
Wide Studio
Programming Guide

Wide Studio Manual 1.0

Contents

A The event procedures 1

1 How to access to the gui instaces 1
1.1 Accessing of the instance by the parameter of the event procedure 1
1.2 Accesing of the instance by using the instance management 1
1.3 Accesing of the global instance directly . 2

2 How to acccess a value of the property of the instance 3
2.1 How to get a value of the properties . 3
2.2 Setting of property . 4
2.3 Updating the instance to refrect the changed value . 4

3 How to cast the WSCbase* into the specified class 5

4 How to access to the method of the specified class 7

5 How to get the parent instace 8
5.1 How to get the parent top level window . 8

6 How to get the children of the instace 9
6.1 How to get the child by the specified name . 9
6.2 How to get the children . 9
6.3 How to get all of the children recursively . 10
6.4 How to get all of the children of the parent application window 10

7 How to execute the event procedures of the instances 11
7.1 How to execute the event procedures by the specified name 11
7.2 How to execute the event procedures by the specified trigger 11

8 How to draw the instances 12

9 How to update the instance 12
9.1 How to draw the instance . 12

10 How to move the position of the instances 14

11 How to create/delete the instances 15
11.1 How to create the instance . 15
11.2 How to delete the instance . 15

12 How to use of the timer 16

13 How to execute the procedure after an interval 16

14 How to execute the procedure after in cycles 17

15 How to use the global key hook function 18

- i -

Wide Studio Manual 1.0

16 How to select the key events on the input field 19

17 How to add the event procedure on the programs 20

18 How to access to the arrayed instance. 21

19 How to indicate a dialog on the WSEV EXIT event procedure 22

20 How to examine which mouse button is pressed 24

B The sample of the event procedures 25

1 The sample of the event procedures for WSCvlabel 25
1.1 Making the WSCvlabel instance click-able . 25
1.2 Making the WSCvlabel instance select-able . 26
1.3 Making the WSCvlabel instance highlight-able . 27
1.4 Making a group of selectable WSCvlabel instances . 28

2 The sample of the event procedures for WSCvifield 30
2.1 Executing some event procedures by return key . 30
2.2 Clearing the last input string on starting of next input 30

3 Automatic geometry adjustment with the anchors 33

4 The pulldown menu and the menu area 34
4.1 What is the menu area . 34
4.2 Try to use the pulldown menu . 34
4.3 Notice of the pulldown menu . 35

5 The list 36
5.1 Setting of the items by the method . 36
5.2 Setting of the items by the property . 36
5.3 Setting of the items from the file directly . 37
5.4 Setting of the items from the other instance . 38

6 The verbose list 40
6.1 Setting of the items by the method . 40
6.2 Setting of the items by the property . 40
6.3 Setting of the items from the file directly . 41
6.4 Setting of the items from the other instance . 42

7 The tree list 43
7.1 Setting of the items by the method . 43
7.2 Setting of the items by the property . 44
7.3 Setting of the items from the file directly . 44
7.4 Setting of the items from the other instance . 45

- ii -

Wide Studio Manual 1.0

8 The user dialog 47
8.1 How to make a simple user dialog . 47
8.2 Controling to indicate the user dialog . 47

9 The file selection dialog 52
9.1 Indication of the file selection dialog . 52

10 The scrolled form 54
10.1 How to use the virtual scrolling . 54

11 The separated form 55

12 How to set the width of the separated area 55

13 The drawing area 56
13.1 How to draw pictures on the drawing area . 56
13.2 How to draw images(JPG,BMP) on the drawing area . 57

14 The indexed form 58

15 The balloon help 59
15.1 How to indicate the balloon help . 59

16 The timer 60
16.1 How to use the timer . 60

17 The wizard dialog 61

18 The controlling of the position of the instances by the offset 62
18.1 The offset of X,Y coordinate . 62
18.2 The scaling offset of the size of the intance . 62

19 The memory device class 63
19.1 How to create the memory device class . 63

20 Network communication using TCP/IP 66
20.1 How to use network communication using TCP sockets 66
20.2 How to use a broadcast network communication using UDP socket 69

21 Database access using the database class 71
21.1 Database access through ODBC . 71
21.2 Database access through PostgreSQL interface . 72
21.3 Creating the table . 73
21.4 Store data in the table . 73
21.5 Referring data on the table . 74

C The user defined classes 76

- iii -

Wide Studio Manual 1.0

1 How to access to the member instances 76
1.1 How to access to the member instances in the class event procedures 76
1.2 How to access to the member instances in the method 76

D The store function 77

1 How to load the stored application window directly from the program 77
1.1 How to load the stored application window directly from the program 77
1.2 How to load the stored partial application window directly from the program 78

2 How to delete the loaded application window 79
2.1 How to delete the loaded application window . 79
2.2 How to delete the loaded partial application window . 79

E The remote instance function 80

1 Accessing a remote instance 80
1.1 Accessing a remote instance . 80
1.2 Casting a remote instance . 80

F Samples and demonstrations 82

1 Sample:1 (Hello World) 82

2 Sample:2(Various kinds of classes) 84

3 Sample:3 (label) 86

4 Sample:4 (A calculator) 87

- iv -

Wide Studio Manual 1.0

A The event procedures

1 How to access to the gui instaces

In the event procedures, It Is the most fundamental to access to the instances. So I will explain the various
kinds of accessing the instance in this section.

• Accessing of the instance by the parameter of the event procedure
In the event procedure which the instance has, we use the parameter of the procedure to access the
instance,

• Accesing of the instance by using the instance management
We use the instance management to access the instance except it which the event procedure is set.

• Accesing of the global instance directly
You can use the global instance to access directly. it is easy to access and is good performance, but
it makes the possibility of porting worse.

1.1 Accessing of the instance by the parameter of the event procedure

void event_procedure(WSCbase* object){
//accessing the instance.
object->setProperty(WSNlabelString,"HELLO WORLD");

}

the pointer: object is the instace which is the client of the event procedure that fired. the type is
WSCbase*, so you can access the method of WSCbase, but you must cast the pointer by the method:cast()
to access the other subclass: see the capter of casting sub class.

1.2 Accesing of the instance by using the instance management

The instance management returns the instance by name.

The instance management
class

The instance acquisition method

WSCbaseList WSCbaseList* WSGIappObjectList()

To access of the instace as follows:

#include "WSCbaseList.h" //to access WSGIappObjectList()
...
void event_procedure(WSCbase* object){

//Acquisition of the instance(1)
char* class_name = "WSCvlabel"; //Seek from the instance of WSCvlabel class
char* obj_name = "newvlab_001"; //the instance name is newvlab_001
WSCbase* object = WSGIappObjectList()->getInstance(class_name,obj_name);
object->setProperty(WSNlabelString,"HELLO WORLD");

//Acquisition of the instance(2)

- 1 -

Wide Studio Manual 1.0

char* class_name2 = "WSCbase"; //Seek from all the instances.
char* obj_name2 = "newvlab_002"; //the instace name is newvlab_002
WSCbase* object2 = WSGIappObjectList()->getInstance(class_name2,obj_name2);
object2->setProperty(WSNlabelString,"HELLO WORLD");

The variable: obejct is the seeked instance by the specified class name and the specified instance name.
If you do not want to specify the class name, you can pass ”WSCbase”, it seeks from all the instaces.

1.3 Accesing of the global instance directly

Make the instance globa,you can access it directly. See the capter [Setting of global instance] of Application
Builder User’s Guide to make it global.

#include "WSCvlabel.h" //to access WSCvlabel class
...
void event_procedure(WSCbase* object){
//extern of the global instance
extern WSCvlabel* newvlab_001;

//Access the instance of WSCvlabel*: newvlab_001
newvlab_001->setProperty(WSNlabelString,"HELLO WORLD");

- 2 -

Wide Studio Manual 1.0

2 How to acccess a value of the property of the instance

In the event program, you can access the property of the instance by the method: get/setProperty().

the access method Description
getProperty get a value of the specified property
setProperty set a value to the specified property

2.1 How to get a value of the properties

You can get a value of the property by the method of WSCbase: getProerty().

void event_procedure(WSCbase* object){

//To get a value of the property: WSNx by string type.
WSCstring x = object->getProperty(WSNx);
printf("x=%s\n",(char*)x);

//To get a value of the property: WSNy by short type.
short y = object->getProperty(WSNy);

}

In the example of WSNx, it gets a value by string type. The WSCstring type manages the buffer of the
string automatically, so there is no need to manage it by programmer.
In the example of WSNy, it gets a value by short type. The method: getProperty() returns a value

by WSCvariant type. The WSCvariant type can convert the various kind of type automatically. The
following example is a some conversion short type into string type.

void cbop(WSCbase* object){

//To get a value of the property: WSNx by string type.
WSCstring x = object->getProperty(WSNx);
printf("x=%s\n",(char*)x);

//To get a value of the property: WSNy by short type.
short y = object->getProperty(WSNy);

//convert into string..
WSCvariant stry = y;
printf("y=%s\n",(char*)stry);
//convert into double.
printf("y=%fl\n",(double)stry);

}

Notice: You can not get the value by char*,if you use it,the pointer will be junc pointer when the
method of WSCbase: getProperty() will be done, because the returned value is auto variable of the
WSCvariant, so the WSCvariant instance and its internal buffer for string is destroyed when the method
is done.

- 3 -

Wide Studio Manual 1.0

If you want to get the char* pointer, see the following program.

void event_procedure(WSCbase* object){

//To get a value of the property: WSNlabelString by char pointer.
//Not good! the poiter string will be junc pointer!
char* string = object->getProperty(WSNlabelString);

//To get a value of the property: WSNlabelString by char pointer.
//Good example. The string1 (WSCstirng instance) keeps the string buffer.
WSCstring string1
string1 = object->getProperty(WSNlabelString);
char* str = (char*)string1;

}

2.2 Setting of property

You can set a value to the property by the method of WSCbase: setProerty().

void event_procedure(WSCbase* object){

//To set a value to the property: WSNx by string type.
char* x="100";
object->setProperty(WSNx,x);

//To set a value to the property: WSNy by short type.
short y=100;
object->getProperty(WSNy,y);

}

In the example of WSNx, it sets a value by string type. In the example of WSNy, it sets a value by
short type. The parameter of the method: setProperty() is WSCvariant type, so it converts the value
automatically.

2.3 Updating the instance to refrect the changed value

Use the method: update(),draw(),redraw() to update the instance to refrect the canged value.

obj1->getProperty(WSNlabelString,"string1");
obj1->update(); //updates the instance
obj2->getProperty(WSNlabelString,"string2");
obj2->update(); //updates the instance

Usually, it updates automatically when the event procedure is done, but if you want to update right
away,you can use the method: update(),draw(),redraw().
The method: update() or draw() updates the instance if needed, but redraw() updates compulsory.

- 4 -

Wide Studio Manual 1.0

3 How to cast the WSCbase* into the specified class

To access a method of some subclass,it requires that the pointer is subclass. So we must convert(downcast)
the pointer of WSCbase* into the subclass with some method. I will explain the acquisition of the casted
pointer in this capter.

• Casting of the casted pointer with the method of WSCbase: cast()

The method of casting Description
void* WSCbase::cast(char* className) Returns the pointer of the speci-

fied class.

Usage of the method: WSCbase::cast() is as follows. In the following example, the pointer ”object”
contains a WSCvtoggle instance, but is a pointer of WSCbase*. and you want to access the WSCvtoggle
method: getStatus() which returns the state of the toggle.
In c++ language, it is not allowed to downcast like WSCbase* to WSCvtoggle*. The method: WSCbase::cast()
supports this.

#include "WSCvtoggle.h" //access WSCvtoggle class.
...

void cbop(WSCbase* object){
//downcast WSCbase* to WSCvtoggle*.
WSCvtoggle* tgl = (WSCvtoggle*)object->cast("WSCvtoggle");

if (tgl == NULL){
// it fails, because the pointer "object" is not a WSCvtoggle instance.

}else{
// it succeeds, the pointer "object" is a WSCvtoggle instance.
// access the WSCvtoggle::getStatus()
WSCbool status = tgl->getStatus();

}
}

The method: WSCbase::cast() returns NULL,if the instance is not a instance of the specified class. if we
use this specification well, we can examine the isntance whether it is the specified class or not.

#include "WSCvbtn.h" //access WSCvbtn class.
#include "WSCvtoggle.h" //access WSCvtoggle class.
...

void cbop(WSCbase* object){
//examine whether object is a WSCvlabel instance.
WSCvlabel* btn = (WSCvlabel*)object->cast("WSCvlabel");

//examine whether object is a WSCvtoggle instance.
WSCvtoggle* toggle = (WSCvtoggle*)object->cast("WSCvtoggle");

- 5 -

Wide Studio Manual 1.0

if (btn == NULL){
//it is not a WSCvbtn instance.

}else{
//it is a WSCvbtn instance or inherits WSCvbtn class.

}
if (toggle == NULL){

//it is not a WSCvtoggle instance.
}else{

//it is a WSCvtoggle instance or inherits WSCvtoggle class.
}

}

If the event procedure is used by some instances of various classes, it is useful to switch the program.

