to initialize an atomic counter with the number of busy producers, and as
each producer finishes, it executes:
refcount.fetch_and_add<release>(-1);

The argument release guarantees that the producer's writes to shared memory
occurs before refcount is decremented. Similarly, when the consumer checks
refcount, the consumer must use an acquire fence, which is the default for reads, so

that the consumer's reads of the data structure do not happen until after the
consumer sees refcount become 0.

Timing

Tutorial 59

9 Timing
When measuring the performance of parallel programs, it is usually wall clock time,
not CPU time, that matters. The reason is that better parallelization typically increases
aggregate CPU time by employing more CPUs. The goal of parallelizing a program is
usually to make it run faster in real time.

The class tick_count in Intel® Threading Building Blocks (Intel® TBB) provides a
simple interface for measuring wall clock time. A tick_count value obtained from the
static method tick_count::now() represents the current absolute time. Subtracting
two tick_count values yields a relative time in tick_count::interval_t, which you

can convert to seconds, as in the following example:
tick_count t0 = tick_count::now();
... do some work ...
tick_count t1 = tick_count::now();
printf(“work took %g seconds\n”,(t1-t0).seconds());

Unlike some timing interfaces, tick_count is guaranteed to be safe to use across
threads. It is valid to subtract tick_count values that were created by different

threads. A tick_count difference can be converted to seconds.

The resolution of tick_count corresponds to the highest resolution timing service on

the platform that is valid across threads in the same process. Since the CPU timer
registers are not valid across threads on some platforms, this means that the
resolution of tick_count can not be guaranteed to be consistent across platforms.

Intel® Threading Building Blocks

60 2US

10 Memory Allocation
Intel® Threading Building Blocks (Intel® TBB) provides two memory allocator
templates that are similar to the STL template class std::allocator. These two
templates, scalable_allocator<T> and cache_aligned_allocator<T>, address

critical issues in parallel programming as follows:

• Scalability. Problems of scalability arise when using memory allocators originally
designed for serial programs, on threads that might have to compete for a single
shared pool in a way that allows only one thread to allocate at a time. Use the
memory allocator template scalable_allocator<T> to avoid such scalability
bottlenecks. This template can improve the performance of programs that rapidly
allocate and free memory.

• False sharing. Problems of sharing arise when two threads access different
words that share the same cache line. The problem is that a cache line is the unit
of information interchange between processor caches. If one processor modifies a
cache line and another processor reads (or writes) the same cache line, the cache
line must be moved from one processor to the other, even if the two processors
are dealing with different words within the line. False sharing can hurt
performance because cache lines can take hundreds of clocks to move.

Use the class cache_aligned_allocator<T> to always allocate on a cache line. Two
objects allocated by cache_aligned_allocator are guaranteed to not have false
sharing. If an object is allocated by cache_aligned_allocator and another object
is allocated some other way, there is no guarantee. The interface to
cache_aligned_allocator is identical to std::allocator, so you can use it as the

allocator argument to STL template classes.

The following code shows how to declare an STL vector that uses
cache_aligned_allocator for allocation:

std::vector<int,cache_aligned_allocator<int> >;

TIP: The functionality of cache_aligned_allocator<T> comes at some cost in space,
because it must allocate at least one cache line’s worth of memory, even for a small
object. So use cache_aligned_allocator<T> only if false sharing is likely to be a real

problem.

The scalable memory allocator incorporates McRT technology developed by Intel’s PSL
CTG team.

Memory Allocation

Tutorial 61

10.1 Which Dynamic Libraries to Use
The template scalable_allocator<T> requires the Intel® TBB scalable memory
allocator library as described in Section 2.2. It does not require the Intel® TBB
general library, and can be used independently of the rest of Intel® TBB.

The templates tbb_allocator<T> and cache_aligned_allocator<T> use the
scalable allocator library if it is present otherwise it reverts to using malloc and free.
Thus, you can use these templates even in applications that choose to omit the
scalable memory allocator library.

The rest of Intel® Threading Building Blocks can be used with or without the Intel®
TBB scalable memory allocator library.

Table 15: Templates and Libraries

Template Requirements Notes

scalable_allocator<T> Intel® Threading Building Blocks
scalable memory allocator
library. See Section 2.2

tbb_allocator<T>

cache_aligned_allocator<T>

 Uses the scalable
allocator library if it is
present, otherwise it
reverts to using
malloc and free.

10.2 Automically Replacing malloc and Other C/C++
Functions for Dynamic Memory Allocation
On Windows* and Linux* operating systems, it is possible to automatically replace all
calls to standard functions for dynamic memory allocation (such as malloc) with the
Intel® TBB scalable equivalents. Doing so can sometimes improve application
performance.

10.2.1 Linux C/C++ Dynamic Memory Interface Replacement

Replacements are provided by the proxy library (release version
libtbbmalloc_proxy.so.2, debug version libtbbmalloc_proxy_debug.so.2).

Replacement can be done either via loading the proxy library at run-time (without
changing of executable file via LD_PRELOAD), or by linking with the proxy library.

The proxy library implements the following dynamic memory functions:

Intel® Threading Building Blocks

62 2US

• C library: malloc, calloc, realloc, free

• Standard POSIX* function: posix_memalign

• Obsolete functions: valloc, memalign, pvalloc, mallopt

• Global C++ operators new and delete.

