
Release Notes

version 1.80

GRAME - Computer Music Research Lab.
9, rue du Garet BP 1185
FR - 69202 LYON CEDEX 01
Ph: +33 (0)4 720 737 00
Fax: +33 (0)4 720 737 01

http://midishare.sourceforge.net/

Summary

Introduction ...1
About the release 1.80 .. 2
Overview of the MidiShare Drivers Management................................. 3

General operation... 3
The MidiShare driver.. 3
Slots Management .. 4
Additionnal change codes.. 4
Connections restrictions .. 4
Obsolete functions .. 5

Reference..7
MidiAddSlot ... 8
MidiConnectSlot.. 9
MidiCountDrivers... 10
MidiGetDriverInfos... 11
MidiGetIndDriver.. 12
MidiGetIndSlot... 13
MidiGetSlotInfos.. 14
MidiIsSlotConnected... 16
MidiRegisterDriver ... 17
MidiRemoveSlot.. 18
MidiUnregisterDriver... 19

1

Introduction

2

About the release 1.80
MidiShare version 1.80 is an Open Source Release: its source code is publicly
available under the GNU Library General Public License. The kernel architecture
has been slightly revised in order to facilitates porting on new platforms. A
GNU/Linux version has been designed, based on this architecture.
The main change consists in removing the IO drivers from the kernel itself and in
providing mechanisms to plug these drivers dynamically as external ressources.
Therefore, a new manager, the Drivers Manager, is part of the MidiShare kernel
architecture: it is in charge of the drivers activation, it also routes the events to their
final destination according to the drivers setup.
This document describes these changes and gives the reference of the new
functions and data structures introduced with this new architecture. The reader is
supposed to be familiar with the MidiShare Developer Documentation.

3

Overview of the MidiShare Drivers Management

The underlying idea of the drivers management is that a driver behaves like any
MidiShare client except for a special call required to register (or unregister) as a
driver. All the MidiShare API, extended by a set of new functions detailed below,
are available to the drivers. Therefore, input / output operations may be
performed using the standard MidiShare mecanisms:
- MidiShare events to be send to the physical ports may be handled in real-time

using a MidiShare received alarm.
- events received by the driver from the physical ports may be given to the

MidiShare kernel using standard MidiSend functions.

General operation

Loading drivers in memory is a platform dependant operation (so as unloading), in
charge of the Drivers Manager. It is the driver responsability to register and
unregister: it may be done at any time. However, the driver should act according
to the MidiShare state:
- when MidiShare is dormant, the driver should be dormant
- when MidiShare wakes up, the driver should also be woken.
Therefore, in order to be notified of the kernel state changes, a driver should
provide callbacks at register time. The TDriverOperation data structure is intended
to store these callbacks:

typedef struct TDriverOperation {
void (* wakeup) (void);
void (* sleep) (void);
long reserved[3];

} TDriverOperation;

The following functions are provided for drivers management :
short MidiRegisterDriver (TDriverInfos * infos, TDriverOperation *op)
void MidiUnregisterDriver(short refnum)
short MidiCountDrivers ()
short MidiGetIndDriver (short index)
Boolean MidiGetDriverInfos (short refnum, TDriverInfos * infos)

The MidiShare driver

Like the MidiShare application, automatically opened with the first client, a
MidiShare driver is created at wakeup time: it should be considered as the driver
image of the MidiShare application. As MidiShare client applications should connect
to MidiShare to communicate with the drivers, the MidiShare drivers should
connect to the driver image of MidiShare to communicate with the client
applications.
The MidiShare reference number is 0 for the client applications and 127 for the
drivers.