- 6 -

Wide Studio Manual 1.0

4 How to access to the method of the specified class

In the capter: [To cast the WSCbase* into the specified class], you can cast WSCbase* to the pointer
of the specified class. Following example shows accessing of the method of WSClist class. WSClist class
displays the list of some strings, and the WSClist::addString() method adds the specified string to the
list.

#include "WSClist.h" //use WSClist class.
...
void some_function(...){

//get the instance: name=list001, class=WSClist.
WSCbase* object;
object = (WSCbase*)WSGIappObjectList()->getInstance("WSClist","list001");

//cast to WSClist pointer, and execute WSClist::addItem().
WSClist* list = (WSClist*)object->cast("WSClist");
list->addItem("sample string",0)

In the example, it gets the instance which name is ”list001” and which class is WSClist from the instance
management. The instance management returns WSCbase*, it casts WSCbase* to WSClist*,and executes
the WSClist::addItem() method. In the top of the source, we must include the headder file of the class.

- 7 -

Wide Studio Manual 1.0

5 How to get the parent instace

You can get the parent instace with the method: WSCbase::getParent().
In the following sample, it acquires the parent instance which places the instace ”object”, and set False

to the visibility of the parent.

void event_procedure(WSCbase* object){
//get the parent instance.
WSCbase* parent = object->getParent();
//access the parent instance.
parent->setVisible(False);

}

5.1 How to get the parent top level window

You can get the parent window instance with the method: WSCbase::getParentWindow().

In the following sample, it acquires the parent window instance, and pops down the window. Sometimes
this scene is found when closing window by a button instance.

void event_procedure(WSCbase* object){
//get the parent window.
WSCbase* win = object->getParent();
//popdown the window.
win->setVisible(False);

}

- 8 -

Wide Studio Manual 1.0

6 How to get the children of the instace

You can get the children which the instance constans with the folloing method.

The method Description
WSCbase* getChildInstance(char*) Returns the child by the instance name
WSClistData getChildren() Returns the children
long getAllChildren(WSClistData&) Returns recursively all of the children

6.1 How to get the child by the specified name

You can get the child by the specified name with the method: WSCbase::getChildInstance();

void event_procedure(WSCbase* object){
//get the child which name is "newpbtn001"
WSCbase* child = object->getChildInstance("newpbtn001");
if (child != NULL){

//the child exists.
child->setVisible(True);

}
}

In the example, WSCbase::getChildInstance() seeks the child which name is ”newpbtn001” from the
instance: ”object” recursively, and returns it if finds or returns NULL if not.

6.2 How to get the children

You can get the children which the instance contains with the method: WSCbase::getChildren();

void event_procedure(WSCbase* object){
//get the list of the children.
WSClistData children = object->getChildren();
//get the number of the children.
long num = children.getNum();
long i;
for(i=0; i<num; i++){

//get each child from the list.
WSCbase* child = (WSCbase*)children[i];

// WSCbase* child = (WSCbase*)children.getData(i); //same as children[i].
//access the child.
child->setVisible(False);

}
}

The example shows acquisition of the children which the instance contains. The method: WSCbase::getChildre()
returns the list: WSClistData which contains the children of the instance. You can access each child with
the method getData(i),array operator[i] of the list, and cast void* to WSCbase*.

- 9 -

Wide Studio Manual 1.0

6.3 How to get all of the children recursively

You can get all of the children recursively with the method WSCbase::getAllChildren().

void event_procedure(WSCbase* object){
//the list for the return value of getAllChildren().
WSClistData children;
//get all of the children.
object->getAllChildren(children);
//get the number of children.
long num = children.getNum();
long i;
for(i=0; i<num; i++){

//get each child from the list.
WSCbase* child = (WSCbase*)children[i];
//access the child.
child->setVisible(True);

}
}

The example shows acquisition of all of the children. The difference from getChildren() is that it
returns recursively all of the children of the instace, of the children,....

6.4 How to get all of the children of the parent application window

We call the method: WSCbase::getAllChildren() of the parent application window to get all of the children
of it.

void cbop(WSCbase* object){
//get the parent application window.
WSCbase* win = object->getParentWindow();
//a list for the return value.
WSClistData children;
//get all of the children of the application window.
win->getAllChildren(children);
//get the number of the children.
long num = children.getNum();
long i;
for(i=0; i<num; i++){

//get each child.
WSCbase* child = (WSCbase*)children[i];
//access the child.
child->setVisible(False);

}
}

- 10 -

Wide Studio Manual 1.0

7 How to execute the event procedures of the instances

You can execute the event procedures which the instances have with the method: WSCbase::execProcedure
.

Executing the event pro-
cedure

Description

execProcedure(char*) Executing by name
execProcedure(long) Executing by trigger

7.1 How to execute the event procedures by the specified name

You can execute the event procedures which the instances have by the specified name with the method:
WSCbase::execProcedure(char*).

void event_procedure(WSCbase* object){
//Execute the event procedures which name is "setup"
object->execProcedure("setup");

}

If exists the event procedures of the instance: ”object”, which name is same as the specified one, It
executes it,but not , does nothing.

7.2 How to execute the event procedures by the specified trigger

You can execute the event procedures which the instances have by the specified trigger with the method:
WSCbase::execProcedure(int).

void event_procedure(WSCbase* object){
// Execute the procedures which trigger is WSEV_ACTIVATE.
object->execProcedure(WSEV_ACTIVATE);

}

If exists the event procedures of the instance: ”object”, which trigger is same as the specified one, It
executes it,but not , does nothing.

- 11 -

Wide Studio Manual 1.0

8 How to draw the instances

You can use the following methods to draw the instances.

To control drawing Descrition
setAbsoluteDraw(Boolean) Sets the flag of forced drawing.
draw() draws if needs.
redraw() clears and draws
cdraw() draws the instance and its children.
clear() clears the instance.
update() draws if needs.

9 How to update the instance

Usually, it executes updating the instance at the end of the event procedures. If you want to update at
once, you can it with the method: update().

void event_procedure(WSCbase* object){
//change a property.
object->setProperty(WSNlabelString,"new text");
//updating.
object->update();

}

The method: update() updates the instance, if it needs to refrect the change of the properties.

9.1 How to draw the instance

There are following cases to draw the instances.

• Drawing compulsory
You make the flag of forced drawing ”True” to draw compulsory, and call the method:draw(),

because the method: draw() do not draw if it does not need.

object->setAbsoluteDraw(True);
object->draw();

• Drawing (ordinary)
Usually , we use the method: draw() to draw the instace. it has a good performance, because it do
not draw if do not need.

object->draw();

• Clearing the instance (no exposed event)
You can clear the instace with the method: clear(), and draw it with draw(). The method: clear()
does not creates the exposed event, so, if the other instance which are overlaped exists, its area is
invaridated. In such case, use redraw() method which creates the exposed event.

- 12 -

Wide Studio Manual 1.0

object->clear();
object->setAbsoluteDraw(True);
object->draw();

• Clearing the instance (creates the exposed event)
You can redraw the instace with the method: redraw(). it creates the exposed event so that the

other overlaped instances are updated. it can make the performance worse if there are many instaces.

object->redraw();

- 13 -

Wide Studio Manual 1.0

10 How to move the position of the instances

You must clear the instances to move the poisition of it as follows.

void event_procedure(WSCbase* object){
//clear the instance.
object->clear();
//set invisilbe.
object->setVisible(False);
//move the poisition.
object->setProperty(WSNx,100);
object->setProperty(WSNy,100);
//set visible.
object->setVisible(True);

}

There are some cases that an afterimage is left,if you move the position of the instace which has no window
resource. Not to left if ,you have to clear the instance before move the position.
The instance which has a window resource is automaticary cleared.

- 14 -

Wide Studio Manual 1.0

11 How to create/delete the instances

11.1 How to create the instance

You can create the instance with the method: WSCbase::getNewInstance().

char* class_name = "WSCvlabel";
char* obj_name = "vlabel001";
WSCbase* parent //The parent instance which has new instance.

//create a new instance.
WSCbase* object = WSCbase::getNewInstance(class_name,parent,obj_name);
object->initialize(); //initialize the instance.
object->clear();

object->setProperty(WSNx,100);
object->setProperty(WSNy,100);
object->setProperty(WSNwidth,100);
object->setProperty(WSNheight,100);
object->setVisible(True);

You have to call initialize() to initialize before calling the other methods of the created instance.

11.2 How to delete the instance

You can destroy the instance with the global function: WSGFdestroyWindow().

//destroy the instance.
WSGFdestroyWindow(object);

Do not call WSGFdestroyWindow() with same instance twice, and do not access the destroyed in-
stace,because it causes a fatal memory error.

- 15 -

Wide Studio Manual 1.0

12 How to use of the timer

You can execute the procedure after an interval or in cycles.

The timer class Access function
WSDtimer WSGIappTimer()

13 How to execute the procedure after an interval

At first, prepare the procedure to execute, and register it to the timer as trigger driven.

The method Description
addTriggerProc() adds procedures as trigger driven
delTriggerProc() deletes a added procedures

#include "WSDtimer.h"
//the procedure which is executed by the timer (trigger driven)
void triggerHandler(unsigned char clock,void* data){

//The parameter: data is the third parameter of the method: addTriggerProc().

//To do:
}

void event_procedure(WSCbase* obj){
//this parameter is passed to the procedure.
void* data = (void*)1234;
//add the procedure to the timer (trigger driven) //after 1000ms
long id = WSGIappTimer()->addTriggerProc(triggerHandler,WS1000MS,data);
...
//if cancel...
WSGIappTimer()->delTriggerProc(id);

}

You can implements the procedure which you want in ”triggerHandler()”, and pass some data by the third
parameter:void* of WSDtimer::addTriggerProc(). WSDtimer::addTriggerProc() returns a timer id. you
can cancel the timer by the id with WSDtimer::delTriggerProc().
Notice: After executing the procedure, it do not update the instances automatically, so you have to do it
if needs.

//a sample of the trigger procedure.
void timerHandler(unsigned char clock,void* data){

WSCbase* object = (WSCbase*)data;
object->setProperty(WSNlabelString,"hello.");
object->update(); //update the instance.

- 16 -

Wide Studio Manual 1.0

}

14 How to execute the procedure after in cycles

At first, prepare the procedure to execute, and register it to the timer as cycle driven.

The method Description
addTimerProc() adds procedures as cycle driven.
delTimerProc() deletes added procedure.

#include "WSDtimer.h"
//the procedure which is executed by the timer (cycle driven)
void timerHandler(unsigned char clock,void* data){

//clock is a counter of the interval of 250ms
//The parameter: data is the third parameter of the method: addTimerProc().

//To do:
}

void event_procedure(WSCbase* obj){
//this parameter is passed to the procedure.
void* data = (void*)1234;
//add the procedure to the timer (cycle driven) //500ms interval
long id = WSGIappTimer()->addTimerProc(timerHandler,WS500MS,data);
..
//if cancel..
WSGIappTimer()->delTimerProc(id);

}

You can implements the procedure which you want in ”timerHandler()”, and pass some data by the
third parameter:void* of WSDtimer::addTimerProc(). WSDtimer::addTimerProc() returns a timer id.
you can cancel the timer by the id with WSDtimer::delTimerProc().
Notice: After executing the procedure, it do not update the instances automatically, so you have to do it
if needs.

The cycles: WS250MS,WS500MS,WS750,WS1000MS,WS1250MS,... (250ms interval)

//a sample of the timer procedure.
void timerHandler(unsigned char clock,void* data){

WSCbase* object = (WSCbase*)data;
object->setProperty(WSNlabelString,"Hello!");
object->update(); //udpate the instance

}

- 17 -

Wide Studio Manual 1.0

15 How to use the global key hook function

You can use the global key hook to check the keyboard event before dispatching, by adding a hook
procedure to the keyboard instance.

The keyboard class Access function
WSDkeyboard WSGIappKeyboard()

#include <WSDkeyboard.h>
//A sample of the global key hook
WSCbool keyhandler(long keycode,Boolean onoff){
// keycode : the key code (see WSkeysym.h)
// onoff : True = keypress, False= key release.
if (keycode == WSK_F1){

//The key code is F1...
//if discard this...
return False; //return the False: discard.

}else if (keycode == WSK_F2){
//The key code is F2...
//if dispatch this...
return True; //return the True: dispatch.

}
return True; //return the True: dispatch.

}
void event_procedure(WSCbase* obj){
//the registration of the global key hook procedure.
WSGIappKeyboard()->setGlobalKeyHook(keyhandler);

}

keyhandler() is the procedure which grabs the key board events to do something specially. You can register
it with WSGIappKeyboard()-¿setGlobalKeyHook(),
See the header file: WSkeysym.h if you want the key codes.

- 18 -

Wide Studio Manual 1.0

16 How to select the key events on the input field

You can select or reject/convert the key events on the input field with the event procecure by the
WSEV KEY HOOK trigger.