A directory with the proxy library and the appropriate scalable memory allocator
library must be available for dynamic loading. To make it available for loading, either
include it in LD_LIBRARY_PATH or add it to /etc/ld.so.conf.

The following limitations for replacement exist:

• Replacement does not work for applications that use non-standard calls to the
glibc memory allocator.

• Mono is not supported.

Examples

Below is an example of how to set LD_PRELOAD and link a program to use the
replacements.
Set LD_PRELOAD so that loader loads release version of proxy
LD_PRELOAD=libtbbmalloc_proxy.so.2
Link with release version of proxy and scalable allocator
g++ foo.o bar.o -ltbbmalloc_proxy -ltbbmalloc -o a.out

Here is a variation that shows how to link in the debug versions of the library.
Set LD_PRELOAD so that loader loads debug version of proxy
LD_PRELOAD=libtbbmalloc_proxy_debug.so.2
Link with debug version of proxy and scalable allocator
g++ foo.o bar.o -ltbbmalloc_proxy_debug -ltbbmalloc_debug -o a.out

10.2.2 Windows C/C++ Dynamic Memory Interface Replacement
Replacements are provided by a proxy library (release version tbbmalloc_proxy.dll,
debug version tbbmalloc_debug_proxy.dll). Replacement can be done in one of two
ways:

• Add the following header to a source code of any binary which is loaded during
application startup.
#include "tbb/tbbmalloc_proxy.h"

• Alternatively, add the following parameters to the linker options for the .exe or .dll
file that is loaded during application startup.

For 32-bit code (note the triple underscore):
tbbmalloc_proxy.lib /INCLUDE:"___TBB_malloc_proxy"

For 64-bit code (note the double underscore):
tbbmalloc_proxy.lib /INCLUDE:"__TBB_malloc_proxy"

The proxy library implements the following dynamic memory functions:

Memory Allocation

Tutorial 63

• Standard C run-time dynamic memory functions: malloc, calloc, realloc, free

• Global C++ operators new and delete.

• Microsoft* C run-time library function _msize

A directory with the proxy library and the appropriate scalable memory allocator
library must be available for loading. For example, include the directory in %PATH%.

Intel® Threading Building Blocks

64 2US

11 The Task Scheduler
This section introduces the Intel® Threading Building Blocks (Intel® TBB) task
scheduler. The task scheduler is the engine that powers the loop templates. When
practical, you should use the loop templates instead of the task scheduler, because
the templates hide the complexity of the scheduler. However, if you have an algorithm
that does not naturally map onto one of the high-level templates, use the task
scheduler. All of the scheduler functionality that is used by the high-level templates is
available for you to use directly, so you can build new high-level templates that are
just as powerful as the existing ones.

11.1 Task-Based Programming
When striving for performance, programming in terms of threads can be a poor way to
do multithreaded programming. It is much better to formulate your program in terms
of logical tasks, not threads, for several reasons.

• Matching parallelism to available resources

• Faster task startup and shutdown

• More efficient evaluation order

• Improved load balancing

• Higher–level thinking

The following paragraphs explain these points in detail.

The threads you create with a threading package are logical threads, which map onto
the physical threads of the hardware. For computations that do not wait on external
devices, highest efficiency usually occurs when there is exactly one running logical
thread per physical thread. Otherwise, there can be inefficiencies from the mismatch.
Undersubscription occurs when there are not enough running logical threads to keep
the physical threads working. Oversubscription occurs when there are more running
logical threads than physical threads. Oversubscription usually leads to time sliced
execution of logical threads, which incurs overheads as discussed in Appendix A, Costs
of Time Slicing. The scheduler tries to avoid oversubscription, by having one logical
thread per physical thread, and mapping tasks to logical threads, in a way that
tolerates interference by other threads from the same or other processes.

The key advantage of tasks versus logical threads is that tasks are much lighter
weight than logical threads. On Linux systems, starting and terminating a task is

The Task Scheduler

Tutorial 65

about 18 times faster than starting and terminating a thread. On Windows systems,
the ratio is more than 100. This is because a thread has its own copy of a lot of
resources, such as register state and a stack. On Linux, a thread even has its own
process id. A task in Intel® Threading Building Blocks, in contrast, is typically a small
routine, and also, cannot be preempted at the task level (though its logical thread can
be preempted).

Tasks in Intel® Threading Building Blocks are efficient too because the scheduler is
unfair. Thread schedulers typically distribute time slices in a round-robin fashion. This
distribution is called “fair”, because each logical thread gets its fair share of time.
Thread schedulers are typically fair because it is the safest strategy to undertake
without understanding the higher-level organization of a program. In task-based
programming, the task scheduler does have some higher-level information, and so
can sacrifice fairness for efficiency. Indeed, it often delays starting a task until it can
make useful progress. Section 11.4 explains how this works, and how it saves both
time and space.

The scheduler does load balancing. In addition to using the right number of threads, it
is important to distribute work evenly across those threads. As long as you break your
program into enough small tasks, the scheduler usually does a good job of assigning
tasks to threads to balance load. With thread-based programming, you are often stuck
dealing with load-balancing yourself, which can be tricky to get right.

TIP: Design your programs to try to create many more tasks than there are threads, and
let the task scheduler choose the mapping from tasks to threads.