Slots Management

4

To differenciate between MidiShare logical ports and input / ouput ports
supported by a driver (Serial ports, USB...) we’ll talk about ‘slots‘ when we’ll refer
to a driver port.
A driver should declare all its available slots using the MidiAddSlot function, which
returns a system unique slot reference number. This reference number is
composed of the driver reference number and a slot reference number unique in
the driver context.

typedef struct {
short drvRef; /* the driver reference number */
short slotRef; /* the slot reference number */

} SlotRefNum;

The following functions are provided for the slots management :
SlotRefNum MidiAddSlot (short refnum, SlotName name,

 SlotDirection direction)
SlotRefNum MidiGetIndSlot (short refnum, short index)
void MidiRemoveSlot (SlotRefNum slot)
Boolean MidiGetSlotInfos(SlotRefNum slot, TSlotInfos * infos)

MidiShare allows dynamic routing of the events from one port to any of the
available slots. For this reason, a slot can be connected to one or several MidiShare
ports. The Driver Manager is in charge of dispatching the events to or from the
drivers according to the connections set between the event port and the drivers
slots.
The following functions are provided for the slot connections management :
void MidiConnectSlot (short port, SlotRefNum slot, Boolean state)
Boolean MidiIsSlotConnected (short port, SlotRefNum slot)

Additionnal change codes

The following alarm codes are defined to notify the client applications of changes
concerning the drivers:

MIDIOpenDriver /* notified when a driver opens */
MIDICloseDriver /* notified when a driver closes */
MIDIAddSlot /* notified when a slot is added to the system */
MIDIRemoveSlot /* notified when a slot is removed from the system */
MIDIChgSlotConnect /* notified when the slots connections change */

Connections restrictions

Regular MidiShare clients and MidiShare drivers are considered to be part of
separate communication folders. An additionnal connection rule is given : a
connection is not allowed to cross a folder boundary. Therefore, connections can
be made between regular clients or between drivers but NOT between a driver
and a regular client. Such connections requests will be silently ignored by the
kernel.

5

Obsolete functions

The functions below are obsolete:
Boolean MidiGetPortState (short port)
void MidiSetPortState (short port, Boolean state)

For compatibility, the corresponding entry points are supported in the Macintosh
version but the functions do nothing and MidiGetPortState always return true

6

7

Reference

8

MidiAddSlot

DESCRIPTION

Add a new slot to a driver. MidiShare applications owning a "context alarm" will be
informed of the new slot with the MIDIAddSlot alarm code.

PROTOTYPE
SlotRefNum MidiAddSlot (short drvRefNum, SlotName name,

SlotDirection direction);

ARGUMENTS

drvRefNum : the MidiShare reference number of the owner driver.
name : a slot symbolic name.
direction : the slot direction which may be in

MidiInputSlot, MidiOutputSlot or MidiInputOutputSlot

RESULT

The result is a 32-bit integer, a MidiShare unique slot reference number.

Note: A SlotRefNum is composed of the driver reference number associated to a unique
number in the driver context. Its structure is defined as:

typedef struct {
short drvRef;
short slotRef;

} SlotRefNum;

A macro defined as:
#define Slot(ref) (((ref).slotRef)

gives the slot reference number.

This part is the base of the Driver Manager events dispatching : events sent to MidiShare
by a driver or given to a driver by MidiShare should always carry their slot reference
number in their port field.

9

MidiConnectSlot

DESCRIPTION

Make or remove a connection between a slot and a MidiShare logical port.
MidiShare applications owning a "context alarm" will be informed of the connection
change using the MIDIChgSlotConnect alarm code.

PROTOTYPE
void MidiConnectSlot (short port, SlotRefNum slot, Boolean state);

ARGUMENTS

port : a 16-bit integer, it is a MidiShare port number.
slot : a 32-bit integer, it is the slot reference number.
state : a Boolean value to specify whether the connection should be done
(true) or removed (false).

Note: a slot may be connected to one or several ports. The connection set determines the
routing in the two directions:
- from MidiShare to the drivers: every slot connected to a port will get a copy of the events

adressed to this port.
- from the drivers to MidiShare: every port connected to a slot will get a copy of the events

received from this slot.

1 0

MidiCountDrivers

DESCRIPTION

Gives the number of MidiShare drivers currently registered.