//A WSEV_KEY_HOOK sample procedure.
//Set the input field with the WSEV_KEY_HOOK trigger.
#include "WSDkeyboard.h"
...

void hookop(WSCbase* object){
//get the pressed key code.
long key = WSGIappKeyboard()->getKey();
//Choose the key which is a numerical code.
if ((key >= WSK_0 && key <= WSK_9) ||

(key >= WSK_KP_0 && key <= WSK_KP_9) ||
key == WSK_plus || key == WSK_minus ||
key == WSK_BackSpace || key == WSK_Delete || key == WSK_Insert ||
key == WSK_space || key == WSK_Up || key == WSK_Down ||
key == WSK_Left || key == WSK_Right || key == WSK_Return){

//dispatches..
return;

}
//Reject the other.
WSGIappKeyboard()->setKey(0);

}

This sample of the input field shows how to choose the key event. WSGIappKeyboard()-¿setKey(0) reject
the key event which you do not need.

- 19 -

Wide Studio Manual 1.0

17 How to add the event procedure on the programs

You can add the event procedure with the method: WSCbase::addProcedure().

The method Description
addProcedure(WSCprocedure*)Add the new event procedure.

Add the event procedure as follows. (A), Create the procedure instance with the specified procedure
name and a trigger.
(B), Set a address of the procedure and its name with the method: setFunction(). (C) Finally, add the

procedure instance to the instance.

void _new_event_procedure(WSCbase*){
//a sample of the event procedure.
//..
}

void event_procedure(WSCbase* object){
//Create the procedure instance which name is "new proc".
//The trigger is WSEV_MOUSE_IN (MOUSE_IN trigger.)

(A) WSCprocedure* ep = new WSCprocedure("new proc",WSEV_MOUSE_IN);
(B) ep->setFunction(_new_event_procedure,"_new_event_procedure");
(C) object->addProcedure(ep);

}

- 20 -

Wide Studio Manual 1.0

18 How to access to the arrayed instance.

It is possible to access to an arrayed instance as followings.

#include <WSCvlabel.h>

//extern declaration to access to an arrayed instance..
extern WSCvlabel** labelarray;

void event_procedure(WSCbase* object){
labelarray[0]->setProperty(WSNlabelString,"Label No. 0");
labelarray[1]->setProperty(WSNlabelString,"Label No. 1");
...

}

See Chapter 4.[How to define the instances as an array] of [Wide Studio Builder User’s Guide] to create
an arrayed instance.

- 21 -

Wide Studio Manual 1.0

19 How to indicate a dialog on the WSEV EXIT event proce-
dure

There is the case to need to save data indicate a dialog whether to finish the application, when the
application is finished by closing the window. In such a case it is convenient to use the WSEV EXIT
event procedure of the WSCwindow/WSCmainWindow class.

The WSCwindow/WSCmainWindow class generates the WSEV EXIT trigger when the window is
disappeared before finishing the application.
At first set True to the property WSNexit of a WSCwindow/WSCmainWindow instance which is used

as main window in the application, and put an event procedure to it with WSEV EXIT trigger.
We will try to make an event procedure to have the following facility.

Indicates the dialog whether exit or continue.

If [OK] is selected,execute some procedure and exit the application.

If [NO] is selected,exit the application with no proccess.

If [CANCEL] is selected,do nothing and does not exit the application.

#include <WScom.h>
#include <WSCfunctionList.h>
#include <WSCbase.h>
//--
//Function for the event procedure
//--
#include <WSCmessageDialog.h>
#include <WSDtimer.h>

//The timer procedure which redisplay the window.
void delayproc(unsigned char,void* ptr){
WSCbase* object = (WSCbase*)ptr;
object->setVisible(True);

}
//EXIT event procedure
//Indicates a dialog.
void exit_ep(WSCbase* object){
if (object->getVisible() != False){

return;
}
WSCmessageDialog* msg = WSGIappMessageDialog(); //A
msg->setProperty(WSNwidth,500);
msg->setProperty(WSNno,True);
msg->setProperty(WSNdefaultPosition,True);
msg->setProperty(WSNlabelString,

"Exit and save data?\n If you do not want to save and exit,push NO...");
//Indicates the dialog.
long ret = msg->popup(); //B

- 22 -

Wide Studio Manual 1.0

if (ret == WS_DIALOG_OK){ //When OK is selected.. C
//saving some data ...
exit(0);

}else
if (ret == WS_DIALOG_NO){ //When NO is selected.. D

exit(0);
}else
if (ret == WS_DIALOG_CANCEL){ //When CANCEL is selected.. E

WSGIappTimer()->addTriggerProc(delayproc,WS250MS,object);
}

}
static WSCfunctionRegister op("exit_ep",(void*)exit_ep);

Get the instance of the message dialog (A),indicate it (B). Check the result of the dialog (C)(D)(E).
It need to execute delayed procedure to redisplay the window, because it is required that the exit event

is done before the window be redisplayed.

[The exit dialog]

- 23 -

Wide Studio Manual 1.0

20 How to examine which mouse button is pressed

There is a case to need to examine which the mouse button is pushed in some event procedure. It is
possible to get a information of the mouse pointer from the global mouse instance as following program.

#include "WScom.h"
#include "WSCfunctionList.h"
#include "WSCbase.h"
//--
//Function for the event procedure
//--
#include "WSDmouse.h" //A

void btn_ep(WSCbase* object){
long status = WSGIappMouse()->getStatus(); //B
if (status & WS_MOUSE_BTN1){ //C

//Left button is pushed..
}
if (status & WS_MOUSE_BTN2){ //D

//Middle button is pushed..
}
if (status & WS_MOUSE_BTN3){ //E

//Right button is pushed..
}

}
static WSCfunctionRegister op("exit_ep",(void*)exit_ep);

At firust,include WSDmouse.h to access the global mouse instance (A). and, get a information of the
mouse pointer (B). Check the button of the mouse whether to be pushed (C),(D),(E). It is better that
cheking value by operator & than ==, because somethime the mouse buttons are pushed in same time.

- 24 -

Wide Studio Manual 1.0

B The sample of the event procedures

1 The sample of the event procedures for WSCvlabel

1.1 Making the WSCvlabel instance click-able

In the sample of the event procedures, It is a most basic procedure that makes the label instance to react
to the mouse pointer. Here, you will create a procedure to make it counting up clicking of the mouse
pointer.

#include "WSDmouse.h"
//Set this to a label instance with WSEV_MOUSE_PRESS(MOUSE-PRESS trigger)
void cbop(WSCbase* object){

//(0) Which the mouse button is pressed?
// btn1 -> fire. btn2 or the other -> return.
if ((WSGIappMouse()->getMouseStatus() & WS_MOUSE_BTN1) == 0){

return;
}

//(A)Get the value of the property: WSNuserValue
long value = object->getProperty(WSNuserValue);
//(B)Count it up.
value++;
//(C)Display the value.
object->setProperty(WSNlabelString,value);
//(D)Store the counted value into the property: WSNuserValue for the next time.
object->setProperty(WSNuserValue,value);

}

At first, this event procedure uses the property: WSNlabelString to display the number which is
counted up. So, The kind of class like WSCvbtn,WSCvlabel which has it, can be used with WSEV MOUSE RESS
trigger. It will be executed by clinking of the mouse pointer.

• (0): It distinguishes whether the mounse btn 1 is pressed. Please refer to it for your implementation.

• (A): It uses the property: WSNuserValue to contain the value of the counter. The default value of
the property is 0, and it can be used freely by user. The procedure uses it because it wants to store
each counter value of each label instance. the counter value becomes a singleton when the procedure
uses the static variable for the counter, even if used by many label instances.

• (B): It increases the counter.

• (C): It stores into the property: WSNlabelString to display it.

- 25 -

Wide Studio Manual 1.0

• (D): It stores into the property: WSNuseValue for the next time.

If by WSEV MOUSE IN trigger is used, it count the number of entranceing and exiting of the mouse
pointer.

1.2 Making the WSCvlabel instance select-able

Here, you will create a procedure to make the label instance select-able by clicking of the mouse pointer.
To display the instance is selected, the procedure changes the backcolor of it. This time, the procedure
uses the method: set/getUserData() to get/store data instead of the property: WSNuserValue.

//Set this to a label instance with WSEV_MOUSE_PRESS(MOUSE-PRESS trigger)
void cbop(WSCbase* object){
//(A) Get the value with getUserData()
long value = (long)object->getUserData("STATUS");
//(B) it makes the instance selected if value is 0, and unselected if 1.
if (value == 0){

//(C) Store the backcolor(which is string type) into WSNuserString
WSCvariant color = object->getProperty(WSNbackColor);
object->setProperty(WSNuserString,color);
//(D)Set the backcolor to the selected color.
object->setProperty(WSNbackColor,"slategray4");
//(E)Store the state with setUserData().
value = 1;
object->setUserData("STATUS",(void*)value);

}else{
//(F)Get the original backcolor from WSNuserString.
WSCvariant color = object->getProperty(WSNuserString);
//(G)Store it to WSNbackColor to display with the original color.
object->setProperty(WSNbackColor,color);
//(H)Store the state with setUserData().
value = 0;
object->setUserData("STATUS",(void*)value);

}
}

The kind of class like WSCvbtn,WSCvlabel which has the property: WSNbackColor, can be used with
WSEV MOUSE RESS trigger. It will be executed by clinking of the mouse pointer.

• (A): It uses the method: set/getUserData() to contain the selected value of the state. The default
value of the method is 0, and it can be used freely by user. The procedure uses it because it wants
to store each status of each instance.

- 26 -

Wide Studio Manual 1.0

You can specify a name of value to store with setUserData(), and can get the value by the specified
name with getUserData().

• (B): It distinguishes the state.

• (C): It stores the original backcolor to the property: WSNuserString.

• (D): It makes the instance selected.

• (E): It stores the state with setUserData() again.

• (F): It gets the original backcolor from WSNuserString.

• (G): It stores the original backcolor to WSNbackColor.

• (H): It stores the state with setUserData() again.

1.3 Making the WSCvlabel instance highlight-able

Here, you will create a procedure with WSEV MOUSE IN/OUT to make the instace hightlighted. Com-
ing into the area,the instance is highlighted,and Going out of the area, it is returned normal.
An important matter is that you create a procedure which prepares a sub-procedure with WSEV MOUSE IN
and another with WSEV MOUSE OUT. In other words,that procedure with WSEV INITIALIZE is exe-
cuted, it adds two sub-procedures to the instance which trigger is WSEV MOUSE IN and WSEV MOUSE OUT
to make the instance highlight-able. One procedure can prepares many procedures. Then you can go with
a procedure even if many procedures are needed.

//a sub-procedure with WSEV_MOUSE_IN trigger
void subop1(WSCbase* object){

//(A)Store the original backcolor to WSNuserString
WSCvariant color = object->getProperty(WSNbackColor);
object->setProperty(WSNuserString,color);
//(B)highlight the instance.
object->setProperty(WSNbackColor,"slategray4");

}
//a sub-procedure with WSEV_MOUSE_OUT trigger
void subop1(WSCbase* object){

//(C)Get the original backcolor from WSNuserString
WSCvariant color = object->getProperty(WSNuserString);

//(D)Store the original back color.
object->setProperty(WSNbackColor,color);

}
//a main-procedure with WSEV_INITIALIZE trigger
void cbop(WSCbase* object){

//If executed,it add the sub-procedures to the instance.
//(E) Setup a sub-procedure:WSEV_MOUSE_IN.
//ProcedureName="Highlight1" Trigger=WSEV_MOUSE_IN Function=subop1
WSCprocedure* ac1 = new WSCprocedure("Highlight1",WSEV_MOUSE_IN);
ac1->setFunction(subop1,"subop1");
object->addProcedure(ac1);

- 27 -

Wide Studio Manual 1.0

//(F) Setup a sub-procedure:WSEV_MOUSE_OUT.
//ProcedureName="Highlight2" Trigger=WSEV_MOUSE_OUT Function=subop2
WSCprocedure* ac2 = new WSCprocedure("Highlight2",WSEV_MOUSE_OUT);
ac2->setFunction(subop2,"subop2");
object->addProcedure(ac2);

}

The subop1() is executed by WSEV MOUSE IN fired, and makes the instance backcolor highlight(A)(B).
The subop2() is executed by WSEV MOUSE OUT fired, and makes the instance backcolor original
one(C)(D). The main procedure is executed by WSEV INITIALIZE only once to setup the sub-procedures
(E)(F).

1.4 Making a group of selectable WSCvlabel instances

Here, you create a event procedure to make a group of the mouse-selectable label instances on the same par-
ent. the procedure make the instance selected by storing WS SHAODW IN to the property:WSNshadowType
and memolise which instance is selected by storing it to its parent instance.

//An event procedure with WSEV_MOUSE_PRESS trigger
void cbop(WSCbase* object){
//(A)Use the value of WSNuserValue as "instance identifier"
long val = object->getProperty(WSNuserValue);
//(B)Make the instance selected: WS_SHADOW_IN state.
object->setProperty(WSNshadowType,WS_SHADOW_IN);
//(C)Get the last selected instance which is memorized

with setUserData() of the parent instance.
WSCbase* parent = object->getParent();
WSCbase* target = (WSCbase*)parent->getUserData("SelectedItem");
//(D)Make it not selected: WS_SHADOW_OUT state.
if (target != NULL){

target->setProperty(WSNshadowType,WS_SHADOW_OUT);
}

if (target == object){
//(E)When clicking the selected instance twice,
// clear the selected state.
parent->setUserData("GroupValue",(void*)0);
parent->setUserData("SelectedItem",(void*)0);

}else{
//(E)The other,store the selected instance to the parent instance.
parent->setUserData("GroupValue",(void*)val); //Instance identifier
parent->setUserData("SelectedItem",(void*)object); //selected instance

}
}

The label instances needs each instance identifier to recognise which instance is selected, then we decide
to use the property: WSNuserValue as the instance identifier which has unique value.