Finally, the main advantage of using tasks instead of threads is that they let you think
at a higher, task-based, level. With thread-based programming, you are forced to
think at the low level of physical threads to get good efficiency, because you have one
logical thread per physical thread to avoid undersubscription or oversubscription. You
also have to deal with the relatively coarse grain of threads. With tasks, you can
concentrate on the logical dependences between tasks, and leave the efficient
scheduling to the scheduler.

11.2 When Task-Based Programming Is
Inappropriate
Using the task scheduler is usually the best approach to threading for performance,
however there are cases when the task scheduler is not appropriate. The task
scheduler is intended for high-performance algorithms composed from non-blocking
tasks. It still works if the tasks rarely block. However, if threads block frequently,
there is a performance loss when using the task scheduler because while the thread is
blocked, it is not working on any tasks. Blocking typically occurs while waiting for I/O
or mutexes for long periods. If threads hold mutexes for long periods, your code is not

Intel® Threading Building Blocks

66 2US

likely to perform well anyway, no matter how many threads it has. If you have
blocking tasks, it is best to use full-blown threads for those. The task scheduler is
designed so that you can safely mix your own threads with Intel® Threading Building
Blocks tasks.

11.3 Simple Example: Fibonacci Numbers
This section uses computation of the nth Fibonacci number as an example. This
example uses an inefficient method5 to compute Fibonacci numbers, but it
demonstrates the basics of a task library using a simple recursive pattern. To get
scalable speedup out of task-based programming, you need to specify a lot of tasks.
This is typically done in Intel® TBB with a recursive task pattern.

This is the serial code:
long SerialFib(long n) {
 if(n<2)
 return n;
 else
 return SerialFib(n-1)+SerialFib(n-2);
}

The top-level code for the parallel task-based version is:
long ParallelFib(long n) {
 long sum;
 FibTask& a = *new(task::allocate_root()) FibTask(n,&sum);
 task::spawn_root_and_wait(a);
 return sum;
}

This code uses a task of type FibTask to do the real work. It involves the following
distinct steps:

1. Allocate space for the task. This is done by a special “overloaded new” and
method task::allocate_root. The _root suffix in the name denotes the fact that
the task created has no parent. It is the root of a task tree. Tasks must be
allocated by special methods so that the space can be efficiently recycled when
the task completes.

2. Construct the task with the constructor FibTask(n,&sum) invoked by new. When
the task is run in step 3, it computes the nth Fibonacci number and stores it into
*sum.

3. Run the task to completion with task::spawn_root_and_wait.

5 An efficient method is to compute

1

01
11 −

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
n

and take the upper left element.

The exponentiation can be done quickly via repeated squaring.

The Task Scheduler

Tutorial 67

The real work is inside struct FibTask. Its definition is shown below.

class FibTask: public task {
public:
 const long n;
 long* const sum;
 FibTask(long n_, long* sum_) :
 n(n_), sum(sum_)
 {}
 task* execute() { // Overrides virtual function task::execute
 if(n<CutOff) {
 *sum = SerialFib(n);
 } else {
 long x, y;
 FibTask& a = *new(allocate_child()) FibTask(n-1,&x);
 FibTask& b = *new(allocate_child()) FibTask(n-2,&y);
 // Set ref_count to "two children plus one for the wait".
 set_ref_count(3);
 // Start b running.
 spawn(b);
 // Start a running and wait for all children (a and b).
 spawn_and_wait_for_all(a);
 // Do the sum
 *sum = x+y;
 }
 return NULL;
 }
};

It is a relatively large piece of code, compared to SerialFib, because it expresses
parallelism without the help of any extensions to standard C++.

Like all tasks scheduled by Intel® TBB, FibTask is derived from class task. Fields n
and sum hold respectively the input value and pointer to the output. These are copies
of the arguments passed to the constructor for FibTask. Method execute does the
actual computation. Every task must provide a definition of execute that overrides the
pure virtual method task::execute. The definition should do the work of the task,
and return either NULL, or a pointer to the next task to run. In this simple example, it
returns NULL. More is said about the non-NULL case in Section 11.5.3.

Method FibTask::execute()does the following:

• Checks if n is so small that serial execution would be faster. Finding the right
value of CutOff requires some experimentation. A value of at least 16 works well
in practice for getting the most of the possible speedup out of this example.
Resorting to a sequential algorithm when the problem size becomes small is
characteristic of most divide-and-conquer patterns for parallelism. Finding the
point at which to switch requires experimentation, so be sure to write your code in
a way that allows you to experiment.

• If the else is taken, the code creates and runs two child tasks that compute the
(n-1)th and (n-2)th Fibonacci numbers. Here, inherited method
allocate_child() is used to allocate space for the task. Remember that the top-
level routine ParallelFib used allocate_root() to allocate space for a task. The

Intel® Threading Building Blocks

68 2US

difference is that here the task is creating child tasks. This relationship is indicated
by the choice of allocation method.

• Calls set_ref_count(3). The number 3 represents the two children and an
additional implicit reference that is required by method spawn_and_wait_for_all.
Make sure to call set_reference_count(3) before spawning any children. Failure
to do so results in undefined behavior. The debug version of the library usually
detects and reports this type of error.