PROTOTYPE
short MidiCountDrivers ();

RESULT

The result is a 16-bit integer, the number of currently registered drivers

EXAMPLE (ANSI C)
Print the name of all the registered MidiShare drivers

void PrintDriverNames(void)
{

short ref;
short i, n = MidiCountDrivers();

printf("List of MidiShare drivers :\n");
for(i = 1; i <= n; i++)
{

ref = MidiGetIndDriver(i);
printf("%i : %s \n", ref, MidiGetName(ref));

}
}

1 1

MidiGetDriverInfos

DESCRIPTION

Gives information about a driver: it includes the driver name, its version number
and its slots count.

PROTOTYPE
Boolean MidiGetDriverInfos (short ref, TDriverInfos * infos);

ARGUMENTS

ref : a 16-bit integer, it is the reference number of the driver.
infos: a pointer to a TDriverInfos structure to be filled with the driver
characteristics.

STRUCTURE

description of the TDriverInfo structure :
typedef struct TDriverInfos {

DriverName name;
short version;
short slots;
long reserved[2]; /* reserved for future use */

} TDriverInfos;

the name field : contains the driver name.
the version field : contains the driver version number
the slots field : contains the number of slots declared by the driver.

RESULT

The result is a Boolean value which indicates whether MidiShare has been able to
get information about the driver or not.

EXAMPLE (ANSI C)
Print information about all the registered MidiShare drivers

void PrintDriverInfos(void)
{

short ref; TDriverInfos infos;
short i, n = MidiCountDrivers();

printf("List of MidiShare drivers :\n");
for(i = 1; i <= n; i++)
{

ref = MidiGetIndDriver(i);
if (MidiGetDriverInfos (ref, &infos))

printf("%i : %s v%d.%d - %d slots\n", ref, infos.name
infos.verson/100, infos.version%100, infos.slots);

}
}

1 2

MidiGetIndDriver

DESCRIPTION

Gives the reference of number of a driver from its order number. The
MidiGetIndDriver function allows to know the reference number of any driver by
giving its order number (a number between 1 and MidiCountDrivers()).

PROTOTYPE
short MidiGetIndDriver (short index);

ARGUMENTS

index : a 16-bit integer, is the index number of a driver between 1 and
MidiCountDrivers().

RESULT

The result is a driver reference number or MIDIerrIndex if the index is out of
range.

1 3

MidiGetIndSlot

DESCRIPTION

Gives the reference of number of a driver slot from its order number. The
MidiGetIndSlot function allows to know the reference number of all the slots
declared by a driver by giving its order number.

PROTOTYPE
SlotRefNum MidiGetIndSlot (short ref, short index);

ARGUMENTS

ref : a 16-bits integer, it is a driver reference number.
index : a 16-bits integer, it is the index number of the slot, between 1 and the
TDriverInfos::slots field.

RESULT

The result is a 32-bit integer, the slot reference number,
or MIDIerrRefNum if the reference number is incorrect,
or MIDIerrIndex if the index is out of range.

1 4

MidiGetSlotInfos

DESCRIPTION

Gives information about a slot: it includes the slot name, the slot direction and its
connection set to the MidiShare ports

PROTOTYPE
Boolean MidiGetSlotInfos (SlotRefNum ref, TSlotInfos * infos);

ARGUMENTS

ref : a 32-bit integer, the slot reference number.
infos: a pointer to a TSlotInfos structure to be filled with the slot
characteristics.

STRUCTURE

description of the TSlotInfo structure :
typedef struct TSlotInfos {

SlotName name;
SlotDirection direction;
char cnx[32];
long reserved[2]; /* reserved for future use */

} TSlotInfos;

the name field : contains the slot name.
the direction field : indicates the slot direction, defined like below
the cnx field : a 256 bits field to indicates the 256 ports connections state.

typedef enum { MIDIInputSlot=1,
MIDIOutputSlot,
MIDIInputOutputSlot } SlotDirection;

RESULT

The result is a Boolean value which indicates whether MidiShare has been able to
get information about the slot or not.