- 28 -

Wide Studio Manual 1.0

• (A): Gets the instance identifier from the property: WSNuseValue.

• (B): Makes the instance selected with WS SHAODW IN.

• (C): Gets the last instance which is selected from the parent instance.

• (D): Makes the last one not selected.

• (E): Makes the instance not selected if it is selected twice and clears the value which is memorized
in the parent instance.

• (F): Stores the new selected instance to the parent instance.

- 29 -

Wide Studio Manual 1.0

2 The sample of the event procedures for WSCvifield

2.1 Executing some event procedures by return key

You can execute the specified procedures in the event procedure. Here, the following sample shows
executing the procedure which name is ”InputFixed”.

//A sample of WSEV_KEY_HOOK trigger.
#include "WSDkeyboard.h"
void cbop(WSCbase* object){
(A)Get the pressed key.
long key = WSGIappKeyboard()->getKey();
(B)If the key is return..
if (key == WSK_Return){

//Execute the procedure which name is "InputFixed".
object->execProcedure("InputFixed");

}
}

• (A): Get the key code which is pressed from the keyboard.

• (B): if it is return key, do (C).

• (C): Execute the procedure which name is ”InputFixed”.

This procedure sometimes is used to execute some procedure on the end of key input.

2.2 Clearing the last input string on starting of next input

Here, you create a procedure which clears the last input string on starting of the next. the procedure
clears the string the first key input since the input field instance is focused or clicked by the mouse pointer.
The clear process is as follows:

• (1)It sets the clear flag True,if the input field is focused.

• (2)It sets the clear flag True,if the input field is clicked.

• (3)It clears the string if the clear flag is True.

• (4)It initializes the sub-procedures (1),(2),(3).

#include <WSDkeyboard.h>
//To contain the last focused input field.
static WSCbase* _focus_if = NULL;
//(1)A sub-procedure with WSEV_FOCUS_CH
static void _focus_on_(WSCbase* object){
//(A) Examine whether the instance is focused.

- 30 -

Wide Studio Manual 1.0

if (_focus_if != object && object->getFocus() != False){
//(B)It need to clear the string!
//Set the clear flag True.
object->setUserData("CLEAR TIMING",(void*)1);
//(C)store that the last focused one is.
_focus_if = object;

}
}
//(2)A sub-procedure with WSEV_MOUSE_PRESS
static void _btn_press_(WSCbase* object){
//(D) if clicked by the mouse pointer,
// it needs to clear the string!
// Set the clear flag True.
object->setUserData("CLEAR TIMING",(void*)1);
object->setProperty(WSNcursorPos,0);
//(E)store that the last focused one is.
_focus_if = object;

}
//(3)A sub-procedure with WSEV_KEY_PRESS
static void _key_hook_(WSCbase* object){
//(F) See the clear flag to clear the last input string.
long fl =(long)object->getUserData("CLEAR TIMING");
if (fl == 1){

long key = WSGIappKeyboard()->getKey();
//(G) Clear the string,if the key is not cursor key.
if (key != WSK_Tab &&

key != WSK_Up &&
key != WSK_Down &&
key != WSK_Left &&
key != WSK_Right){

//(H)Clear...
object->setProperty(WSNlabelString,"");

}else{
return;

}
}
//(I)Set the clear flag False.
object->setUserData("CLEAR TIMING",(void*)0);

}

//The main-procedure.
//(4)Set the input field instance with WSEV_INITIALIZE trigger.
void ifdclr(WSCbase* object){
//Setup the sub-procedure(1) with WSEV_FOCUS_CH
WSCprocedure* ac1 = new WSCprocedure("ac1",WSEV_FOCUS_CH);
ac1->setFunction(_focus_ch_,"_focus_ch_");
object->addProcedure(ac1);

- 31 -

Wide Studio Manual 1.0

//Setup the sub-procedure(2) with WSEV_MOUSE_PRESS
WSCprocedure* ac2 = new WSCprocedure("ac2",WSEV_MOUSE_PRESS);
ac2->setFunction(_btn_press_,"_btn_press_");
object->addProcedure(ac2);

//Setup the sub-procedure(3) with WSEV_KEY_PRESS
WSCprocedure* ac3 = new WSCprocedure("ac3",WSEV_KEY_HOOK);
ac3->setFunction(_key_hook_,"_key_hook_");
object->addProcedure(ac3);

}

In the focus ch event procedure, To examine the instance is focused afresh, It uses the static variable
which is stored the last focused instance.

• (A): It checks whether the instance is equal to the last focused one. if it differs and it focused (not
losed), it means that the instance is focused afresh.

• (B): It sets the clear flag True.

• (C): It stores the instance to the static variable for the next.

• (D): It sets the clear flag True and move the cursor to the top.

• (E): It stores the instance to the static variable for the next.

• (F): It sees the clear flag to clear the last string.

• (G): It is too sad to clear the string with the cursor key, so it sees what it is.

• (H): It clears the string if it is not.

• (I): It sets the clear flag False.

- 32 -

Wide Studio Manual 1.0

3 Automatic geometry adjustment with the anchors

The objbect of WideStudio which has geometry has automatic geomatry adjustment by the property
WSNanchor. The anchor keeps the distance of the border of parent instance and coordinates the geometry
of oneself.

[Action of the anchors]

- 33 -

Wide Studio Manual 1.0

4 The pulldown menu and the menu area

4.1 What is the menu area

The menu area: WSCmenuArea is a form which secures an area for the pulldown menus. This class keeps
constant area the upper part. And its geometry is automatically adjusted when the parent window is
resized.

[A sample which has a menu area(WSCmenuArea)]

4.2 Try to use the pulldown menu

Now try to create a sample application which has pulldown menu.

[A sample application which has pulldown menu]

The sample has [File] menu such as picture and the [File] menu has these items as follows.

Open

Save

Exit

At first, create an application window and drop an instance of WSCmenuArea from the section [Forms]
of object box dialog. Next, drop an instance of WSCpulldownMenu from the section [Commands] to it.
Set the property as follows.

Label string: File

- 34 -

Wide Studio Manual 1.0

Menu items: Open(O):open ep:o,Save(S):save ep:s,SP,Exit(E):exit ep:e

To the menu items property,set value which is punctuated with comma every one item.

One item consists of the following format. It indicates a separator with an item: SP.

item string:event procedure name:short cut key,...

For example, in an above-mentioned example, an event procedure which title is open ep is executed when
the menu [Open(0)] selectede. You can set event procedures which title is open ep with NONE trigger to
the pulldown menu instance.

You can assign ID to each menu item, and you can process the all triggers of each menu with an event
procedure to use the ID.

In the case with ID, one item consists of the following format. In the procedure,you can get the ID
with getValue() method.

item string:event procedure name:short cut key:id,...

4.3 Notice of the pulldown menu

It is no allowed that useing WSCpulldownMenu class and other WSCvXXXX class on a same form. Place
instances of WSCpulldownMenu class only on a menu area.

- 35 -

Wide Studio Manual 1.0

5 The list

5.1 Setting of the items by the method

Use addItem method to add items to the list with an string and position.
If the position is omitted,add it to the last of the list. The following program is a sample adding item

to the list.

#include <WScom.h>
#include <WSCfunctionList.h>
#include <WSCbase.h>
//--
//Function for the event procedure
//--
#include <WSClist.h>
extern WSClist* newlist_001;
void btnep1(WSCbase* object){
//Delete all the items of the list.
newlist_001->delAll();
//Add an item to the last of the list.
newlist_001->addItem("item1");
newlist_001->addItem("item2");
newlist_001->addItem("item3");
newlist_001->addItem("item4");
//Add an item to the specified position of the list.
newlist_001->addItem("item0",0);//0 :top
newlist_001->addItem("item5",-1);//-1 :last

//Update the modificated list.
newlist_001->updateList();

}
static WSCfunctionRegister op("btnep1",(void*)btnep1);

5.2 Setting of the items by the property

the property WSNdata can be used for setting the items of the list, if it is a comparatively little number
of the items. In such case, set the property WSNdataSource to WS DATA SOURCE NONE, and set the
items which is punctuated with comma every one item to the proeprty WSNdata.

#include <WScom.h>
#include <WSCfunctionList.h>
#include <WSCbase.h>
//--
//Function for the event procedure
//--
#include <WSClist.h>
extern WSClist* newlist_001;
void btnep1(WSCbase* object){

- 36 -

Wide Studio Manual 1.0

//Delete all the items of the list.
newlist_001->delAll();
//Set the items of the list by the property
newlist_001->setProperty(WSNdataSource,WS_DATA_SOURCE_NONE);
newlist_001->setProperty(WSNdata,"item0\nitem1\nitem2\nitem3\nitem4");

}
static WSCfunctionRegister op("btnep1",(void*)btnep1);

It is possible to indicate the specified ICON by icon file name as following program. Set True to the
proeprty WSNuseIcon and Set the items as following format. If it is ommited,the value of WSNiconPixmap
is used for default icon.

format:
the ICON1 filename,the string2 of the item\n the ICON2 filename,the string2 of the item\n...

void btnep1(WSCbase* object){
//Delete all the list of the list
newlist_001->delAll();
//Set the items of the list by the property
newlist_001->setProperty(WSNdataSource,WS_DATA_SOURCE_NONE);
newlist_001->setProperty(WSNdata,

"$(WSDIR)/sys/pixmaps/bi16.xpm,item1\nitem2\nitem3");
}
static WSCfunctionRegister op("btnep1",(void*)btnep1);

5.3 Setting of the items from the file directly

It is possible to set the items from the file directly. In such case at first,set WS DATA SOURCE FILE to
the property WSNdataSource, and set the file name to the property WSNdataSourceName as following
program.

#include <WScom.h>
#include <WSCfunctionList.h>
#include <WSCbase.h>
//--
//Function for the event procedure
//--
#include <WSClist.h>
extern WSClist* newlist_001;
void btnep1(WSCbase* object){
//Delete all the items of the list
newlist_001->delAll();
//Set the items from file directly
newlist_001->setProperty(WSNdataSource,WS_DATA_SOURCE_FILE);
newlist_001->setProperty(WSNdataSourceName,"data.txt");

}
static WSCfunctionRegister op("btnep1",(void*)btnep1);

- 37 -

Wide Studio Manual 1.0

//data.txt contains...
$(WSDIR)/sys/pixmaps/bi16.xpm,item1
item2
item3
item4
$(WSDIR)/sys/pixmaps/bi16.xpm,item5
item6
item7
item8

5.4 Setting of the items from the other instance

It is possible to set the items from the data source target property of the other instances. In such case,
set WS DATA SOURCE INSTANCE to the property WSNdataSource, and set the instance name to the
proeprty WSNdataSourceName. In the following example, a WSCtextField instance are specified to the
property WSNdataSourceName and then it sets the string data of it to the list.

#include <WScom.h>
#include <WSCfunctionList.h>
#include <WSCbase.h>
//--
//Function for the event procedure
//--
#include <WSClist.h>
extern WSClist* newlist_001;
void btnep1(WSCbase* object){
//Delete all the items of the list
newlist_001->delAll();
//Set the items from the other instances
newlist_001->setProperty(WSNdataSource,WS_DATA_SOURCE_INSTANCE);
newlist_001->setProperty(WSNdataSourceName,"newtext_000");

}
static WSCfunctionRegister op("btnep1",(void*)btnep1);

The following picture indicates the list(lower side) from the other instance of WSCtextField class(
upper side).

- 38 -

Wide Studio Manual 1.0

[The list data from the other instance]

- 39 -

Wide Studio Manual 1.0

6 The verbose list

6.1 Setting of the items by the method

Use addItem method to add items to the list which property WSNtype is WS VERBOSE with an string
and position. If the position is omitted,add it to the last of the list. The following program is a sample
adding item to the list. The difference from the list is the item which is puctuated with comma.

[The verbose list]

Set 50,100,150 to the property WSNbarValue to make the list 4-sections like above picture. This
property appoints a position of separator of title. Please pay attention, because number of section is fixed
by this property.

The following program is a sample adding item to the list.

#include <WScom.h>
#include <WSCfunctionList.h>
#include <WSCbase.h>
//--
//Function for the event procedure
//--
#include <WSCverbList.h>
extern WSCverbList* newlist_001;
void btnep1(WSCbase* object){
//Delete all the items of the list.
newlist_001->delAll();
//Add an item to the last of the list.
newlist_001->addItem("item1,aaa,bbb,ccc");
newlist_001->addItem("item2,aaa,bbb,ccc");
newlist_001->addItem("item3,aaa,bbb,ccc");
newlist_001->addItem("item4,aaa,bbb,ccc");

//Add an item to the specified position of the list.
newlist_001->updateList();

}
static WSCfunctionRegister op("btnep1",(void*)btnep1);

6.2 Setting of the items by the property

the property WSNdata can be used for setting the items of the list, if it is a comparatively little number
of the items. In such case, set the property WSNdataSource to WS DATA SOURCE NONE, and set the
items which is punctuated with comma every one item to the proeprty WSNdata.