• Spawns two child tasks. Spawning a task indicates to the scheduler that it can run
the task whenever it chooses, possibly in parallel with other tasks. The execution
policy is explained later in Section 11.4. The first spawning, by method spawn,
returns immediately without waiting for the child task to start executing. The
second spawning, by method spawn_and_wait_for_all, causes the parent to wait
until all currently allocated child tasks are finished.

• After the two child tasks complete, the parent computes x+y and stores it in *sum.

At first glance, the parallelism might appear to be limited, because the task creates
only two child tasks. The trick here is recursive parallelism. The two child tasks each
create two child tasks, and so on, until n<Cutoff. This chain reaction creates a lot of

potential parallelism. The advantage of the task scheduler is that it turns this potential
parallelism into real parallelism in a very efficient way, because it chooses tasks to run
in a way that keeps physical threads busy with relatively little context switching.

11.4 How Task Scheduling Works
The scheduler evaluates a task graph. The graph is a directed graph where each node
is a task. Each task points to its successor, which is another task that is waiting on it
to complete, or NULL. Method task::parent() gives you read-only access to the
successor pointer. Each task has a refcount that counts the number of tasks that have
it as a successor. The graph evolves over time.

The Task Scheduler

Tutorial 69

Figure 7: Snapshot of Task Graph for the Fibonacci Example

Figure 7 shows a snapshot of a task graph for the Fibonacci example where:

• Tasks A, B, and C spawned child tasks that they are waiting upon. Their refcount
values are the number of children in flight plus one. The extra one is part of a
convention for explicit waiting that is explained later in this section.

• Task D is running, but has not yet spawned any children, and so it has not had to
set its reference count yet.

• Tasks E, F, and G have been spawned, but have not yet started executing.

The scheduler runs tasks in a way that tends to minimize both memory demands and
cross-thread communication. The intuition is that a balance must be reached between
depth-first and breadth-first execution. Assuming that the tree is finite, depth-first is
best for sequential execution for the following reasons:

• Strike when the cache is hot. The deepest tasks are the most recently created
tasks, and therefore are hottest in cache. Also, if they can complete, then task C
can continue executing, and though not the hottest in cache, it is still warmer than
the older tasks above it.

• Minimize space. Executing the shallowest task leads to breadth-first unfolding of
the tree. This creates an exponential number of nodes that coexist
simultaneously. In contrast, depth-first execution creates the same number of
nodes, but only a linear number have to exist at the same time, because it stacks
the other ready tasks (E, F, and G in the picture).

Though breadth-first execution has a severe problem with memory consumption, it
does maximize parallelism if you have an unlimited number of physical threads. Since

refcount=2

refcount=?

refcount=3

refcount=?

refcount=3

refcount=?

refcount=?

task A

task B

task C

task D

task G

task F

task E

Intel® Threading Building Blocks

70 2US

physical threads are limited, it is better to use only enough breadth-first execution to
keep the available processors busy.

The scheduler implements a hybrid of depth-first and breadth-first execution. Each
thread has its own deque6 of tasks that are ready to run. When a thread spawns a
task, it pushes it onto the bottom of its deque. Figure 8 shows a snapshot of a
thread's deque that corresponds to the task graph in Figure 7.

task G

task F

task E bottom (youngest task)

top (oldest task)

Figure 8: A Thread's Deque

When a thread participates in task graph evaluation, it continually executes a task
obtained by the first rule below that applies:

1. Get the task returned by method execute for the previous task. This rule does not
apply if execute returned NULL.

2. Pop a task from the bottom of its own deque. This rule does not apply if the deque
is empty.

3. Steal a task from the top of another randomly chosen deque. If the chosen deque
is empty, the thread tries this rule again until it succeeds.

Rule 1 is discussed in Section 2 11.5.3. The overall effect of rule 2 is to execute the
youngest task spawned by the thread, which causes depth-first execution until the
thread runs out of work. Then rule 3 applies. It steals the oldest task spawned by
another thread, which causes temporary breadth-first execution that converts
potential parallelism into actual parallelism.

Getting a task is always automatic; it happens as part of task graph evaluation.
Putting a task into a deque can be explicit or implicit. A thread always pushes a task
onto the bottom of its own deque, never another thread's deque. Only theft can
transfer a task spawned by one thread to another thread.

There are three conditions that cause a thread to push a task onto its deque:

• The task is explicitly spawned by the thread, for example, by method spawn.

• A task has been marked for re-execution by method
task::recycle_to_reexecute.

• The thread completes execution of the last predecessor task and after doing so
implicitly decrements the task's reference count to zero. If so, the thread implicitly
pushes the successor task onto the bottom of its deque. Completing the last child

6 Double-ended queue.

The Task Scheduler

Tutorial 71

does not cause the reference count to become zero if the reference count includes
extra references.

The example in Section 11.3 does not have implicit pushing, because it explicitly waits
for children to complete. It uses set_ref_count(3) for a task having only two
children. The extra reference protects the successor from being implicitly pushed.
Section 11.5.2 has a similar example that employs implicit pushing. It uses
set_ref_count(2) for a task having two children, so that that task executes
automatically when the children complete.

To summarize, the task scheduler's fundamental strategy is "breadth-first theft and
depth-first work". The breadth-first theft rule raises parallelism sufficiently to keep
threads busy. The depth-first work rule keeps each thread operating efficiently once it
has sufficient work to do.