1 5

EXAMPLE (ANSI C)
Print information about a driver slots.

void PrintSlotsInfos(short driverRef)
{

TDriverInfos dInfos; TSlotInfos sInfos;

if (MidiGetDriverInfos (driverRef, &dInfos)) {
 short i, j; SlotRefNum ref;

printf("List of %s slots :\n", dInfos.name);
for(i = 1; i <= dInfos.slots; i++)
{

ref = MidiGetIndSlot(driverRef, i);
if (MidiGetSlotInfos (ref, &sInfos)) {

printf("\n%i : %s : ", ref, sInfos.name);
switch (sInfos.direction)
{

case MIDIInputSlot:
printf("input slot");
break;

case MIDIOutputSlot:
printf("output slot");
break;

case MIDIInputOutputSlot:
printf("input/output slot");
break;

}
printf(" : connected ports : ");
for (j = 0; j < 256; j++) {

if (IsAcceptedBit (dInfos.cnx, i))
printf("%d ", i);

}
}

}
}

}

1 6

MidiIsSlotConnected

DESCRIPTION

Gives the state of a connection between a MidiShare port and a driver slot.

PROTOTYPE
Boolean MidiIsSlotConnected (short port, SlotRefNum ref);

ARGUMENTS

port : a 16-bits integer, it is a MidiShare port number
ref : the slot reference number

RESULT

The result is true when a connection exist between the port and the slot and false
otherwise.

1 7

MidiRegisterDriver

DESCRIPTION

MidiRegisterDriver is similar to MidiOpen except that the application is registered
as a driver instead of a regular MidiShare client. At register time, a driver should
give the necessary callbacks to be notified of the MidiShare wakeup and sleep
transitions. Any registered driver must call the MidiUnregisterDriver function
before leaving, by giving its reference number as an argument. MidiShare can thus
be aware of the precise number of active Midi drivers. MidiShare applications
owning a "context alarm" will be informed of the new driver using the
MIDIOpenDriver alarm code

PROTOTYPE
short MidiRegisterDriver (TDriverInfos * inf, TDriverOperation *op);

ARGUMENTS

inf : a pointer to a structure containing drivers information.
op : a pointer to a structure containing the callbacks required to be notified
of the MidiShare state changes.

STRUCTURE

description of the TDriverInfo structure :
typedef struct TDriverInfos {

DriverName name; /* the driver name */
short version; /* its version number */
short slots; /* ignored at register time */
long reserved[2];

} TDriverInfos;

description of the TDriverOperation structure :
typedef struct TDriverOperation {

void (* wakeup) (short refNum);
void (* sleep) (short refNum);
long reserved[3];

} TDriverOperation;

the wakeup field : points to a function called by MidiShare at wakeup time.
the sleep field : points to a function called by MidiShare at sleep time.
the reserved fields : reserved for future use. They should be set to zero.

RESULT

The result is a unique reference number identifying the driver.

Note: when registering, a driver should take care of the following: if MidiShare is running
at register time, the driver ‘wakeup’ callback will be called before the MidiRegisterDriver
function return. Therefore, a correct ‘wakeup’ callback implementation should not rely on
code executed after the MidiRegisterDriver function. � �

1 8

MidiRemoveSlot

DESCRIPTION

Remove a slot from the system. MidiShare applications owning a "context alarm"
will be informed of the change using the MIDIRemoveSlot alarm code.

PROTOTYPE
void MidiRemoveSlot (SlotRefNum ref);

ARGUMENTS

ref : a slot reference number.

1 9

MidiUnregisterDriver

DESCRIPTION

This is used for closing of a MidiShare driver. MidiShare applications owning a
"context alarm" will be informed of this closing using the MIDICloseDriver alarm
code.

PROTOTYPE
void MidiUnregisterDriver (short ref);

ARGUMENTS

ref : a driver reference number, given by the corresponding MidiRegisterDriver
call.

Note : when unregistering, a driver should take care of the following: if MidiShare is active
at unregister time, it will first put the driver to sleep by calling the driver ‘sleep’ callback.