- 40 -

Wide Studio Manual 1.0

#include <WScom.h>
#include <WSCfunctionList.h>
#include <WSCbase.h>
//--
//Function for the event procedure
//--
#include <WSCverbList.h>
extern WSCverbList* newlist_001;
void btnep1(WSCbase* object){
//Delete all the items of the list.
newlist_001->delAll();
//Set the items of the list by the property
newlist_001->setProperty(WSNdataSource,WS_DATA_SOURCE_NONE);
newlist_001->setProeprty(WSNdata,

"item1,aaa,bbb,ccc\nitem2,aaa,bbb,ccc\nitem3,aaa,bbb,ccc");

static WSCfunctionRegister op("btnep1",(void*)btnep1);

It is possible to indicate the specified ICON by icon file name as following program. Set True to the
proeprty WSNuseIcon and Set the items as following format. If it is ommited,the value of WSNiconPixmap
is used for default icon.

format:
the ICON1 filename,str11,str12,str13,..\nthe ICON2 filename,str21,str22,str23,...\n...

void btnep1(WSCbase* object){
//Delete all the list of the list
newlist_001->delAll();
//Set the items of the list by the property
newlist_001->setProperty(WSNdataSource,WS_DATA_SOURCE_NONE);
newlist_001->setProperty(WSNdata,

"$(WSDIR)/sys/pixmaps/bi16.xpm,item1,aaa,bbb,ccc\nitem2,aaa,bbb,ccc\nitem3,aaa,bbb,ccc");
}
static WSCfunctionRegister op("btnep1",(void*)btnep1);

6.3 Setting of the items from the file directly

It is possible to set the items from the file directly. In such case at first,set WS DATA SOURCE FILE to
the property WSNdataSource, and set the file name to the property WSNdataSourceName as following
program.

#include <WScom.h>
#include <WSCfunctionList.h>
#include <WSCbase.h>
//--
//Function for the event procedure
//--
#include <WSCverbList.h>

- 41 -

Wide Studio Manual 1.0

extern WSCverbList* newlist_001;
void btnep1(WSCbase* object){
//Delete all the items of the list
newlist_001->delAll();
//Set the items from file directly
newlist_001->setProperty(WSNdataSource,WS_DATA_SOURCE_FILE);
newlist_001->setProperty(WSNdataSourceName,"data.txt");

}
static WSCfunctionRegister op("btnep1",(void*)btnep1);

//data.txt contains...
$(WSDIR)/sys/pixmaps/bi16.xpm,item1,aaa,bbb,ccc
item2,aaa,bbb,ccc
item3,aaa,bbb,ccc
item4,aaa,bbb,ccc
$(WSDIR)/sys/pixmaps/bi16.xpm,item5,aaa,bbb,ccc
item6,aaa,bbb,ccc
item7,aaa,bbb,ccc
item8,aaa,bbb,ccc

6.4 Setting of the items from the other instance

It is possible to set the items from the data source target property of the other instances. In such case,
set WS DATA SOURCE INSTANCE to the property WSNdataSource, and set the instance name to the
proeprty WSNdataSourceName. In the following example, a WSCtextField instance are specified to the
property WSNdataSourceName and then it sets the string data of it to the list.

#include <WScom.h>
#include <WSCfunctionList.h>
#include <WSCbase.h>
//--
//Function for the event procedure
//--
#include <WSCverbList.h>
extern WSCverbList* newlist_001;
void btnep1(WSCbase* object){
//Delete all the items of the list
newlist_001->delAll();
//Set the items from the other instances
newlist_001->setProperty(WSNdataSource,WS_DATA_SOURCE_INSTANCE);
newlist_001->setProperty(WSNdataSourceName,"newtext_000");

}
static WSCfunctionRegister op("btnep1",(void*)btnep1);

- 42 -

Wide Studio Manual 1.0

7 The tree list

7.1 Setting of the items by the method

Use addItem method to add items to the list which property WSNtype is WS TREE with an string and
position. If the position is omitted,add it to the last of the list. The following program is a sample adding
item to the list. The difference from the list is the item which is puctuated with comma. In addigion,it is
possible to set the nest floor of list item with the setItemValue method. In its argument,set the position
of the item and WS INDENT LEVEL to the value type,and indent level. If it is ommited,the indent level
is 0.

setItemValue(pos,WS_INDENT_LEVEL,level);
pos = 0,1,2,...,-1(last one)
level = 0(top),1,2,3...

[The tree list]

The following program is a sample adding item to the list.

#include <WScom.h>
#include <WSCfunctionList.h>
#include <WSCbase.h>
//--
//Function for the event procedure
//--
#include <WSCtreeList.h>
extern WSCtreeList* newlist_001;
void btnep1(WSCbase* object){
//Delete all the items of the list.
newlist_001->delAll();
//Add an item to the last of the list.
newlist_001->addItem("item1");
newlist_001->setItemValue(-1,WS_INDENT_LEVEL,0);
newlist_001->addItem("item2");
newlist_001->setItemValue(-1,WS_INDENT_LEVEL,1);
newlist_001->addItem("item3");
newlist_001->setItemValue(-1,WS_INDENT_LEVEL,2);
newlist_001->addItem("item4");
newlist_001->setItemValue(-1,WS_INDENT_LEVEL,3);
newlist_001->addItem("item5");
newlist_001->setItemValue(-1,WS_INDENT_LEVEL,0);
newlist_001->addItem("item6");

- 43 -

Wide Studio Manual 1.0

newlist_001->setItemValue(-1,WS_INDENT_LEVEL,1);

//Add an item to the specified position of the list.
newlist_001->updateList();

}
static WSCfunctionRegister op("btnep1",(void*)btnep1);

As for the point that you should pay attention to in tree list, there is not special relational as mem-
bership between item at all. and then each item is merely indicated by status appointed indent. So by
deleting the item of the upper level, the item of floor following it is not disappeared. The difference of
upper level is only +1. If it is grater than +1,it is adjusted to +1 automatically.

7.2 Setting of the items by the property

the property WSNdata can be used for setting the items of the list, if it is a comparatively little number
of the items. In such case, set the property WSNdataSource to WS DATA SOURCE NONE, and set the
items which is punctuated with comma every one item to the proeprty WSNdata.

Format:(the property WSNuseIcon is True)
icon_filename,indent_level,1=open/0=close,the string\n...

Format:(the property WSNuseIcon is False)
indent_level,1=open/0=close,the string\n...

If the icon is ommited in the case that the property WSNuseIcon is True, the value of WSNiconPixmap
is used for the icon.

#include <WScom.h>
#include <WSCfunctionList.h>
#include <WSCbase.h>
//--
//Function for the event procedure
//--
#include <WSCtreeList.h>
extern WSCtreeList* newlist_001;
void btnep1(WSCbase* object){
//Delete all the items of the list.
newlist_001->delAll();
//Set the items of the list by the property
newlist_001->setProperty(WSNdataSource,WS_DATA_SOURCE_NONE);
newlist_001->setProeprty(WSNdata,",0,1,item1\n,1,1,item2\n,2,1,item3");

static WSCfunctionRegister op("btnep1",(void*)btnep1);

7.3 Setting of the items from the file directly

It is possible to set the items from the file directly. In such case at first,set WS DATA SOURCE FILE to
the property WSNdataSource, and set the file name to the property WSNdataSourceName as following
program.

- 44 -

Wide Studio Manual 1.0

#include <WScom.h>
#include <WSCfunctionList.h>
#include <WSCbase.h>
//--
//Function for the event procedure
//--
#include <WSCtreeList.h>
extern WSCtreeList* newlist_001;
void btnep1(WSCbase* object){
//Delete all the items of the list
newlist_001->delAll();
//Set the items from file directly
newlist_001->setProperty(WSNdataSource,WS_DATA_SOURCE_FILE);
newlist_001->setProperty(WSNdataSourceName,"data.txt");

}
static WSCfunctionRegister op("btnep1",(void*)btnep1);

//data.txt contains...
$(WSDIR)/sys/pixmaps/bi16.xpm,0,1,item1
1,1,item2
2,1,item3
3,1,item4
$(WSDIR)/sys/pixmaps/bi16.xpm,0,1,item5
1,1,item6
2,1,item7
3,1,item8

7.4 Setting of the items from the other instance

It is possible to set the items from the data source target property of the other instances. In such case,
set WS DATA SOURCE INSTANCE to the property WSNdataSource, and set the instance name to the
proeprty WSNdataSourceName. In the following example, a WSCtextField instance are specified to the
property WSNdataSourceName and then it sets the string data of it to the list.

#include <WScom.h>
#include <WSCfunctionList.h>
#include <WSCbase.h>
//--
//Function for the event procedure
//--
#include <WSCtreeList.h>
extern WSCtreeList* newlist_001;
void btnep1(WSCbase* object){
//Delete all the items of the list
newlist_001->delAll();
//Set the items from the other instances
newlist_001->setProperty(WSNdataSource,WS_DATA_SOURCE_INSTANCE);

- 45 -

Wide Studio Manual 1.0

newlist_001->setProperty(WSNdataSourceName,"newtext_000");
}
static WSCfunctionRegister op("btnep1",(void*)btnep1);

- 46 -

Wide Studio Manual 1.0

8 The user dialog

8.1 How to make a simple user dialog

Try to make a simple user dialog with WSCdialog class. and the application has as following functions.

Pushing some button of the application,indicates this user dialog.

This dialog has an input field and a radio group.

The end of input of the dialog,check the input value whether it is right.

Indicates the result of input of the dialog on the label.

[A sample of the user dialog]

This sample is provided by ws/samples/share/dialog/newproject.jpg.

8.2 Controling to indicate the user dialog

It is easy to see to control indicating the user dialog by a sample ws/sampes/share/dialog/newproject.prj.
The dialog is often used as exclusive window to do the input and indicating some informations. So there
is a bad case when it is implemented as usual window. For example,when it requires that the same dialog
is called from more than on event procedure,if the dialog is usual window, it becomes complecated that
receiving of the input value from it. But it is easy to receive it when it is as dialog,not as usual window,
because the popup method of dialog returns the end of input in order to receive the input value form it.

The following picutre shows the difference of the indicating and receiveing the input data between the
usual window and the dialog.

- 47 -

Wide Studio Manual 1.0

[The difference of the usual window and the dialog]

See the following program, At first, make a user dialog instance by droping from the [Window] section
of the object box dialog and put the following instances on it.

WSCvifield* newvifi 003

WSCradioGroup* newradi 006

[A sample of the user dialog]

The next,implement the procedure when the button [OK],[NO],[CANCEL] is pushed, and put it the
dialog with WSEV ACTIVATE trigger. In this procedure, check the input values whether they are right
and indicates an error dialog if they are wrong.

#include <WScom.h>
#include <WSCfunctionList.h>
#include <WSCbase.h>
//--
//Function for the event procedure
//--
#include <WSCdialog.h>
#include <WSCvifield.h>
#include <WSCradioGroup.h>
#include <WSCmessageDialog.h>
extern WSCvifield* newvifi_003;
extern WSCradioGroup* newradi_006;

void dialogep(WSCbase* object){
WSCdialog* dialog = (WSCdialog*)object->cast("WSCdialog");
if (dialog == NULL){ //A

- 48 -

Wide Studio Manual 1.0

return;
}
if (dialog->getStatus() != WS_DIALOG_OK){ //B

object->setVisible(False);
return;

}

WSCstring str;
str = newvifi_003->getProperty(WSNlabelString);
if (!strcmp((char*)str,"")){ //C

WSCmessageDialog* msg = WSGIappMessageDialog();
msg->setProperty(WSNdefaultPosition,True);
msg->setProperty(WSNwidth,500);
msg->setProperty(WSNlabelString,"Please input some string to the input field.");
msg->popup(); //D
return;

}
long val = newradi_006->getProperty(WSNvalue);
if (val == 0){ //E

WSCmessageDialog* msg = WSGIappMessageDialog();
msg->setProperty(WSNdefaultPosition,True);
msg->setProperty(WSNwidth,500);
msg->setProperty(WSNlabelString,"Please select a item of the radio group.");
msg->popup(); //F
return;

}
object->setVisible(False); //E

}
static WSCfunctionRegister op("dialogep",(void*)dialogep);

At first, get the class native pointer to access the original method of the WSCdialog class. and call the
getStatus method to receive an information which button [OK],[NO],[CANCEL] is pushed. At A,exits
the procedure if the instance is not WSCdialog class. At B,checks which the button is pushed. Puts
the dialog out when the button is not [OK]. At C, checks the input of the instance: newvifi 003, and
indicates an message dialog when its input is wrong at D and exits, At C, checks the input of the instance:
newradi 006, and indicates an message dialog when its input is wrong at F and exits.

Then puts the dialog out and the method popup() which is called to indicate this dialog and called
this event procedure by pushing the buttons of dialog returns. It is important that to make the dialog
disappeared, because if not,the method popup() will never return.

The following program is an example to call the method popup() in order to indicate the dialog.

- 49 -

Wide Studio Manual 1.0

[A sample window to indicate the user dialog]

If the button [dialog!] is pushed, indicates the user dialog and receive the input values from the dialog,
put them to the labels.
The first label: The pushed button [OK],NO],[CANCEL].
The second label: The input of newvifi 003.
The third label: The selection of newradi 006.