11.5 Useful Task Techniques
This section explains programming techniques for making best use of the scheduler.

11.5.1 Recursive Chain Reaction

The scheduler works best with tree-structured task graphs, because that is where the
strategy of “breadth-first theft and depth-first work” applies very well. Also, tree-
structured task graphs allow fast creation of many tasks. For example, if a master
task tries to create N children directly, it will take O(N) steps. But with tree structured
forking, it takes only O(lg(N)) steps.

Often domains are not obviously tree structured, but you can easily map them to
trees. For example, parallel_for (in tbb/parallel_for) works over an iteration
space, for example, a sequence of integers. Section 3.4 shows how the iteration space
is defined in terms of how to split it into two halves. Template function parallel_for

uses that definition to recursively map the iteration space onto a binary tree.

11.5.2 Continuation Passing
Method spawn_and_wait_for_all enables an executing parent task to wait until its
child tasks complete, but can incur some inefficiency. When a thread calls
spawn_and_wait_for_all, it keeps busy until all of the childen complete by working
on other tasks. Sometimes the parent task becomes ready to continue, but cannot do
so immediately because its thread is still executing one of the other tasks. The
solution is for the parent to not wait on its children, and instead spawn both children
and return. The children are allocated not as children of the parent, but as children of
the parent’s continuation task. Any idle thread can steal and run the continuation task
when its children complete.

Intel® Threading Building Blocks

72 2US

The “continuation-passing” variant of FibTask is shown below. Red strikethough text
denotes deletions and blue text denotes insertions relative to the similar example in
Section 11.3.
struct FibContinuation: public task {
 long* const sum;
 long x, y;
 FibContinuation(long* sum_) : sum(sum_) {}
 task* execute() {
 *sum = x+y;
 return NULL;
 }
};

struct FibTask: public task {
 const long n;
 long* const sum;
 FibTask(long n_, long* sum_) :
 n(n_), sum(sum_)
 {}
 task* execute() {
 if(n<CutOff) {
 *sum = SerialFib(n);
 return NULL;
 } else {
 FibContinuation& c =
 *new(allocate_continuation()) FibContinuation(sum);
 FibTask& a = *new(c.allocate_child()) FibTask(n-2,&c.x);
 FibTask& b = *new(c.allocate_child()) FibTask(n-1,&c.y);
 // Set ref_count to "two children plus one for the wait".
 c.set_ref_count(23);
 spawn(b);
 spawn(a);
 return NULL;
 }
 }
};

The following differences between the original version and the continuation version
need to be understood:

The big difference is that in the original version x and y were local variables in method
execute. In the continuation-passing version, they cannot be local variables, because

the parent returns before its children complete. Instead, they are fields of the
continuation task FibContinuation.

The allocation logic is changed. The continuation is allocated with
allocate_continuation. It is similar to allocate_child, except that it forwards the
successor of this to c, and sets the successor of this to NULL. The following figure

summarizes the transformation:

The Task Scheduler

Tutorial 73

refcount refcount

 null

this this c

refcount=0

(successor) (successor)

Figure 9: Action of allocate_continuation

A property of the transformation is that it does not change the reference count of the
successor, and thus avoids interfering with reference-counting logic.

The reference count is set to 2, the number of children. In the original version, it was
set to 3 because spawn_and_wait_for_all required the augmented count.

Furthermore, the code sets the reference count of the continuation instead of the
parent, because it is the execution of the continuation that waits on the children.

The pointer sum is passed to the continuation by the constructor, because it is now
FibContinuation that stores into *sum. The children are still allocated with
allocate_child, but notice that now they are allocated as children of the
continuation c, not the parent. This is so that c, and not this, becomes the successor

of the children that is automatically spawned when both children complete. If you
accidentally used this.allocate_child(), then the parent task would run again after

both children completed.

If you remember how the original top-level code, ParallelFib, was written, you

might be worried now that continuation-passing style breaks the code, because now
the root FibTask completes before the children are done, and the top-level code used
spawn_root_and_wait to wait on the root FibTask. This is not a problem, because
spawn_root_and_wait is designed to work correctly with continuation-passing style.
An invocation spawn_root_and_wait(x) does not actually wait for x to complete.
Instead, it constructs a dummy successor of x, and waits for the successors’s
reference count to be decremented. Because allocate_continuation forwards this

dummy successor to the continuation, the dummy successor’s reference count is not
decremented until the continuation completes.

11.5.3 Scheduler Bypass

Scheduler bypass is an optimization where you directly specify the next task to run.
Continuation-passing style often opens up an opportunity for scheduler bypass. For
example, at the end of the continuation-passing example in the previous section,
method execute() spawns task “a” and returns. By the execution rules in Section
 11.4, that sequence causes the executing thread to do the following:

1. Push task “a” onto the thread's deque.

Intel® Threading Building Blocks

74 2US

2. Return from method execute().

3. Pop task “a” from the thread's deque, unless it is stolen by another thread.

Steps 1 and 3 introduce unnecessary deque operations, or worse yet, permit stealing
that can hurt locality without adding significant parallelism. Method execute()can
avoid these problems by returning a pointer to “a” instead of spawning it. By
execution rule 1, “a” becomes the next task executed by the thread. Furthermore, this
approach guarantees that the thread executes “a”, not some other thread.