#include <WScom.h>
#include <WSCfunctionList.h>
#include <WSCbase.h>
//--
//Function for the event procedure
//--
#include <WSCdialog.h>
#include <WSCvifield.h>
#include <WSCradioGroup.h>
#include <WSCvlabel.h>
extern WSCdialog* newdial_001;
extern WSCvifield* newvifi_003;
extern WSCradioGroup* newradi_006;
extern WSCvlabel* newvlab_007;
extern WSCvlabel* newvlab_010;
extern WSCvlabel* newvlab_011;

void btnep(WSCbase* object){
long val = newdial_001->popup();
if (val == WS_DIALOG_OK){

newvlab_007->setProperty(WSNlabelString,"DIALOG OK!");
}else
if (val == WS_DIALOG_NO){

newvlab_007->setProperty(WSNlabelString,"DIALOG NO!");
}else
if (val == WS_DIALOG_CANCEL){

newvlab_007->setProperty(WSNlabelString,"DIALOG CANCEL!");
}
WSCstring tmp;
tmp = newvifi_003->getProperty(WSNlabelString);
WSCstring tmp2;
tmp2 << "INPUT: " << tmp;

- 50 -

Wide Studio Manual 1.0

newvlab_010->setProperty(WSNlabelString,tmp2);

val = newradi_006->getProperty(WSNvalue);
tmp2 = "SELECT: ";
tmp2 << val;
newvlab_011->setProperty(WSNlabelString,tmp2);

}
static WSCfunctionRegister op("btnep",(void*)btnep);

- 51 -

Wide Studio Manual 1.0

9 The file selection dialog

9.1 Indication of the file selection dialog

To get the instance of the file selection dialog, call the global function: WSGIappFileSelection(). and call
the dialog method: popup() to indicate it.

[The file selection dialog]

The method popup returns the result of the diaolog status when the selection is done. And get the
selected file name by the getFileName() method.

#include <WScom.h>
#include <WSCfunctionList.h>
#include <WSCbase.h>
#include <WSCfileSelect.h> //(A)
#include <WSCmessageDialog.h> //(B)
//--
//Function for the event procedure
//--
void btnep2(WSCbase* object){
//Access to the global instance of the WSCfileSelection class.
WSCfileSelect* fs = WSGIappFileSelect(); //(C)
fs->setProperty(WSNmaskFileName,"cpp"); //(D)
fs->setProperty(WSNdefaultPosition,True); //(E)
long ret = fs->popup(); //(F)

//Access to the global instance of the WSCmessageDialog class.
WSCmessageDialog* msg = WSGIappMessageDialog(); //(G)
msg->setProperty(WSNwidth,500); //(H)
msg->setProperty(WSNheight,120); //(I)
msg->setProperty(WSNdefaultPosition,True); //(J)

if (ret == WS_DIALOG_OK){ //(K)
WSCstring str;
str << fs->getFileName() << " is selected.";

- 52 -

Wide Studio Manual 1.0

msg->setProperty(WSNlabelString,str);
msg->popup();

}else if (ret == WS_DIALOG_NO){ //(L)
msg->setProperty(WSNlabelString,"Nothing is selected.");
msg->popup();

}else if (ret == WS_DIALOG_CANCEL){
msg->setProperty(WSNlabelString,"The selection is canceled.");
msg->popup(); //(M)

}
}

At first, include the header,WSCfileSelect.h, access to them. A global instance of WSCfileSelect class is
already prepared, and it is possible to access by the global function WSGIappFileSelect() at (C). Set the
property of it at (D),(E), and indicate it by the popup() method at (F), and then the popup method
returns that selection is done.

To see the result the file selection dialog,try to indicates the result by the message dialog. At
(G),(H),(I),(J),get the global instance of the message dialog and set its property up. At (K),indicate
the selected file name. At (L),indicate [Nothing is selected]. At (M),indicate [The selection is canceled]

- 53 -

Wide Studio Manual 1.0

10 The scrolled form

10.1 How to use the virtual scrolling

The large scrolling area uses huge window resource. In such case, it requires to use the virtual scrolling
which function uses no window resource.

The virtual scrolling has the following function.

it requires no window resource for any scrolling size.

The virtual scrolling has the following week points.

Drawing performance is worse than normal scrolling mode.

The instances which have a window resource can not be placed on the virtual scrolling mode.
The does not move by scrolling the area.

It is possible to use the instances which have no window resource and which class name is WSCvxxxx
on the virtual scrolling.

- 54 -

Wide Studio Manual 1.0

11 The separated form

The separated form has some area separated by some separators which can be move by the mouse pointer.

12 How to set the width of the separated area

At first, decide a direction to devide horizontal and vertical, set it to the property WSNorientation. Next,
set the position the separators to the property WSNbarValue.

For example,if the direction is vertical,and 3 separators are available,in other words,4 areas are avail-
able, to set the position of the separators 100,200,300 dots from left side, specify the property WSNbar-
Value 100,200,300.

[The separated form with 3 separators which position is 100,200,300 which contains the scrolled form on
each area]

- 55 -

Wide Studio Manual 1.0

13 The drawing area

13.1 How to draw pictures on the drawing area

It it possible to draw pictures freely by the drawing area. It has the methods to draw various pictures
which can be used on the event procedure with exposure event WSEV EXPOSE.

The following program shows a basic method to draw pictures by the drawing area.

#include <WScom.h>
#include <WSCfunctionList.h>
#include <WSCbase.h>
//--
//Function for the event procedure
//--
#include <WSCvdrawingArea.h>
#include <WSCvslider.h>

void drawep(WSCbase* object){
//drawing_a is same as newvdra_000...
//You can get it extern WSCvdrawingArea* newvdra000; also.
WSCvdrawingArea* drawing_a =

(WSCvdrawingArea*)object->cast("WSCvdrawingArea"); //(A)
if (drawing_a == NULL){ //(B)

return;
}

drawing_a->setForeColor("#ff0000"); //(C)
drawing_a->drawLine(0,0,100,100); //(D)

}
static WSCfunctionRegister op("drawep",(void*)drawep);

At first access to the method of the drawing area, include the headder WSCdrawingArea.h of the
WSCdrawingArea class and get the native class pointer of the WSCdrawingArea class at (A). It is im-
possible to access the native method of WSCdrawingArea class with the pointer of WSCbase class. If
the pointer drawing a is NULL at (B), the instance is not WSCdrawingArea, so exit the event procedure.
Next, it is the sample to set the color to the drawing area which is used to the other methods for drawing
pictures (C). At (D),draws the line from (0,0) to (100,100).

The drawing area class has the folloing methods.

The rectangle and the filled rectangle

The circle,filled circle,arc,chord,oval.

The polygon,filled polygon.

The string.

The image of JPG,BMP.

- 56 -

Wide Studio Manual 1.0

13.2 How to draw images(JPG,BMP) on the drawing area

It is possible to draw images of JPG,BMP by the method: drawImage(), drawStretchedImage().
The method: drawImage() draws the image as is, and the method: drawStretchedImage() draws the

image as specified size.

#include <WScom.h>
#include <WSCfunctionList.h>
#include <WSCbase.h>
//--
//Function for the event procedure
//--
#include <WSCvdrawingArea.h>
#include <WSCvslider.h>

void drawep(WSCbase* object){
//drawing_a is same as newvdra_000...
//You can get it extern WSCvdrawingArea* newvdra000; also.
WSCvdrawingArea* drawing_a =

(WSCvdrawingArea*)object->cast("WSCvdrawingArea");
if (drawing_a == NULL){

return;
}
WSCushort w = drawing_a->getProperty(WSNwidth);
WSCushort h = drawing_a->getProperty(WSNheight);
drawing_a->drawStretchedImage(0,0,w,h,"001.jpg"); //(A)

}
static WSCfunctionRegister op("drawep",(void*)drawep);

At (A), draws the image by size as same as the drawing area.

- 57 -

Wide Studio Manual 1.0

14 The indexed form

The indexed form switches the own area by its index tabs. At first, it requires to set the property:
WSNmenuItems in order to define the index tabs. For example,if there are [tab1],[tab2],[tab3], set value
as follows.

the property: WSNmenuItems
tab1,tab2,tab3

Next,select one of the tabs and put instances on the selected area. It is possible to know which tab
selected to see the property:WSNvalue. The above-mentiond example, it becomes the tab1:0, tab2:1,
tab3:2.

- 58 -

Wide Studio Manual 1.0

15 The balloon help

15.1 How to indicate the balloon help

Drop an instance of the WSCvballoonHelp class on the section [NonGUI] of the object box dialog on some
window or some form, and specify the instance name to the property WSNclient, which instance indicates
a balloon help. Specify the string to indicate to the property WSNlabelString of the balloon help instance.

- 59 -

Wide Studio Manual 1.0

16 The timer

16.1 How to use the timer

Drop an instance of the WSCvtimer class on the section [NonGUI] of the object box dialog on some window
or some form, and set the interval of firing by milli second. It will fires the event WSEV ACTIVATE after
the interval. So set the event procedure with WSEV ACTIVATE to the timer.
There are two kind of the timers. One fires only once, another continuously fires every interval. If

the property:WSNcont is True, it will continuously fires. It is possible to start or stop the timer by
the property: WSNrunning. If the property: WSNcont is False,after firing,the timer will stop, and the
property: WSNrunning will become False.

- 60 -

Wide Studio Manual 1.0

17 The wizard dialog

The wizard dialog is used for making the interactive dialog. It has an indexed form internal which tabs
are disavailable, and switch the scene by pushing the buttons [¡Back] or [Next¿] in order.

At first specify the number of the scene to the property: WSNmenuItems.

The property: WSNmenuItems
the number of the scene

For example, set 5 to it,if the dialog has 5 scenes. Next about settings of the buttons, if you want
the title of them are [¡Back],[Next¿] on usual scene and are [¡Back],[Finish] on last scene, set the following
value to the proeprty: WSNlabelString.

The property: WSNlabelString
<Back,Next>,Finish

It is possible to see the property: WSNvalue which scene is indicated now. The first scene is 0,the
next one is 1,2... And it is possible to specify the number to indicate a scene which you want to indicate.
On editing the dialog, in order to indicate the scene on which you put instances, you must set the number
of it to this property:WSNvalue.

The property: WSNvalue
The number of the scene
(Notice) This property must be specified the number of the scene

when you want to edit the scene on the application builder.

- 61 -

Wide Studio Manual 1.0

18 The controlling of the position of the instances by the offset

18.1 The offset of X,Y coordinate

It is possible to control the position of the instances of WSCvXXX class which has no window resource
by the method: setXOffsetPtr and setYOffsetPtr.

For example, the following event procedure with initializing trigger shows setting the offset.

extern short xoffset; //A
extern short yoffset; //A
void initep(WSCbase* object){
object->setXOffsetPt(&xoffset); //B
object->setYOffsetPt(&yoffset); //B

}

At first,define a global short variable somewhere and do extern to access it at (A). set it as offset to the
instance at B. Then the instance will be indicated at the position of the coordinate which is added the
offset variable.

It is possible to set same variable to many instances and to control their position by it at once.

18.2 The scaling offset of the size of the intance

It is possible to control the size of the instances of WSCvXXX class by the method: setScaleOffsetPtr.
For example, the following event procedure with initializing trigger shows setting the scaling offset.

extern double scaleoffset; //A
void initep(WSCbase* object){
object->setScaleOffsetPt(&scaleoffset); //B

}

At first,define a global double variable somewhere and do extern to access it at (A). set it as scaling
offset to the instance at B. Then the instance will be indicated at the size which is multipled by the scaling
offset variable.

It is possible to set same variable to many instances and to control their size by it at once.

- 62 -

Wide Studio Manual 1.0

19 The memory device class

19.1 How to create the memory device class

It is possible to operate the data of the image directly by the memory device class. The memory device
has the following facilities.

Drawing some pictures on the device.

Drawing some images(jpg,bmp) on the device.

Direct referencing and direct manipulation of the image data.

Transfering of the image data to the window.

By the sample: ws/sampes/share/memdev/newproject.prj, See the usage of the memory device class.
This sample read the image ”001.jpg” and indicates it gradually.

- 63 -

Wide Studio Manual 1.0

[The sample which indicates the image gradually.]

This sample does the following.

Creates two the memory devices(mdev,mdev2).

Draws the image ”001.jpg” on mdev.

(1)Transfers the data changed brightness up from mdev from mdev2

(2)Transfers the data from mdev2 to the window.

Loops (1),(2).