The following example shows the necessary changes to the example in the previous
section:
struct FibTask: public task {
 ...
 task* execute() {
 if(n<CutOff) {
 *sum = SerialFib(n);
 return NULL;
 } else {
 FibContinuation& c =
 *new(allocate_continuation()) FibContinuation(sum);

 FibTask& a = *new(c.allocate_child()) FibTask(n-2,&c.x);
 FibTask& b = *new(c.allocate_child()) FibTask(n-1,&c.y);
 // Set ref_count to "two children".
 c.set_ref_count(2);
 spawn(b);
 spawn(a);
 return NULL;
 return &a;
 }
 }
};

11.5.4 Recycling

Not only can you bypass the scheduler, you might also bypass task allocation and
deallocation. The opportunity frequently arises for recursive tasks that do scheduler
bypass. Consider the example in the previous section. After it creates continuation
task “c”, it performs the following steps:

1. Create child task “a”.

2. Create and spawn child task “b”

3. Return from method execute() with pointer to task “a”.

4. Destroy parent task.

The Task Scheduler

Tutorial 75

Recycling the parent as “a” can avoid the task creation destruction done by steps 1
and 4. Furthermore, in many scenarios step 1 copies state from the parent. Recycling
the parent as task “a” eliminates the copying overhead.

The following code shows the changes required to implement recycling in the
scheduler-bypass example.
struct FibTask: public task {
 const long n;
 long* const sum;
 ...
 task* execute() {
 if(n<CutOff) {
 *sum = SerialFib(n);
 return NULL;
 } else {
 FibContinuation& c =
 *new(allocate_continuation()) FibContinuation(sum);
 FibTask& a = *new(c.allocate_child()) FibTask(n-2,&c.x);
 FibTask& b = *new(c.allocate_child()) FibTask(n-1,&c.y);
 recycle_as_child_of(c);
 n -= 2;
 sum = &c.x;
 // Set ref_count to "two children".
 c.set_ref_count(2);
 spawn(b);
 return &a;
 return this;
 }
 }
};

The child that was previously called a is now the recycled this. The call
recycle_as_child_of(c) has several effects:

• It marks this as to not be automatically destroyed when execute() returns.

• It sets the successor of this to be c.

To prevent reference-counting problems, recycle_as_child_of has a prerequisite
that this must have a NULL successor. This is the case after allocate_continuation
occurs. Figure 10 shows how allocate_continuation and recycle_as_child_of
transform the task graph.

Intel® Threading Building Blocks

76 2US

refcount

this

(successor)

refcount

null

this

c

refcount=0

(successor)

refcount

this

c

refcount=0

(successor)

allocate_continuation recycle_as_child_of

Figure 10: Action of allocate_continuation Followed By recycle_as_child_of

When recycling, ensure that the original task’s fields are not used after the task might
start running. The example uses the scheduler bypass trick to ensure this. You can
spawn the recycled task instead, as long as none of its fields are used after the
spawning. This restriction applies even to any const fields, because after spawning
the task might run and be destroyed before the parent progresses any further.

NOTE: A similar method, task::recycle_as_continuation() recycles a task as a

continuation instead of a child.

11.5.5 Empty Tasks

You might need a task that does not do anything but wait for its children to complete.
The header task.h defines class empty_task for this purpose. Its definition is as
follows:
// Task that does nothing. Useful for synchronization.
class empty_task: public task {
 /*override*/ task* execute() {
 return NULL;
 }
};

A good example of empty_task in action is provided in tbb/parallel_for.h, in
method start_for::execute(). The code there uses continuation-passing style. It
creates two child tasks, and uses an empty_task as the continuation when the child
tasks complete. The top level routine parallel_for (in tbb/parallel_for.h) waits

on the root.

The Task Scheduler

Tutorial 77

11.6 General Acyclic Graphs of Tasks
The task graphs considered so far have a tree structure where each task has a single
successor task::parent() waiting for it to complete. To accommodate more complex
graphs where a task has multiple successors, Intel® TBB 2.2 has methods that allow
direct manipulation of a task's reference count.

For example, consider a MxN array of tasks where each task depends on the tasks to
the left and above it. Figure 11 shows such an example:

x0,0 x0,1 x0,2 x0,3

x1,0 x1,1 x1,2 x1,3

x2,0 x2,1 x2,2 x2,3

Figure 11: Task graph where some tasks have more than one successor.

The following code evaluates such a task graph, where each task computes a sum of
inputs from its neighbors to the left and above it.

const int M=3, N=4;

class DagTask: public tbb::task {
public:
 const int i, j;
 // input[0] = sum from above, input[1] = sum from left
 double input[2];
 double sum;
 // successor[0] = successor below, successor[1] = successor to right
 DagTask* successor[2];
 DagTask(int i_, int j_) : i(i_), j(j_) {
 input[0] = input[1] = 0;
 }
 task* execute() {
 __TBB_ASSERT(ref_count()==0, NULL);
 sum = i==0 && j==0 ? 1 : input[0]+input[1];
 for(int k=0; k<2; ++k)
 if(DagTask* t = successor[k]) {
 t->input[k] = sum;
 if(t->decrement_ref_count()==0)
 spawn(*t);
 }
 return NULL;
 }
};

double BuildAndEvaluateDAG() {
 DagTask* x[M][N];
 for(int i=M; --i>=0;)
 for(int j=N; --j>=0;) {

Intel® Threading Building Blocks

78 2US

 x[i][j] = new(tbb::task::allocate_root()) DagTask(i,j);
 x[i][j]->successor[0] = i+1<M ? x[i+1][j] : NULL;
 x[i][j]->successor[1] = j+1<N ? x[i][j+1] : NULL;
 x[i][j]->set_ref_count((i>0)+(j>0));
 }
 // Add extra reference to last task, because it is waited on
 // by spawn_and_wait_for_all.
 x[M-1][N-1]->increment_ref_count();
 // Wait for all but last task to complete.
 x[M-1][N-1]->spawn_and_wait_for_all(*x[0][0]);
 // Last task is not executed implicitly, so execute it explicitly.
 x[M-1][N-1]->execute();
 double result = x[M-1][N-1]->sum;
 // Destroy last task.
 task::destroy(*x[M-1][N-1]);
 return result;
}

Function BuildAndEvaluateDAG first builds an array of DagTask. It allocates each task
as a root task because task::parent() is not used to record successor relationships.
The reference count of each task is initialized to the number of its predecessors. It
evaluates the graph by spawning the initial task x[0][0] and waiting for x[M-1][N-1]
to complete. As each task completes, it decrements the reference count of its
successors, and spawns any successor whose count becomes zero. Given a sufficient
number of processors, execution sweeps diagonally over the graph like a wave front
from top left to bottom right.

The last task x[M-1][N-1] requires special handling because of its special interaction
with BuildAndEvaluateDAG:

• The last task is used to wait explicitly for other tasks to complete. Method
wait_for_all requires that the last task's reference count be set to one more
than the number of its predecessors. Thus the last task is not implicitly executed
when its predecessors complete.

• The value sum must be extracted from the last task before it is destroyed.

Hence the example explicitly executes the last task, extracts its sum, and then
destroys it.

11.7 Task Scheduler Summary
The task scheduler works most efficiently for fork-join parallelism with lots of forks, so
that the task-stealing can cause sufficient breadth-first behavior to occupy threads,
which then conduct themselves in a depth-first manner until they need to steal more
work.

The task scheduler is not the simplest possible scheduler because it is designed for
speed. If you need to use it directly, it may be best to hide it behind a higher-level

The Task Scheduler

Tutorial 79

interface, as the templates parallel_for, parallel_reduce, etc. do. Some of the
details to remember are:

• Always use new(allocation_method) T to allocate a task, where allocation_method
is one of the allocation methods of class task. Do not create local or file-scope
instances of a task.

• All siblings should be allocated before any start running, unless you are using
allocate_additional_child_of.

• Exploit continuation passing, scheduler bypass, and task recycling to squeeze out
maximum performance.

• If a task completes, and was not marked for re-execution, it is automatically
destroyed. Also, its successor’s reference count is decremented, and if it hits zero,
the successor is automatically spawned.

Intel® Threading Building Blocks

80 2US

Appendix A Costs of Time Slicing
Time slicing enables there to be more logical threads than physical threads. Each
logical thread is serviced for a time slice by a physical thread. If a thread runs longer
than a time slice, as most do, it relinquishes the physical thread until it gets another
turn. This appendix details the costs incurred by time slicing.

The most obvious is the time for context switching between logical threads. Each
context switch requires that the processor save all its registers for the previous logical
thread that it was executing, and load its registers for the next logical thread that it
runs.

A more subtle cost is cache cooling. Processors keep recently accessed data in cache
memory, which is very fast, but also relatively small compared to main memory.
When the processor runs out of cache memory, it has to evict items from cache and
put them back into main memory. Typically, it chooses the least recently used items
in the cache. (The reality of set-associative caches is a bit more complicated, but this
is not a cache primer.) When a logical thread gets its time slice, as it references a
piece of data for the first time, this data will be pulled into cache, taking hundreds of
cycles. If is referenced frequently enough to not be evicted, each subsequent
reference will find it in cache, and only take a few cycles. Such data is called “hot in
cache”. Time slicing undoes this, because if a thread A finishes its time slice, and
subsequently thread B runs on the same physical thread, B will tend to evict data that
was hot in cache for A, unless both threads need the data. When thread A gets its
next time slice, it will need to reload evicted data, at the cost of hundreds of cycles for
each cache miss. Or worse yet, the next time slice for thread A may be on a different
physical thread that has a different cache altogether.

Another cost is lock preemption. This happens if a thread acquires a lock on a
resource, and its time slice runs out before it releases the lock. No matter how short a
time the thread intended to hold the lock, it is now going to hold it for at least as long
as it takes for its next turn at a time slice to come up. Any other threads waiting on
the lock either pointlessly busy-wait, or lose the rest of their time slice. The effect is
called convoying, because the threads end up “bumper to bumper” waiting for the
preempted thread in front to resume driving.