#include <WScom.h>
#include <WSCfunctionList.h>
#include <WSCbase.h>
//--
//Function for the event procedure
//--
#include <WSDappDev.h>
#include <WSCcolorSet.h>
#include <WSCimageSet.h>
#include <WSCmainWindow.h>
extern WSCmainWindow* newwin000;

#include <WSDmwindowDev.h>
WSDmwindowDev* mdev = NULL;
WSDmwindowDev* mdev2 = NULL;

void btnep(WSCbase* object){
WSDdev* dev = newwin000->getdev(); //A

if (mdev == NULL){ //B
mdev = WSDmwindowDev::getNewInstance();
mdev2 = WSDmwindowDev::getNewInstance();

}

- 64 -

Wide Studio Manual 1.0

mdev->createPixmap(200,200); //C
mdev->beginDraw(0,0,200,200); //D
WSDimage* image = WSGIappImageSet()->getImage("001.jpg"); //E
mdev->drawStretchedImage(0,0,200,200,image); //F
mdev->endDraw(); //G

mdev2->createPixmap(200,200); //H

mdev->initBuffer(); //I
mdev2->initBuffer(); //J

long i,x,y;
for(i=0;i<100; i++){

for(x=0; x<200; x++){
for(y=0; y<200; y++){
WSCuchar r,g,b;
mdev->getBufferRGB(x,y,&r,&g,&b); //K
r = (WSCushort)((double)(r*i)/100); //L
g = (WSCushort)((double)(g*i)/100); //L
b = (WSCushort)((double)(b*i)/100); //L
mdev2->setBufferRGB(x,y,r,g,b); //M

}
}
mdev2->putBufferToPixmap(); //N
mdev2->copyToWindow(dev,0,0,200,200,0,0); //P

}
}
static WSCfunctionRegister op("btnep",(void*)btnep);

It acquires the window device from the instance at (A) and creates the memory devices at the first
click by the method: getNewInstance which creates an appropriate instance(B). It is impossible with new
operator to create an instancde of the memory device class, because this class depends the window system.

About indicating the image 001.jpg to mdev1, at first,initialize mdev1 by the method: createPixmap
with the geometry (C). To begin draw pictures,call the method: beginDraw() of the device class(D).
Aquire the image instance from the global image management class(E) and put the image instance to the
memory device(F). If drawing pictures is over,call the method: endDraw().
Initialize mdev2 too at (H). and initialize the memory buffer for direct operation (I)(J),this time it

transfers the internal image data on the frame buffer to the memory buffer. At(K), get the RGB value
from mdev1. At(L), increase the brightness of the RGB value and set it to mdev2 (M). It transfers the
memory data to the frame buffer(N). and indicates it by transfering to window(P).

- 65 -

Wide Studio Manual 1.0

20 Network communication using TCP/IP

20.1 How to use network communication using TCP sockets

TCP network communication is used in client-server oriented communications. Server side socket, WSCvs-
socket class can accept from client side sicket, WSCvcsocket.

Usually, in handling TCP sockets by C/C++ language, connection is established after accept, listen
or connect procedures but in WideStudio, the processes related to establishing TCP socket connection are
automatically done in an object library to conceal these processes and users do not need to write these
processes.

The TCP socket libraries have a property regarding IP address or PORT number, in which you can
use just setting these values to transmit data usiing TCP socket libraries. TCP socket libraries contains
connecting side(client) and connected side(server)

Client side and server side is different on operation mainly in connecting. Comparing a client side
connecting at a specific IP address and port number existing over the network, a server side wait for
being connected. Thus, in using TCP connection, WSCvcsocket (Client side) should always connect to
WSCvssocket (Server side) which is waiting for connection.

For the client side property settings, the referral server TCP/IP address is set in WSNip and the port
in WSNport. For the server side property settings, the awaiting socket port is set in WSNport and turn
”ON” WSNrunning. Though usually WSNip is not set, it should be set when the awaiting IP address
have to be specified.

By invoking WSCvsocket::exec method in the client side, connection is established to the server side
WSCvssocket. Once the connection is established, an ACTIVATE event arises on both client and server
side to communicate in the event procedure.

- 66 -

Wide Studio Manual 1.0

Here is a sample of the event procedure starting in the ACTIVATE followed by success of connection
which sends/receives client-side data.

#include <WScom.h>
#include <WSCfunctionList.h>
#include <WSCbase.h>
//--
//Function for the event procedure
//--
#include <WSCvcsocket.h>

void com_ep(WSCbase* object){
//do something...
WSCvcsocket* sock = (WSCvcsocket*)object->cast("WSCvcsocket");
char buffer[128];
sprintf(buffer,"test!!! %d",cnt);
cnt++;

//send data;
long send_len = sock->write((WSCuchar*)buffer,128);
if (send_len == 128){

//success! do something..
}else{

//error!
return;

}

//receive data;
buffer[0] = 0;
long recv_len = sock->read((WSCuchar*)buffer,128);
if (recv_len == 128){

//success! do something..
}else{

//error!
return;

}
}

- 67 -

Wide Studio Manual 1.0

static WSCfunctionRegister op("com_ep",(void*)com_ep);

Next sample is the procedure for transmitting server-side data starting by ACTIVATE in establishing
a connection.

#include <WScom.h>
#include <WSCfunctionList.h>
#include <WSCbase.h>
//--
//Function for the event procedure
//--
#include <WSCvssocket.h>

void com_ep(WSCbase* object){
//do something...
WSCvssocket* obj = (WSCvssocket*)object->cast("WSCvssocket");
char buffer[128];

//receive data:
//Store data from a client into buffer
obj->read((WSCuchar*)buffer,128);

//send data:
//Store data for a client into buffer to send it
strcpy(buffer,"send data...");
obj->write((WSCuchar*)buffer,128);

}
static WSCfunctionRegister op("com_ep",(void*)com_ep);

Next is an client-side event procedure which trasmits data after establishing connection.

#include <WScom.h>
#include <WSCfunctionList.h>
#include <WSCbase.h>
//--
//Function for the event procedure
//--
#include <WSCvcsocket.h>
extern WSCvcsocket* newvcso_000;

void btnop(WSCbase* object){
//Initiate connection and exchange data after connection
long ret = newvcso_000->exec();
if (ret != WS_NO_ERR){ //connection failed

return;
}

}
static WSCfunctionRegister op("btnop",(void*)btnop);

- 68 -

Wide Studio Manual 1.0

20.2 How to use a broadcast network communication using UDP socket

By using UDP, data can be sent to unspecified number of receipents (broadcast address: usu., xxx.xxx.xxx.255)
The data can be received by processes who wait in the port specified in sending.

For the setting in sending, referral socket port should be specified in WSNport. Also broadcast address,
usually this is 255.255.255.255 is set in WSNip. In the system which is not allowed 255.255.255.255, the
referral network address but with 255 in its last digit can be specified. For example, when you want to
send to unspcified number of machines on the network:10.20.30.0, 10.20.30.255 can be specified.

For the receipient’s property settings, the awaiting socket port is set in WSNport and turn WSNrunning
”ON”. As for the sender side, since connection is not being established, it becomes simple comparing TCP.
It is as simple as sending data calling WSCvudpsocket::write.

#include <WScom.h>
#include <WSCfunctionList.h>
#include <WSCbase.h>
//--
//Function for the event procedure
//--
#include <WSCvudpsocket.h>
extern WSCvudpsocket* newvudp_000;

void btnop(WSCbase* object){
static long cnt = 0;
WSCuchar buffer[64];
//send data in buffer
strcpy(buffer,"send data..");
long ret = newvudp_000->write(buffer,64);
if (ret < 64){

//failed.
}else{

//success
}

}
static WSCfunctionRegister op("btnop",(void*)btnop);

- 69 -

Wide Studio Manual 1.0

As for the recipient side, it receives in the event procedure which starts by ACTIVATE as the same
as TCP’s server side.

#include <WScom.h>
#include <WSCfunctionList.h>
#include <WSCbase.h>
//--
//Function for the event procedure
//--
#include <WSCvudpsocket.h>
extern WSCvudpsocket* newvudp_000;

void recvop(WSCbase* object){
WSCuchar buffer[64];
//Receiving data
newvudp_000->read(buffer,64);

}
static WSCfunctionRegister op("recvop",(void*)recvop);

- 70 -

Wide Studio Manual 1.0

21 Database access using the database class

21.1 Database access through ODBC

Using WSCvdb class enables to access a database through ODBC. In order to access ODBC, set WS DB ODBC
in WSNtype property and specify the DSN, the user name and the password.

#include <WScom.h>
#include <WSCfunctionList.h>
#include <WSCbase.h>
//--
//Function for the event procedure
//--
#include <WSCvdb.h>
extern WSCvdb* newvdb__000;

void db_ep(WSCbase* object){
long ret = newvdb__000->open("dn","user","passwd");
if (ret == WS_NO_ERR){

//Connecting
}else{

//Connection failed with getting an error message.
char buffer[1024];
newvdb__000->getErrorMsg(buffer,1024);

}
}

In order to access ODBC, DSN should set into WSNhostname, username in WSNusername, password
in WSNpassword and call WSCvdb::open without arguments.

#include <WScom.h>
#include <WSCfunctionList.h>
#include <WSCbase.h>
//--
//Function for the event procedure
//--
#include <WSCvdb.h>
extern WSCvdb* newvdb__000;

void db_ep(WSCbase* object){
long ret = newvdb__000->open();
if (ret == WS_NO_ERR){

//Connecting.
}else{

//Connection failure with getting an error message.
char buffer[1024];
newvdb__000->getErrorMsg(buffer,1024);

}
}

- 71 -

Wide Studio Manual 1.0

21.2 Database access through PostgreSQL interface

By using WSCvdb class, you can access a PostgreSQL database directly through the PostgreSQL interface.
When accessing through the PostgreSQL interface, WS DB POSTGRES should be set in WSNtype

and specify hostname, user name, password, database name, and port number into WSCvdb::open to call.

#include <WScom.h>
#include <WSCfunctionList.h>
#include <WSCbase.h>
//--
//Function for the event procedure
//--
#include <WSCvdb.h>
extern WSCvdb* newvdb__000;

void db_ep(WSCbase* object){
long ret = newvdb__000->open("dn","user","passwd","dbname","5432");
if (ret == WS_NO_ERR){

//Connecting.
}else{

//Connection failure with getting an error message.
char buffer[1024];
newvdb__000->getErrorMsg(buffer,1024);

}
}

In order to access PostgreSQL, the hostname that have the database should be set into WSNhostname,
and user name in WSNusername, password in WSNpassword, database name in WSNdbname and port
number in WSNport to execute WSCvdb::open without arguments.

#include <WScom.h>
#include <WSCfunctionList.h>
#include <WSCbase.h>
//--
//Function for the event procedure
//--
#include <WSCvdb.h>
extern WSCvdb* newvdb__000;

void db_ep(WSCbase* object){
long ret = newvdb__000->open();
if (ret == WS_NO_ERR){

//Connecting.
}else{

//Connection failure with getting an error message.
char buffer[1024];
newvdb__000->getErrorMsg(buffer,1024);

}
}

- 72 -

Wide Studio Manual 1.0

21.3 Creating the table

When the access to the database by WSCvdb::open is succeeded, you can issue SQL syntax to operate
the database.

Next example shows how to create a table(shinamono) on the database

#include <WScom.h>
#include <WSCfunctionList.h>
#include <WSCbase.h>
//--
//Function for the event procedure
//--
#include <WSCvdb.h>
extern WSCvdb* newvdb__000;

void db_ep(WSCbase* object){
char buf1[512];
strcpy(buf1, "create table shinamono(code int, hinmei char(20), nedan float)");
newvdb__000->sqlExecute(buf1);

if (ret == WS_NO_ERR){
//Success

}else{
//Connection failure with getting an error message
char buffer[1024];
newvdb__000->getErrorMsg(buffer,1024);

}
}

21.4 Store data in the table

You can store data into the table by issuing SQL syntax when connection to the database is succeeded by
WSCvdb::open and there exists an operatable table.

Nex example shows how to store data in the table named shinamono on the database.

#include <WScom.h>
#include <WSCfunctionList.h>
#include <WSCbase.h>
//--
//Function for the event procedure
//--
#include <WSCvdb.h>
extern WSCvdb* newvdb__000;

void db_ep(WSCbase* object){
newvdb__000->beginTran();
strcpy(buf1, "insert into shinamono values(1, ’Orange’, 100)");
newvdb__000->sqlExecute(buf1);

- 73 -

Wide Studio Manual 1.0

strcpy(buf1, "insert into shinamono values(2, ’Apple’, 200)");
newvdb__000->sqlExecute(buf1);
strcpy(buf1, "insert into shinamono values(3, ’Banana’, 300)");
newvdb__000->sqlExecute(buf1);
strcpy(buf1, "insert into shinamono values(4, ’Melon’, 0)");
newvdb__000->sqlExecute(buf1);

newvdb__000->commitTran();

}

21.5 Referring data on the table

You can store data into the table by issuing SQL syntax when connection to the database is succeeded by
WSCvdb::open and there exists an operatable table.

Next example shows how to refer to/update the data on the table named shinamono on the database.