The Task Scheduler

Tutorial 81

Appendix B Mixing With Other Threading
Packages

Intel® Threading Building Blocks (Intel® TBB) can be mixed with other threading
packages. No special effort is required to use any part of Intel® TBB 2.2 with other
threading packages.7

Here is an example that parallelizes an outer loop with OpenMP and an inner loop with
Intel® Threading Building Blocks.
int M, N;

struct InnerBody {
 ...
};

void TBB_NestedInOpenMP() {
#pragma omp parallel
 {
#pragma omp for
 for(int i=0; i<M; ++j) {
 parallel_for(blocked_range<int>(0,N,10), InnerBody(i));
 }
 }
}

The details of InnerBody are omitted for brevity. The #pragma omp parallel causes
the OpenMP to create a team of threads, and each thread executes the block
statement associated with the pragma. The #pragma omp for indicates that the

compiler should use the previously created thread team to execute the loop in
parallel.

Here is the same example written using POSIX* Threads.
int M, N;

struct InnerBody {
 ...
};

void* OuterLoopIteration(void* args) {
 int i = (int)args;

7 Intel® TBB 2.1 required creating a tbb::task_scheduler_init object in each
thread that invokes the task scheduler or a parallel algorithm. Intel® TBB 2.2
automatically creates the task scheduler.

Intel® Threading Building Blocks

82 2US

 parallel_for(blocked_range<int>(0,N,10), InnerBody(i));
}

void TBB_NestedInPThreads() {
 std::vector<pthread_t> id(M);
 // Create thread for each outer loop iteration
 for(int i=0; i<M; ++i)
 pthread_create(&id[i], NULL, OuterLoopIteration, NULL);
 // Wait for outer loop threads to finish
 for(int i=0; i<M; ++i)
 pthread_join(&id[i], NULL);
}

The Task Scheduler

Tutorial 83

References
[1] “Memory Consistency & .NET”, Arch D. Robison, Dr. Dobb’s

Journal, April 2003.

[2] A Formal Specification of Intel® Itanium® Processor Family
Memory Ordering, Intel Corporation, October 2002.

[3] “Cilk: An Efficient Multithreaded Runtime System”, Robert
Blumofe, Christopher Joerg, Bradley Kuszmaul, C. Lesierson,
and Keith Randall, Proceedings of the fifth ACM SIGPLAN
symposium on Principles and practice of parallel
programming, 1995.

	 Legal Information
	1 Introduction
	1.1 Document Structure
	1.2 Benefits

	2 Package Contents
	2.1 Debug Versus Release Libraries
	2.2 Scalable Memory Allocator
	2.3 Windows* OS
	2.3.1 Microsoft Visual Studio* Code Examples
	2.3.2 Integration Plug-In for Microsoft Visual Studio* Projects

	2.4 Linux* OS
	2.5 Mac OS* X Systems
	2.6 Open Source Version

	3 Parallelizing Simple Loops
	3.1 Initializing and Terminating the Library
	3.2 parallel_for
	3.2.1 Lambda Expressions
	3.2.2 Automatic Chunking
	3.2.3 Controlling Chunking
	3.2.4 Bandwidth and Cache Affinity
	3.2.5 Partitioner Summary

	3.3 parallel_reduce
	3.3.1 Advanced Example

	3.4 Advanced Topic: Other Kinds of Iteration Spaces
	3.4.1 Code Samples

	4 Parallelizing Complex Loops
	4.1 Cook Until Done: parallel_do
	4.1.1 Code Sample

	4.2 Working on the Assembly Line: pipeline
	4.2.1 Using Circular Buffers
	4.2.2 Throughput of pipeline
	4.2.3 Non-Linear Pipelines

	4.3 Summary of Loops and Pipelines

	5 Exceptions and Cancellation
	5.1 Cancellation Without An Exception
	5.2 Cancellation and Nested Parallelism

	6 Containers
	6.1 concurrent_hash_map
	6.1.1 More on HashCompare

	6.2 concurrent_vector
	6.2.1 Clearing is Not Concurrency Safe

	6.3 Concurrent Queue Classes
	6.3.1 Iterating Over a Concurrent Queue for Debugging
	6.3.2 When Not to Use Queues

	6.4 Summary of Containers

	7 Mutual Exclusion
	7.1.1 Mutex Flavors
	7.1.2 Reader Writer Mutexes
	7.1.3 Upgrade/Downgrade
	7.1.4 Lock Pathologies
	7.1.4.1 Deadlock
	7.1.4.2 Convoying

	8 Atomic Operations
	8.1.1 Why atomic<T> Has No Constructors
	8.1.2 Memory Consistency

	9 Timing
	10 Memory Allocation
	10.1 Which Dynamic Libraries to Use
	10.2 Automically Replacing malloc and Other C/C++ Functions for Dynamic Memory Allocation
	10.2.1 Linux C/C++ Dynamic Memory Interface Replacement
	10.2.2 Windows C/C++ Dynamic Memory Interface Replacement

	11 The Task Scheduler
	11.1 Task-Based Programming
	11.2 When Task-Based Programming Is Inappropriate
	11.3 Simple Example: Fibonacci Numbers
	11.4 How Task Scheduling Works
	11.5 Useful Task Techniques
	11.5.1 Recursive Chain Reaction
	11.5.2 Continuation Passing
	11.5.3 Scheduler Bypass
	11.5.4 Recycling
	11.5.5 Empty Tasks

	11.6 General Acyclic Graphs of Tasks
	11.7 Task Scheduler Summary

	Appendix A Costs of Time Slicing
	Appendix B Mixing With Other Threading Packages