#include <WScom.h>
#include <WSCfunctionList.h>
#include <WSCbase.h>
//--
//Function for the event procedure
//--
#include <WSCvdb.h>
extern WSCvdb* newvdb__000;

void db_ep(WSCbase* object){
newvdb__000->beginTran();
WSCdbRecord rs(newvdb__000);
if(rs.open("select * from shinamono order by code") == WS_NO_ERR) {

while (!rs.isEOF()) {
rs.getColValue("code", &var);
int code = (int)var;
cout << "code:" << (int)var << " ";
rs.getColValue("hinmei", &var);
cout << "hinmei:" << (char*)var << " ";
rs.getColValue("nedan", &var);
char buf[80];
double nedan = (float)var + 10;

sprintf(buf, "%f", (float)var);
cout << "nedan:" << buf << "\n";

if(nedan != 0) {
sprintf(buf1, "update shinamono set nedan = %f where code = %d", nedan, code);

} else {
sprintf(buf1, "delete from shinamono where code = %d", code);

}

- 74 -

Wide Studio Manual 1.0

newvdb__000->sqlExecute(buf1);
rs.moveNext();

}
}
rs.close();
newvdb__000->commitTran();

}

- 75 -

Wide Studio Manual 1.0

C The user defined classes

1 How to access to the member instances

1.1 How to access to the member instances in the class event procedures

To acess to the member instance, it needs that the instance is defined as ”member” of the user defined
class. See [Class application window: capter[How to make a instance be member]]
The following shows a sample of a user defined class: sample.
The variable: samlple* base is the pointer of the sample class. Then you can access to the member

instance: base-¿newlab000 which name is newlab000 for example.

#include <sample.h>
void sample::event_procedure(WSCbase* object){
sample* base = (sample*)object->getUserData(WS_BASE_CLASS);
...

//Access the member instance...
WSCvariant val = base->newvlab000->getProperty(WSNuserValue);
...

}

1.2 How to access to the member instances in the method

To access to the member instance in the class event procedure, it needs ”base-¿”, but in the method, it
does no need ”base-¿”.
The following is the sample of a user defined class: sample. Then you can access to the member instance
directly: newlab000 which name is newlab000 for example.

//a sample of the method.
void sample::method1(long data){
newvlab000->setProperty(WSNuserValue,data);
...

}

- 76 -

Wide Studio Manual 1.0

D The store function

1 How to load the stored application window directly from the

program

1.1 How to load the stored application window directly from the program

You can load the stored application window with following funtions.

The function for loading Description
WSGFloadWindow(p1,p2,p3,p4) Loading of the stored application window
char* p1 Specify the store Attributes: ”FILE” = from the file.
char* p2 Specify the store data name: if p1 = ”FILE”,specify the file name
WSCbase** p3 Specify the pointer for returned value: the loaded a window
WSCbase* p4 Specify the parent instance for the partial application window
long (function returns) WS NO ERR = success / the other = fail

The following shows to load the stored application window directly from the program.

#include "WSCconductor.h"
...

WSCbase* window = NULL; //for returned value:
char* field = "FILE"; //from FILE.
char* fname = "newpic001.oof"; //FILE name.
char* path = "/usr1/win/data"; //specify the directory.

//Specify the directory.
WSGIconductor()->setSerializePath(path);

//Loading of the stored application window.
long ret = WSGFloadWindow(field,fname,&window,NULL);
if (ret == WS_NO_ERR){

//success
window->setVisible(True); //display the window.

}

Specify the storing attributes for the ”field”. The store function supports ”FILE” now. In the future,it
will support a RDB, an interprocess communication,a networking field, and so on...
Specify the directory for the ”path” to the conductor which controls the storing function. The default

value is the current directory. Specify the file name for the ”fname”.and you can load the stored application
window with WSGFloadWindow(). WSGFloadWindow() creates the instances when if it succeeds, so if
you call it several times,it creates several instances.
Please check the directory,the file name,the permission of the specified file,if it fails.

- 77 -

Wide Studio Manual 1.0

1.2 How to load the stored partial application window directly from the
program

The following shows to load the stored partial application window.

#include "WSCconductor.h"
...

WSCbase* window = NULL; //for returned value:
WSCbase* parent = newwin000; //the parent instance for

//the partial application window.
char* field = "FILE"; //from FILE.
char* fname = "newpic001.oof"; //FILE name.
char* path = "/usr1/win/data"; //specify the directory.

//Specify the directory.
WSGIconductor()->setSerializePath(path);

//Loading of the stored partial application window.
long ret = WSGFloadWindow(field,fname,&window,parent);
if (ret == WS_NO_ERR){

//success
window->setVisible(True); //display the window.

}

It is same as the loading of the stored application window fundamentally, but it requires the parent
instance in this case, for the partial aplication window, because it is not a window and needs a parent
window to display. You can specify the parent window like, WSCwindow, WSCform,WSCscrForm which
has the management function of child instances.

- 78 -

Wide Studio Manual 1.0

2 How to delete the loaded application window

2.1 How to delete the loaded application window

The following shows to delete the loaded application window directly from the program.

//delete the application window
WSGFdestroyWindow(window);

Specify the application window to delete. You can delete the partial application window or the normal
instance also, but you can not delete the same instance twice because it causes memory fault. After
deleting,you can not access the deleted instance.

2.2 How to delete the loaded partial application window

The following shows to delete the loaded partial application window directly from the program.

//delete the partial window
WSGFdestroyWindow(object);

It is same as the loading of the stored application window fundamentally, but you specify the partial
application window in this case,

- 79 -

Wide Studio Manual 1.0

E The remote instance function

1 Accessing a remote instance

1.1 Accessing a remote instance

You can get a remote instance by requesting to the object management instance which exists one per a
load module.

Object management class Instance retreiving class
WSCbaseList WSCbaseList* WSGIappObjectList()

The way to retreive the object to access is as follows:

#include "WSCbaseList.h" //Access WSGIappObjectList()
#include "WSCRbase.h" //Use the virtual remote instance class
...
void event_procedure(WSCbase* object){

//Get WSCRbase point by the object management
char* obj_name = "newvlab_001"; //Remote instance named newvlab_001
WSCRbase* rinstance = WSGIappObjectList()->getRemoteInstance(obj_name);

//Access to the remote instance by the virtual remote instance
rinstance->setProperty(WSNlabelString,"HELLO WORLD");

rinstance is the instance to access the remote instance. It requires the object name as its argument.
You can access remote instances through the virtual remote instance as well as you can access usuall
instances(objects)

1.2 Casting a remote instance

You can use the virtual remote instance acquired through the object management by casting to original
class as well as usual objects. Casting is required when you need to call methods exising in the original
class. Next example is to cast WSCRlist type virtual remote instance in order to call WSClist::addItem()
from WSCRbase type virtual remote instance.

#include "WSCbaseList.h" //Access to WSGIappObjectList()
#include "WSCRlist.h" //Use the virtual remote instance class
...
void event_procedure(WSCbase* object){

//Getting a WSCRbase pointer by the object management
char* obj_name = "newlist_001"; //Remote instance named newlist_001
WSCRbase* rinstance = WSGIappObjectList()->getRemoteInstance(obj_name);

//Cast WSClist class remote instance to the virtual remote calss WSCRlist that corresponds

- 80 -

Wide Studio Manual 1.0

//to the original WSClist class
WSCRlist* rlist = (WSCRlist*)rinstance->cast("WSCRlist");
if (rlist == NULL){

//Not WSCRlist class
return;

}

//Call a WSClist class method through WSCRlist virtual remote intance class

rlist->addItem("item..");

- 81 -

Wide Studio Manual 1.0

F Samples and demonstrations

1 Sample:1 (Hello World)

Here, you create a project,an application window and event procedures. The following is a rudimentary
sample which displays ”HelloWorld” by pushing the button of the window,
The source code is ws/samples/EE/hello/hello.prj. You can load the project and build by the application
builder.

• Creating a project
Select the [New project] of the [Project] menu, and input ”hello” for the project name,and check

the [Normal application].

• Creating a application window
Select the [New window] of the [File] menu, and Check the [Normal window],and check [Add to

project], and input the window name ”newwin000”.

• Placing the instances
Place the WSCvbtn instance on the created application window. Select the [ObjectBox] of the

[View] menu, to display the object box dialog.
The next, clicking the [Commands] tab on the object box dialog,and dragging and dropping the

WSCvbtn class shown as BTN from the dialog to the application window, it creates the new instance
of WSCvbtn.
you can adjust the properties of the instance by the inspector.

[A view of the application window]

• Creating the event procedure
At first, select the button instance by the inspector, and select [Mew procedures] of sub-menu:[Procedures]
of [Edit] menu.
Here, set ”btn proc” for the function name and WSEV ACTIVATE trigger.
To create a template file of the event procedure, push the button [Template].

• Editing the event procedure
The next, you edit the template event procedure. you can execute the source code editor by selecting
[Edit] of sub-menu:[Procedures] of [Edit] menu to edit the event procedure which is focused on the
inspector. Here, the following procedure shows that it shows ”HelloWorld” at the first clicking, it
exits the application at the second clicking.

#include <WScom.h>
#include <WSCfunctionList.h>
#include <WSCbase.h>
//--

- 82 -

Wide Studio Manual 1.0

//Function for the event procedure
//--
void btn_proc(WSCbase* object){
//do something...
static long cnt = 0;
if (cnt == 0){

object->setProperty(WSNlabelString,"Hello World.");
cnt++;

}else{
exit(0);

}
}
static WSCfunctionRegister op("btn_proc",(void*)btn_proc);

• Saving the project
You can save the project by [Save project] of [Project] menu.

• Building the project
You can build the project by [Build all] of [Build] menu. After building, execute the application!

[Executing the application]

- 83 -

Wide Studio Manual 1.0

2 Sample:2(Various kinds of classes)

Here,the following show the instances of the various kinds of WideStudio classes.

The source code is ws/samples/EE/sample/sample.prj. Please load it and build it by the application
builder.
this sample shows the following things.

• To display sample dialogs.

• To display value by the slider.

• To display the text input demonstrations.

• To display the combobox demonstrations

• To select a value by option menu.

• To display a list of texts.

[A view of the application window]

• To display the dialogs
The button which displays ”Dialog” has a event procedure which trigger is WSEV ACTIVATE and
which function is btn1 ep(). This procedure is executed by clicking of the button,and pops up the
message dialog: [newmess 002] and displays the return value from it on the label:[newvlab 001].

• To display the value of the slider
The slider: [newvsli 000] has a event procedure which trigger is WSEV VALUE CH and which

function is slider1 ep(). This procedure is executed by sliding of the slider,and dislays the slider
value on the label:[newvlab 002].

• To input strings
The button which displays ”Input text” has a event procedure which trigger is WSEV ACTIVATE
and which function is btn2 ep(). This procedure is executed by clicking of the button,and gets the
string from the input field:[newvifi 004] and dislpay it on the label:[newvlab 005].

- 84 -

Wide Studio Manual 1.0

• To display the value of the slider (2)
The slider2: [newvsli 006] has a event procedure which trigger is WSEV VALUE CH and which

function is slider2 ep(). This procedure is executed by sliding of the slider,and dislays the slider
value on the meter:[newvmet 008].

• A demonstration of the combo box
It shows the demonstration of the combo box.

• A demonstration of the option menu
The option menu which displays ”Choose” has a event procedure which trigger is WSEV VALUE CH
and which function is opt1 ep(). This procedure is executed by choosing of the menu,and dislays
the choosed value on the label:[newvlab 011].

• A demonstration of the list
The button which displays ”Add” has a event procedure which trigger is WSEV ACTIVATE and

which function is btn3 ep(). This procedure is executed by clicking of the button,and adds a string
to the list:[newlist 012].
The button which displays ”Clear” has a event procedure which trigger is WSEV ACTIVATE and
which function is btn4 ep(). This procedure clears the list:[newlist 012].

[A view of the application window]

- 85 -

Wide Studio Manual 1.0

3 Sample:3 (label)

The following is a demonstration of the event procedure about labels.
The source code is ws/samples/EE/labelwork/labelwork.prj. Please load it and build it by the application
builder.
this sample shows the following things.

• To highlight the label by mouse
implemented by normal event procedures.

• To highlight the label by mouse(2)
implemented by an initialize procedure and sub-procedures.

• To group the labels by an event procedure

[A view of the application window]

• To highlight the label
The button which displays ”highlight by mouse” has two event procedures with WSEV MOUSE IN
trigger and WSEV MOUSE OUT trigger.
The WSEV MOUSE IN procedure stores the original backcolor to WSNuserString and stores the

highlight color to WSNbackColor.
The WSEV MOUSE OUT procedure gets the original backcolor from WSNusreString and stores it
to WSNbackColor.

• To highlight the label (2)
The button which displays ”highlight by mouse(2)” has an event procedures with WSEV INITIALIZE
trigger which setups sub-procedures which trigger is WSN MOUSE IN and WSN MOUSE OUT.
The initialize procedure like this sipmlifies because it not require that the instance has many pro-

cedures for one-function.

• To group the labels by an event procedure
The button which displays ”Click!” has a event procedures which trigger is WSEV MOUSE PRESS.
This procedure make a group of the labels which has it by storing selected label to the parent instance
: form or window. Then the labels highlights cooperated.

- 86 -

Wide Studio Manual 1.0

4 Sample:4 (A calculator)

This is a demonstration of calcurator using by the array of the buttons.
The source code is ws/samples/EE/labelwork/wscalc.prj. Please load it and build it by the application

builder.
this sample shows the following things.

• To demonstrate calicurating with the operator:+,-,/,*
(Notice)The specification of the calicurator is not strict.

[A view of the application window]

• The number button
Input the number to the indicator.

• The operator button
Stores the operator if the button is ”+”,”-”,”/”,”*”, Calculates by the stored information if the

button is ”=”,

• The other
The resize event procedure adjusts size/place of the buttons when the window is resized.

- 87 -

